G. Farin

Corrections to Reflection Lines

The reflection writeup in the book is wrong, and what I presented in class is incomplete. Now here is the final word:
Let \mathbf{x} be a point on a surface, and let \mathbf{n} be its normal. Let a light line source be defined by a point \mathbf{p} and a vector \mathbf{v}. Denote by \mathbf{P} the plane through \mathbf{x} with normal vector \mathbf{v}. We compute two points: \mathbf{q}, the projection of the point $\mathbf{x}+\mathbf{n}$ into \mathbf{P} as well as \mathbf{r}, the intersection of \mathbf{L} with \mathbf{P}. See Figure 1.
We write \mathbf{r} as $\mathbf{r}=\mathbf{p}+t \mathbf{v}$ and get the condition

$$
(\mathbf{p}+t \mathbf{v}-\mathbf{x}) \mathbf{v}=0
$$

thus obtaining

$$
t=\frac{\mathbf{x v}-\mathbf{p} \mathbf{v}}{\mathbf{v} \mathbf{v}}
$$

We write \mathbf{q} as $\mathbf{q}=\mathbf{x}+\mathbf{n}+s \mathbf{v}$ and obtain

$$
(\mathbf{x}+\mathbf{n}+s \mathbf{v}-\mathbf{x}) \mathbf{v}=0
$$

thus obtaining (note two x 's cancel):

$$
s=\frac{-\mathbf{n v}}{\mathbf{v} \mathbf{v}}
$$

Now we use the angle α formed by the vectors $\mathbf{q}-\mathbf{x}$ and $\mathbf{r}-\mathbf{x}$ to determine if the point \mathbf{x} reflects light or not.

Figure 1: The reflection line geometry.

