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Introduction to B-Spline Curves

B-spline curves provide a more
complete theory of splines compared
with composite Bézier curves

Sometimes called
NURBS (Non-Uniform Rational
B-Splines)
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Basic Definitions

Bézier curve
x(t) = b0B

n

0 (t) + . . .+ bnB
n

n (t)

– Properties determined by basis functions Bn

i

– Each Bernstein basis function is a polynomial function

B-spline curve

x(u) = d0N
n

0 (u) + . . .+ dD−1N
n

D−1(u)

– Defined by piecewise polynomial basis functions

– Nn

i
(u) are the degree n B-splines

– de Boor points or control points di
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Basic Definitions

Three cubic B-spline curves

– Each has same number of de Boor points
– Number of polynomial segments?
– Continuity?
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Basic Definitions

Degree n B-spline curve defined by control polygon

d0, . . . ,dD−1

Also defined by a knot sequence

u0, . . . , uK−1 where ui+1 ≥ ui

Up to n consecutive knots may coincide

D = K − n+ 1

D equal to number of consecutive n-tuples of knots
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Basic Definitions

Domain knots
un−1, . . . , uK−n

Parameter values within this range used for evaluating a B-spline curve

un−1 is the last knot in the first n-tuple
uK−n is the first knot in the last n-tuple

Up to n knots may coincide
– Number of coincident values is the multiplicity

If the first and last n knots are multiplicity n

⇒ Curve passes through the first and last de Boor points

Knot with multiplicity one called a simple knot
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Basic Definitions

If ui = ui+1 then the interval [ui , ui+1] has length zero

Number of polynomial segments L equal to the number of nonzero length
intervals within the domain knots

If all interior domain knots un, . . . , uK−n−1 are simple
⇒ L = K − 2n + 1 or L = D − n

Span: interval [ui , ui+m] for m > 0
– Span of length m

– Number of spans of length n equals number of legs of the control
polygon
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Basic Definitions

Example: Top cubic curve in previous Figure
Knot sequence – Number of knots K = 9

u0 u1 u2 u3 u4 u5 u6 u7 u8
0 0 0 1 2 3 4 4 4

u0 = u1 = u2 ⇒ multiplicity 3
u6 = u7 = u8 ⇒ multiplicity 3
All other knots are simple knots

Number of de Boor points D = 9− 3 + 1 = 7

Domain knots u2, . . . , u6 (solid circle on the curve)
First and last circle correspond to the first and last de Boor point

L = 4 polynomial segments
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Basic Definitions

Example: Middle cubic curve in Figure
Knot sequence – Number of knots K = 9

u0 u1 u2 u3 u4 u5 u6 u7 u8
0 0 0 1 1 1 2 2 2

Number of control points D = 7

Domain knots: u2, . . . , u6

Multiplicity of the knots equal to the degree
⇒ curve passes through the de Boor points
– Influences the smoothness of the curve segments

L = 2 polynomial segments
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Basic Definitions
Example: Bottom cubic curve in Figure
Knot sequence – Number of knots K = 9

u0 u1 u2 u3 u4 u5 u6 u7 u8
0 1 2 3 4 5 6 7 8

All knots simple

Number of control points D = 7

Domain knots are u2, . . . , u6

L = 4 polynomial segments

————————————————-

Some texts add one extra knot at either end of the knot sequence
– Not necessary
– Made popular by a flaw in the data exchange standard IGES
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The de Boor Algorithm

B-spline curves evaluated using the de Boor algorithm
– Named after Carl de Boor who did pioneering work on B-splines
– Algorithm uses repeated linear interpolation

Let evaluation parameter u be within domain knots
Determine the index I such that

uI ≤ u < uI+1 ⇒ u ∈ [uI , uI+1) ⊂ [un−1, uK−n]

Exception: u = uK−n then set I = K − n − 1 last domain interval
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The de Boor Algorithm

The de Boor algorithm computes

dki (u) =
ui+n−k − u

ui+n−k − ui−1
dk−1
i−1 (u) +

u − ui−1

ui+n−k − ui−1
dk−1
i

(u)

for k = 1, . . . , n, and

i = I − n + k + 1, . . . , I + 1

The point on the curve is

x(u) = dn
I+1(u)
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The de Boor Algorithm
Convenient schematic tool – triangular diagram:

dI−n+1
... d1

I−n+2
...

