The Essentials of CAGD Chapter 10: B-Spline Curves

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

(C) 2000

Outline

(1) Introduction to B-Spline Curves
(2) Basic Definitions
(3) The de Boor Algorithm
(4) Practicalities of the de Boor Algorithm
(5) Properties of B-spline Curves
(6) B-splines: The Building Block
(7) Knot Insertion
(8) Periodic B-spline Curves
(9) Derivatives

Introduction to B-Spline Curves

B-spline curves provide a more complete theory of splines compared with composite Bézier curves

Sometimes called
NURBS (Non-Uniform Rational B-Splines)

Basic Definitions

Bézier curve

$$
\mathbf{x}(t)=\mathbf{b}_{0} B_{0}^{n}(t)+\ldots+\mathbf{b}_{n} B_{n}^{n}(t)
$$

- Properties determined by basis functions B_{i}^{n}
- Each Bernstein basis function is a polynomial function

B-spline curve

$$
\mathbf{x}(u)=\mathbf{d}_{0} N_{0}^{n}(u)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{n}(u)
$$

- Defined by piecewise polynomial basis functions
- $N_{i}^{n}(u)$ are the degree n B-splines
- de Boor points or control points \mathbf{d}_{i}

Basic Definitions

Three cubic B-spline curves

- Each has same number of de Boor points
- Number of polynomial segments?
- Continuity?

Basic Definitions

Degree n B-spline curve defined by control polygon

$$
\mathbf{d}_{0}, \ldots, \mathbf{d}_{D-1}
$$

Also defined by a knot sequence

$$
u_{0}, \ldots, u_{K-1} \quad \text { where } u_{i+1} \geq u_{i}
$$

Up to n consecutive knots may coincide

$$
D=K-n+1
$$

D equal to number of consecutive n-tuples of knots

Basic Definitions

Domain knots

$$
u_{n-1}, \ldots, u_{K-n}
$$

Parameter values within this range used for evaluating a B-spline curve
u_{n-1} is the last knot in the first n-tuple u_{K-n} is the first knot in the last n-tuple

Up to n knots may coincide

- Number of coincident values is the multiplicity

If the first and last n knots are multiplicity n
\Rightarrow Curve passes through the first and last de Boor points
Knot with multiplicity one called a simple knot

Basic Definitions

If $u_{i}=u_{i+1}$ then the interval $\left[u_{i}, u_{i+1}\right.$] has length zero
Number of polynomial segments L equal to the number of nonzero length intervals within the domain knots

If all interior domain knots u_{n}, \ldots, u_{K-n-1} are simple
$\Rightarrow L=K-2 n+1$ or $L=D-n$
Span: interval $\left[u_{i}, u_{i+m}\right]$ for $m>0$

- Span of length m
- Number of spans of length n equals number of legs of the control polygon

Basic Definitions

Example: Top cubic curve in previous Figure
Knot sequence - Number of knots $K=9$

$$
\begin{array}{ccccccccc}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7} & u_{8} \\
0 & 0 & 0 & 1 & 2 & 3 & 4 & 4 & 4
\end{array}
$$

$u_{0}=u_{1}=u_{2} \Rightarrow$ multiplicity 3
$u_{6}=u_{7}=u_{8} \Rightarrow$ multiplicity 3
All other knots are simple knots
Number of de Boor points $D=9-3+1=7$
Domain knots u_{2}, \ldots, u_{6} (solid circle on the curve) First and last circle correspond to the first and last de Boor point
$L=4$ polynomial segments

Basic Definitions

Example: Middle cubic curve in Figure Knot sequence - Number of knots $K=9$

$$
\begin{array}{ccccccccc}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7} & u_{8} \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2
\end{array}
$$

Number of control points $D=7$

Domain knots: u_{2}, \ldots, u_{6}
Multiplicity of the knots equal to the degree
\Rightarrow curve passes through the de Boor points

- Influences the smoothness of the curve segments
$L=2$ polynomial segments

Basic Definitions

Example: Bottom cubic curve in Figure Knot sequence - Number of knots $K=9$

$$
\begin{array}{ccccccccc}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7} & u_{8} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

All knots simple
Number of control points $D=7$
Domain knots are u_{2}, \ldots, u_{6}
$L=4$ polynomial segments

Some texts add one extra knot at either end of the knot sequence

- Not necessary
- Made popular by a flaw in the data exchange standard IGES

The de Boor Algorithm

B-spline curves evaluated using the de Boor algorithm

- Named after Carl de Boor who did pioneering work on B-splines
- Algorithm uses repeated linear interpolation

