The Essentials of CAGD

Chapter 1: The Bare Basics

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd
(c) 2000

Outline

(1) Introduction to The Bare Basics
(2) Points and Vectors
(3) Operations on Points and Vectors
(4) Products
(5) Affine Maps
(6) Triangles and Tetrahedra

Introduction to The Bare Basics

A bare basic affine mapping of a vector
Goals:

- Introduce basic geometry
- Notation

Points and Vectors

Geometry in two dimensions 2D

$$
\mathbf{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

For a 3D space ...

Points and Vectors

Point

- Denotes a 2D or 3D location
- Lower case boldface letters

$$
\mathbf{p}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

- Coordinates

$$
\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]
$$

Affine space or Euclidean space \mathbb{E}^{2}

Points and Vectors

Vector: difference of two points

$$
\mathbf{v}=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Lower case boldface
- Components

$$
\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

Linear space or Real space \mathbb{R}^{3}

Points and Vectors

Affine/Euclidean
and
linear/real spaces

Operations on Points and Vectors

Translation
 - Moves the point by a displacement
 - Displacement defined by a vector
 $$
\hat{\mathbf{p}}=\mathbf{p}+\mathbf{v}
$$

No effect on vectors

Operations on Points and Vectors

Adding points and vectors

For vectors: Linear combination

$$
\mathbf{v}=\alpha_{1} \mathbf{v}_{1}+\alpha_{2} \mathbf{v}_{2}+\ldots+\alpha_{n} \mathbf{v}_{n}, \quad \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}
$$

For points: barycentric combination

$$
\mathbf{p}=\alpha_{1} \mathbf{p}_{1}+\ldots+\alpha_{n} \mathbf{p}_{n}, \quad \alpha_{1}+\ldots+\alpha_{n}=1
$$

What barycentric combination results in the midpoint of two points?

$$
\mathbf{x}=\alpha \mathbf{p}+\beta \mathbf{q} \quad \alpha+\beta=1
$$

Operations on Points and Vectors

Barycentric coordinates are invariant under translations

$$
(\alpha \mathbf{p}+\beta \mathbf{q})+\mathbf{v}=\alpha(\mathbf{p}+\mathbf{v})+\beta(\mathbf{q}+\mathbf{v})
$$

Sketch illustrates midpoint

$$
\mathbf{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{q}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Translation vector $\mathbf{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$

Operations on Points and Vectors

The problem with
non-barycentric combinations

$$
\begin{gathered}
\mathbf{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad \mathbf{q}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\mathbf{x}=2 \mathbf{p}+\mathbf{q}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{gathered}
$$

Translation vector $\mathbf{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$

$$
\begin{gathered}
\hat{\mathbf{p}}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \hat{\mathbf{q}}=\left[\begin{array}{l}
3 \\
3
\end{array}\right], \quad \mathbf{x}+\mathbf{v}=\left[\begin{array}{l}
3 \\
5
\end{array}\right] \\
\hat{\mathbf{x}}=2 \hat{\mathbf{p}}+\hat{\mathbf{q}}=\left[\begin{array}{l}
7 \\
9
\end{array}\right] \neq \mathbf{x}+\mathbf{v}!
\end{gathered}
$$

Operations on Points and Vectors

Ratio of three (ordered) points

$$
\operatorname{ratio}(\mathbf{p}, \mathbf{x}, \mathbf{q})=\frac{\|\mathbf{x}-\mathbf{p}\|}{\|\mathbf{q}-\mathbf{x}\|}
$$

Ratios and barycentric coordinates:
$\mathbf{x}=a \mathbf{p}+b \mathbf{q}$ where $a+b=1$

$$
\operatorname{ratio}(\mathbf{p}, \mathbf{x}, \mathbf{q})=b: a=\frac{b}{a}
$$

What if \mathbf{x} not between \mathbf{p} and \mathbf{q} ?

Products

Dot product or scalar product of vectors \mathbf{v} and \mathbf{w}
2D: $\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}$
3D: $\mathbf{v} \cdot \mathbf{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}$

Angle α between \mathbf{v} and \mathbf{w} :

$$
\cos (\alpha)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

Length of a vector: $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$
When is $\mathbf{v} \cdot \mathbf{w}=0$?

Products

Cross product or vector product

$$
\mathbf{v} \wedge \mathbf{w}=\left[\begin{array}{l}
v_{y} w_{z}-v_{z} w_{y} \\
v_{z} w_{x}-v_{x} w_{z} \\
v_{x} w_{y}-v_{y} w_{x}
\end{array}\right]
$$

Cross product of two vectors is perpendicular to both of them

Products

Area of parallelogram spanned by \mathbf{v} and \mathbf{w}
$\|\mathbf{v} \wedge \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin (\alpha)$
Application: area of a triangle
When is $\mathbf{v} \wedge \mathbf{w}=0$?