...

dI+1 d1
I+1

... dn
I+1

One evaluation involves n + 1 de Boor points
⇒ B-splines known for local control

Geometric interpretation of the de Boor algorithm:
– Each step is simply linear interpolation
– May be viewed as an affine map

[ui+n−k , ui−1] ⇒ dk−1
i−1 ,d

k−1
i

Point dk
i
is the image of u under this affine map
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The de Boor Algorithm
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The de Boor Algorithm
Example:
Linear (n = 1) B-spline curve given by the control polygon

[

−1
0

]

,

[

0
1

]

,

[

1
1

]

,

[

1
2

]

and the knot sequence
0 1 2 3
u0 u1 u2 u3

Number of segments L = 3
Evaluate at parameter value u = 1.5
Parameter value in knot interval [u1, u2] ⇒ I = 1
Only one stage with i = 2

d12(u) =
u2 − u

u2 − u1
d01(u) +

u − u1

u2 − u1
d02(u)

x(1.5) = d12(1.5) = 0.5

[

0
1

]

+ 0.5

[

1
1

]

=

[

0.5
1

]
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The de Boor Algorithm

Example: quadratic (n = 2)
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The de Boor Algorithm

Example: cubic (n = 3)
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Practicalities of the de Boor Algorithm

Take a look at knot multiplicity and a data structure

Evaluation for display:
– Choose an increment to step along the curve
– For piecewise polynomials: specify increment for each segment

(Avoid missing a piece of the curve)
– Segments correspond to non-zero length knot intervals
– Want to avoid plotting zero-length segments

⇒ Label non-zero length segments as part of data structure
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Practicalities of the de Boor Algorithm

Expanded knot sequence: Floating point array with every knot stored
explicitly

Alternative approach:
– Store only the unique floating point values
– Create an integer array indicating knot multiplicity

⇒ knot multiplicity vector

Example:
0.0 0.0 0.0 1.0 2.0 3.0 3.0 4.0 5.0 5.0 5.0
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
3 0 0 1 1 2 0 1 3 0 0

Example:
5.0 6.0 10.0 11.0 12.5
u0 u1 u2 u3 u4
1 1 1 1 1

Search only within the domain knots for non-zero length intervals
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Practicalities of the de Boor Algorithm
Given parameter value u

u ∈ [uI , uI+1) ⊂ [un−1, uK−n] and uI 6= uI+1

(Exception for u = uK−n: set I = K − n − 1 – the last domain interval)

Determine interval it is in and multiplicity r

– If u = uI ⇒ r is multiplicity of uI , otherwise r = 0

Simplify the de Boor algorithm

dki (u) =
ui+n−k − u

ui+n−k − ui−1
dk−1
i−1 (u) +

u − ui−1

ui+n−k − ui−1
dk−1
i

(u)

for k = 1, . . . , n − r , and

i = I − n + k + 1, . . . , I + 1

The point on the curve is

x(u) = dn−r

I+1−r
(u)
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Properties of B-spline Curves

Affine invariance

Differentiability:
At a simple knot ui curve is Cn−1

At knot with multiplicity r curve is Cn−r

Endpoint interpolation:
Full multiplicity at end knots ⇒ curve will pass through end control points
If u0 = . . . = un−1 ⇒ x(un−1) = d0
If uK−n = . . . = uK−1 ⇒ x(uK−n) = dD−1
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Properties of B-spline Curves

Local control:
Change a control point di
⇒ Only the closest n + 1 curve
segments change

Curve degrees (from top): n = 2, 3, 4
– Affected curve areas become larger
as the degree increases

Property clear from de Boor
algorithm

Makes B-spline curves flexible
– Can modify only part of curve
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Properties of B-spline Curves

Bézier curves:
For some very special knot sequence configurations
B-spline curves are actually Bézier curves
Conditions:

K = 2n − 1
u0 = . . . = un−1

un = . . . = u2n−1

Example: cubic with knot sequence 0, 0, 0, 1, 1, 1

de Boor algorithm “collapses” to the de Casteljau algorithm
⇒ B-spline curves are a true superset of Bézier curves
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Properties of B-spline Curves

Endpoint derivatives:
If the knot sequence has end knots of
multiplicity n

ẋ(un−1) =
n

un − un−1
[d1 − d0]

