Contents

Preface			xiii
1	$\mathbf{Th} \boldsymbol{\epsilon}$	e Bare Basics	1
	1.1	Points and Vectors	2
	1.2	Operations	3
	1.3	Products	7
	1.4	Affine Maps	8
	1.5	Triangles and Tetrahedra	10
	1.6	Exercises	13
2	Line	es and Planes	17
	2.1	Linear Interpolation	18
	2.2	Line Forms	21
	2.3	Planes	23
	2.4	Linear Pieces: Polygons	25
	2.5	Linear Pieces: Triangulations	26
	2.6	Working with Triangulations	28
	2.7	Exercises	31
3	Cub	oic Bézier Curves	33
	3.1	Parametric Curves	34

vii	i	CONTEN	TS
	3.2	Cubic Bézier Curves	36
	3.3	Derivatives	40
	3.4	The de Casteljau Algorithm	42
	3.5	Subdivision	45
	3.6	Exploring the Properties of Bézier Curves	47
	3.7	The Matrix Form and Monomials	51
	3.8	Exercises	53
4	Bézi	ier Curves: Cubic and Beyond	55
	4.1	Bézier Curves	56
	4.2	Derivatives Revisited	56
	4.3	The de Casteljau Algorithm Revisited	60
	4.4	The Matrix Form and Monomials Revisited	62
	4.5	Degree Elevation	63
	4.6	Degree Reduction	66
	4.7	Bézier Curves over General Intervals	69
	4.8	Functional Bézier Curves	69
	4.9	More on Bernstein Polynomials	71
	4.10	Exercises	73
5	Put	ting Curves to Work	75
	5.1	Cubic Interpolation	75
	5.2	Interpolation Beyond Cubics	78
	5.3	Aitken's Algorithm	81
	5.4	Approximation	84
	5.5	Finding the Right Parameters	86
	5.6	Hermite Interpolation	87
	5.7	Exercises	89

C(ONTE	ENTS	ix
6	Béz	ier Patches	91
	6.1	Parametric Surfaces	92
	6.2	Bilinear Patches	93
	6.3	Bézier Patches	97
	6.4	Properties of Bézier Patches	100
	6.5	Derivatives	101
	6.6	Higher Order Derivatives	105
	6.7	The de Casteljau Algorithm	107
	6.8	Normals	108
	6.9	Changing Degrees	113
	6.10	Subdivision	114
	6.11	Ruled Bézier Patches	117
	6.12	Functional Bézier Patches	118
	6.13	Monomial Patches	119
	6.14	Exercises	120
7	Wor	king with Polynomial Patches	123
	7.1	Bicubic Interpolation	124
	7.2	Interpolation using Higher Degrees	128
	7.3	Coons Patches	130
	7.4	Bicubic Hermite Interpolation	133
	7.5	Trimmed Patches	136
	7.6	Least Squares Approximation	138
	7.7	Exercises	144
8	Shaj	pe	147
	8.1	The Frenet Frame	148
	8.2	Curvature and Torsion	151
	8.3	Surface Curvatures	155

x		CONTENTS
	8.4	Reflection Lines
	8.5	Exercises
9	Con	aposite Curves 165
	9.1	Piecewise Bézier Curves
	9.2	C^1 and G^1 Continuity
	9.3	C^2 and G^2 Continuity
	9.4	Working with Piecewise Bézier Curves 172
	9.5	Point-Normal Interpolation
	9.6	Exercises
10	\mathbf{B} - \mathbf{S}_1	pline Curves 179
	10.1	Basic Definitions
	10.2	The de Boor Algorithm
	10.3	Practicalities of the de Boor Algorithm 191
	10.4	Properties of B-spline Curves 193
	10.5	B-splines: The Building Block 196
	10.6	Knot Insertion
	10.7	Periodic B-spline Curves 204
	10.8	Derivatives
	10.9	Exercises
11	Wor	eking with B-spline Curves 211
	11.1	Designing with B-spline curves
	11.2	Least Squares Approximation 213
	11.3	Shape Equations
	11.4	Cubic Spline Interpolation
	11.5	Cubic Spline Interpolation in a Nutshell 223
	11.6	Exercises