Cross products are antisymmetric

$$
\mathbf{v} \wedge \mathbf{w}=-\mathbf{w} \wedge \mathbf{v}
$$

Affine Maps

Used to move or modify a geometric figure
Given: $\mathbf{p} \in \mathbb{E}^{2}$ and affine map defined by 2×2 matrix A and $\mathbf{v} \in \mathbb{R}^{2}$

$$
\hat{\mathbf{p}}=A \mathbf{p}+\mathbf{v} \quad \in \mathbb{E}^{2} \quad \text { (with help of origin point) }
$$

A represents a linear map

$$
\begin{array}{cc}
\text { scale: } & {\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \text { reflection: }\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \text { projection: }\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]} \\
& \text { rotation: }\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right] \quad \text { shear: }\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
\end{array}
$$

How would you define a 3D affine map?

Affine Maps

Example

Three collinear 2D points

$$
\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Affine map

$$
\hat{\mathbf{x}}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Images of points

$$
\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Midpoint mapped to midpoint!

Affine Maps

Properties:

- Map points to points, lines to lines, and planes to planes
- Leave the ratio of three collinear points unchanged
- Parallel lines to parallel lines
- Two parallel lines mapped to ...
- Two non-intersecting lines mapped to ...
- Planes ...

Triangles and Tetrahedra

2D triangle T formed by three noncollinear points $\mathbf{a}, \mathbf{b}, \mathbf{c}$
Triangle area computed using a 3×3 determinant:

$$
\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\frac{1}{2}\left|\begin{array}{lll}
1 & 1 & 1 \\
\mathbf{a} & \mathbf{b} & \mathbf{c}
\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y}
\end{array}\right|
$$

Triangles and Tetrahedra

Given \mathbf{p} inside T
Write \mathbf{p} as a combination of the triangle vertices

$$
\mathbf{p}=u \mathbf{a}+v \mathbf{b}+w \mathbf{c}
$$

Combination of points
\Rightarrow barycentric combination
Find u, v, w by solving
3 equations in 3 unknowns

Triangles and Tetrahedra

$$
\begin{aligned}
u & =\frac{\operatorname{area}(\mathbf{p}, \mathbf{b}, \mathbf{c})}{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})} \\
v & =\frac{\operatorname{area}(\mathbf{p}, \mathbf{c}, \mathbf{a})}{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})} \\
w & =\frac{\operatorname{area}(\mathbf{p}, \mathbf{a}, \mathbf{b})}{\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})}
\end{aligned}
$$

barycentric coordinates
$\mathbf{u}=(u, v, w)$

Triangles and Tetrahedra

Barycentric coordinates not independent of each other

- e.g., $w=1-u-v$

Behave much like "normal" coordinates:

- If \mathbf{p} is given, can find \mathbf{u}
- If \mathbf{u} is given, can find \mathbf{p}

Not necessary that \mathbf{p} be inside T

- Need signed area

3 vertices of the triangle have barycentric coordinates

$$
\mathbf{a} \cong(1,0,0) \quad \mathbf{b} \cong(0,1,0) \quad \mathbf{c} \cong(0,0,1)
$$

A triangle may also be defined in 3D

$$
\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\frac{1}{2}\|[\mathbf{b}-\mathbf{a}] \wedge[\mathbf{c}-\mathbf{a}]\|
$$

Triangles and Tetrahedra

Example:

$$
\begin{gathered}
\mathbf{a}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] \quad \mathbf{c}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \\
\mathbf{b}-\mathbf{a}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right] \quad \mathbf{c}-\mathbf{a}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right] \\
\mathbf{v}=(\mathbf{b}-\mathbf{a}) \wedge(\mathbf{c}-\mathbf{a})=\left[\begin{array}{c}
8 \\
1 \\
-2
\end{array}\right] \\
\operatorname{area}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\frac{\sqrt{69}}{2}
\end{gathered}
$$

Triangles and Tetrahedra

Tetrahedron: four 3D points $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}$
$\operatorname{vol}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right)=\frac{1}{6}\left|\begin{array}{cccc}1 & 1 & 1 & 1 \\ \mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3} & \mathbf{p}_{4}\end{array}\right|$
Example:

$$
\begin{gathered}
\mathbf{p}_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \mathbf{p}_{2}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \mathbf{p}_{3}=\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right] \mathbf{p}_{4}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \\
\text { vol }=\frac{1}{6}\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 3 & 1 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 2
\end{array}\right|=2
\end{gathered}
$$