ẋ(uK−n) =
n

uK−n − uK−n−1
[dD−1 − dD−2]
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Properties of B-spline Curves

Convex hull:
Each point on the curve lies within the convex hull of the control polygon

Each point on the curve lies within the convex hull of no more than n + 1
nearby control points
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B-splines: The Building Block
B-splines: the basis functions for B-spline curves
– Generalization of Bernstein polynomials
– Composed of several polynomial pieces
– Pieces fit together with certain smoothness

Two piecewise polynomials
Top: piecewise linear and C 0 Bottom: piecewise quadratic and C 1
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B-splines: The Building Block

In Figure: Bézier points of each polynomial segment
– Endpoints of each polynomial marked by solid squares

A B-spline is zero almost everywhere
It assumes nonzero values only for a finite interval
– This region called the function’s support
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B-splines: The Building Block

Degree n B-spline functions:

di =

[

ξi
di

]

where ξi =
1

n
(ui + . . .+ ui+n−1)

di are called the control ordinates of the function

The ξi are the Greville abscissae
– They are moving averages of the knots
– Number of n−tuples of consecutive knots equals number of ξi

⇒ As many Greville abscissae as there are control points
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B-splines: The Building Block
Example: A cubic B-spline function with knot sequence

0 0 0 3 6 12 12 12
u0 u1 u2 u3 u4 u5 u6 u7

Greville abscissae:
0 1 3 7 10 12
ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

Depicted by solid triangular marks
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B-splines: The Building Block

Application of B-spline functions: plot B-splines
– For some k : dk = 1 and di = 0 for all other control ordinates
– Corresponding B-spline function called Nn

k
(u)

Every piecewise polynomial function f (u) may be written as a combination
of these B-splines:

f (u) = d0N
n

0 (u) + . . .+ dD−1N
n

D−1(u)

Every parametric B-spline curve may be written as

x(u) = d0N
n

0 (u) + . . .+ dD−1N
n

D−1(u)

Nn

i
, also called basis splines (or B-splines for short)
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B-splines: The Building Block

B-splines satisfy the recursion

Nn

i (u) =
u − ui−1

ui+n−1 − ui−1
Nn−1
i

(u) +
ui+n − u

ui+n − ui
Nn−1
i+1 (u)

Recursion is anchored by the definition

N0
i (u) =

{

1 if ui−1 ≤ u < ui ,
0 else

Describes each degree n basis function as a linear blend of two degree
n − 1 basis functions
– Starts with the piecewise constant basis function
– Recall: similar concept with the de Casteljau algorithm
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B-splines: The Building Block

The cubic B-splines N3
0 ,N

3
1 , and N3

2 over the given knot sequence
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B-splines: The Building Block

Properties of B-splines:

1 Partition of unity:

Nn

0 (u) + . . .+ Nn

D−1(u) ≡ 1

2 Linear precision: If the di are sampled at the ξi from a linear function:
di = aξi + b

⇒ corresponding B-spline function is that linear function

3 Local support: Every B-spline is nonzero only over n + 1 intervals:
Nn

i
(u) > 0 only if u ∈ [ui−1, ui+n)
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B-splines: The Building Block

All cubic B-splines over the three given knot sequences
Notice the multiplicity
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Knot Insertion

A tool for adding a knot ⇒ creating a refined control polygon
– Trace of the curve same as the original curve

0 0 0 1 2 3 3 3
u0 u1 u2 u3 u4 u5 u6 u7

Note ξi and di positions

Add u = 1.5
⇒ New knot sequence and Greville
abscissae:

0 0 0 1 1.5 2 3 3 3
u0 u1 u2 u3 u4 u5 u6 u7 u8

⇒ Refined control polygon

Process of refinement known as
corner cutting
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Knot Insertion

Application of knot insertion: The de Boor algorithm

First stage: parameter u is inserted into the polygon
⇒ Results in a refined polygon

When the knot is inserted n times ⇒ point on the curve

de Boor algorithm does not modify the knot sequence or the polygon
– Leaves it in original form for the next evaluation
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Knot Insertion

Application of knot insertion:
Converting from B-spline to piecewise Bézier form

B-spline curves are piecewise polynomials
⇒ Must exists a Bézier polygon for each piece
All knots multiplicity n then B-spline polygon is a Bézier polygon
⇒ Insert every knot in the knot sequence to full multiplicity n