CONTENTS xi		
12 Co	mposite Surfaces 2	27
12.1	Composite Bézier Surfaces	228
12.2	B-spline Surfaces	232
12.3	B-Spline Surface Approximation	235
12.4	B-Spline Surface Interpolation	237
12.5	Subdivision Surfaces: Doo-Sabin	239
12.6	Subdivision Surfaces: Catmull-Clark	241
12.7	7 Exercises	243
13 NU	URBS 2	53
13.1	Conics	254
13.2	Reparametrization and Classification	256
13.3	3 Derivatives	258
13.4	4 The Circle	259
13.5	6 Rational Bézier Curves	261
13.6	Rational B-spline Curves	265
13.7	7 Rational Bézier and B-spline Surfaces 2	266
13.8	Surfaces of Revolution	266
13.9	9 Exercises	270
Hunti	ng Geometry Bugs 2	73
Soluti	ons to Selected Exercises 2	77
13.1	10The Bare Basics	277
13.1	11Lines and Planes	277
13.1	2 Cubic Bézier Curves	277
13.1	3Bézier Curves: Cubic and Beyond	278
13.1	4Putting Curves to Work	279
13.1	5Bézier Patches	280

xii	CONTENTS
$13.16\mathrm{Working}$ with Polynomial Patches	282
13.17Shape	282
13.18Composite Curves	283
13.19B-spline Curves	283
$13.20\mathrm{Working}$ with B-spline Curves	284
13.21 Composite Surfaces	285
13.22NURBS	286
TNT 4 4*	000
Notation	289

Preface

The world of computing and communication has reached a level of visual content that was hard to imagine even ten years ago. Browsers download images, applets create animated sequences; entire movies are made with 100% computer-generated 3D imagery. Several of the underlying computational issues have their home in the field of Computer Aided Geometric Design, or CAGD. The Essentials of CAGD is an elementary introduction to those concepts which can be used to model the letters in this book as well as the "actors" in Toy Story.¹

CAGD goes back to the 1950s when computers were used to drive numerically controlled milling machines in the automotive and aircraft industries. The basic tools that were developed then are parametric curves and surfaces. Now these are not only used in design and manufacturing (CAD/CAM) but also in computer graphics, computer animation, 3D visualization, reverse engineering, or robotics.

Several texts exist on the topic of CAGD. Why a new one? Some texts, for example Farin [9] or Hoschek/Lasser [15] assume a level of mathematical sophistication that is, in our experience, overwhelming for novices. Texts at lower math levels typically miss out on applications. The CAGD coverage in Computer

¹An animated movie produced by Pixar Studios.

xiv PREFACE

Graphics texts is spotty. Hence we tried to create a comprehensive introduction that addresses a general audience and that covers many applications.

The Essentials of CAGD is intended for anyone who needs to learn the basic concepts of CAGD, be it as a first-time student or as a practitioner whose skills are a bit rusty. Its theoretical level is kept as low as possible – we usually substitute examples and images for exact proofs. The Essentials of CAGD is meant to be used at the freshman/sophomore undergraduate level. It serves as an introduction to CAGD for engineers or computer scientists. It is also an ideal companion text for a computer graphics class. Prerequistes for this text include basic computer graphics and linear algebra (such as provided in [10]).

The Essentials of CAGD approaches each topic from a geometric viewpoint. This is realized in three ways:

- **Sketches** illustrate the geometric elements of a concept.
- Figures illustrate a computer application of a concept.
- Examples illuminate algorithms by stepping the reader through a numerical application of a concept.

Exercises are listed at the end of each chapter. Solutions to selected exercises are given in Appendix 13.9.

There is a short Bibliography, suggesting texts for reference and more advanced study of CAGD and related topics. The field of CAGD has its own journal – visit

www.elsevier.nl/locate/comaid.

The Essentials of CAGD has a web site:

 $\verb|http://eros.eas.asu.edu/~farin/essbook/essbook.html|.$

This web site contains general information and updates. It also contains most PostScript files used in the book. See the web page for details on downloading these files. Also available are all data files referred to in the text. In the near future, the site will contain an errata page.

We like to thank the members of Arizona State University's PRISM project.² Particular thanks go to Mary Zhu for help with many graphics problems. Also thanks to M-S. Bae, J. McIntosh, A. Nasri, A. Razdan, H. Theisel. As usual, it was a pleasure to work with AK Peters during all stages of the publication process.

Gerald Farin
Dianne Hansford

June 2000 Paradise Valley, AZ

 $^{^2} For \mod info$ on this interdisciplinary project, visit http://surdas.eas.asu.edu/prism/prism/.