Example:
Given cubic B-spline curve with knot sequence

0 0 0 1 2 3 3 3
u0 u1 u2 u3 u4 u5 u6 u7

Insert knots
0 0 0 1 1 1 2 2 2 3 3 3
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11
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Knot Insertion

Piecewise Bézier polygons for the three curves
• The Bézier polygon approximates the curve more closely
• Many calculations are easier for Bézier curves than B-splines
• The order in which the knots are inserted doesn’t matter
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Periodic B-spline Curves

Two B-spline curves which are seemingly without beginning or end
Top: quadratic Bottom: cubic
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Periodic B-spline Curves
Periodic B-spline curve constructed as special case of a “normal” one
Goals:
– Seamless control polygon
– Evaluation at first and last domain knot produce the same point

Recall: de Boor algorithm involves only n + 1 control points
⇒ Number of control points that must overlap
– First 2n − 2 knot intervals influence the position of the “first” point
– Last 2n − 2 intervals influence the position of the “last” point

Let ∆i = ui+1 − ui ⇒ knot sequence constructed as

∆0,∆1, . . . ,∆2n−3,∆2n−2, . . .∆K−2n,∆0,∆1, . . .∆2n−3,

and the de Boor points such that

d0 = dD−n, d1 = dD−(n−1), . . . , d(n − 1) = dD−1
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Periodic B-spline Curves

Cubic example:
Left: not “quite” periodic
Knot sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8 (curve evaluated between [2, 6])
First control point is solid square in the lower left corner

Right: Truly periodic
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Derivatives

By differentiating the Nn

i
and manipulating the indices

⇒ The first derivative for a B-spline curve:

ẋ(u) = n[f0N
n−1
1 + . . .+ fi−1N

n−1
i

+ . . . + fD−2N
n−1
D−1]

fi−1 =
∆di−1

un+i−1 − ui−1
i = 1, . . . ,D − 1

The de Boor algorithm provides an easy way to implement this
Points dn−1

I
(u) and dn−1

I+1 (u) span the curve’s tangent:

ẋ(u) =
n

uI+1 − uI
[dn−1

I+1 (u)− dn−1
I

(u)]

– Involves knot sequence spans of length n

– Similar to the first derivative of a Bézier curve computed via the de
Casteljau algorithm

Farin & Hansford The Essentials of CAGD 43 / 47



Derivatives

If B-spline curve has multiplicity n at the ends

ẋ(un−1) =
n

un − un−1
[d1 − d0]

ẋ(uK−n) =
n

uK−n − uK−n−1
[dD−1 − dD−2]
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Derivatives
The second derivative:

ẍ(u) = n(n − 1)[s1N
n−2
2 + . . .+ si−1N

n−2
i

+ . . .+ sD−2N
n−2
D−1]

si−1 =
∆fi−1

un+1−2 − ui−1
i = 2, . . . ,D − 1

– Involves spans of length n − 1 Implement via the de Boor algorithm

– Compute the intermediate de Boor points up to dn−2
i

– Remaining two steps of the algorithm are modified as follows:

dki (u) =
−k

ui+n−k − ui−1
dk−1
i−1 (u) +

k

ui+n−k − ui−1
dk−1
i

(u)

for k = n − 1, n, and i = I − n + k + 1, . . . , I + 1

Then the second derivative is

ẍ(u) = dn
I+1(u)
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Derivatives

Example: cubic curve
Knot sequence 0, 0, 0, 2, 2, 2
One cubic Bézier curve

Evaluate curve at u = 1.0
de Boor algorithm produces

d0
i

d1
i

d2
i

d3
i

[

−1
0

]

[

0
1

] [

−1/2
1/2

]

[

1
0

] [

1/2
1/2

] [

0
1/2

]

[

0
−1

] [

1/2
−1/2

] [

1/2
0

] [

1/4
1/4

]
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Derivatives
Example: continued
First derivative: d2

i
:

ẋ(1.0) =
3

2
[

[

1/2
0

]

−

[

0
1/2

]

] =

[

3/4
−3/4

]

Second derivative:
Begins with d1

i
and execute the

modified de Boor algorithm:
[

−1/2
1/2

]

[

1/2
1/2

] [

1
0

]

[

1/2
−1/2

] [

0
−1

] [

−3/2
−3/2

]

ẍ(1.0) =

[

−3/2
−3/2

]
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