Let evaluation parameter u be within domain knots Determine the index I such that

$$
u_{l} \leq u<u_{I+1} \quad \Rightarrow u \in\left[u_{I}, u_{I+1}\right) \subset\left[u_{n-1}, u_{K-n}\right]
$$

Exception: $u=u_{K-n}$ then set $I=K-n-1$ last domain interval

The de Boor Algorithm

The de Boor algorithm computes

$$
\begin{gathered}
\mathbf{d}_{i}^{k}(u)=\frac{u_{i+n-k}-u}{u_{i+n-k}-u_{i-1}} \mathbf{d}_{i-1}^{k-1}(u)+\frac{u-u_{i-1}}{u_{i+n-k}-u_{i-1}} \mathbf{d}_{i}^{k-1}(u) \\
\text { for } \quad k=1, \ldots, n, \quad \text { and } \\
\quad i=I-n+k+1, \ldots, I+1
\end{gathered}
$$

The point on the curve is

$$
\mathbf{x}(u)=\mathbf{d}_{l+1}^{n}(u)
$$

The de Boor Algorithm

Convenient schematic tool - triangular diagram:

$$
\begin{array}{ccll}
\mathbf{d}_{l-n+1} & & & \\
\vdots & \mathbf{d}_{l-n+2}^{1} & & \\
\vdots & \vdots & & \\
\mathbf{d}_{l+1} & \mathbf{d}_{l+1}^{1} & \vdots & \mathbf{d}_{l+1}^{n}
\end{array}
$$

One evaluation involves $n+1$ de Boor points \Rightarrow B-splines known for local control

Geometric interpretation of the de Boor algorithm:

- Each step is simply linear interpolation
- May be viewed as an affine map

$$
\left[u_{i+n-k}, u_{i-1}\right] \quad \Rightarrow \quad \mathbf{d}_{i-1}^{k-1}, \mathbf{d}_{i}^{k-1}
$$

Point \mathbf{d}_{i}^{k} is the image of u under this affine map

The de Boor Algorithm

The de Boor Algorithm

Example:

Linear ($n=1$) B-spline curve given by the control polygon

$$
\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and the knot sequence

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
u_{0} & u_{1} & u_{2} & u_{3}
\end{array}
$$

Number of segments $L=3$
Evaluate at parameter value $u=1.5$
Parameter value in knot interval $\left[u_{1}, u_{2}\right] \Rightarrow I=1$ Only one stage with $i=2$

$$
\begin{gathered}
\mathbf{d}_{2}^{1}(u)=\frac{u_{2}-u}{u_{2}-u_{1}} \mathbf{d}_{1}^{0}(u)+\frac{u-u_{1}}{u_{2}-u_{1}} \mathbf{d}_{2}^{0}(u) \\
\mathbf{x}(1.5)=\mathbf{d}_{2}^{1}(1.5)=0.5\left[\begin{array}{l}
0 \\
1
\end{array}\right]+0.5\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]
\end{gathered}
$$

The de Boor Algorithm

Example: quadratic $(n=2)$

The de Boor Algorithm

Example: cubic $(n=3)$

Practicalities of the de Boor Algorithm

Take a look at knot multiplicity and a data structure
Evaluation for display:

- Choose an increment to step along the curve
- For piecewise polynomials: specify increment for each segment (Avoid missing a piece of the curve)
- Segments correspond to non-zero length knot intervals
- Want to avoid plotting zero-length segments
\Rightarrow Label non-zero length segments as part of data structure

Practicalities of the de Boor Algorithm

Expanded knot sequence: Floating point array with every knot stored explicitly

Alternative approach:

- Store only the unique floating point values
- Create an integer array indicating knot multiplicity \Rightarrow knot multiplicity vector

Example:

0.0	0.0	0.0	1.0	2.0	3.0	3.0	4.0	5.0	5.0	5.0
u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}
3	0	0	1	1	2	0	1	3	0	0

Example:

5.0	6.0	10.0	11.0	12.5
u_{0}	u_{1}	u_{2}	u_{3}	u_{4}
1	1	1	1	1

Search only within the domain knots for non-zero length intervals

Practicalities of the de Boor Algorithm

Given parameter value u

$$
u \in\left[u_{I}, u_{I+1}\right) \subset\left[u_{n-1}, u_{K-n}\right] \quad \text { and } \quad u_{I} \neq u_{I+1}
$$

(Exception for $u=u_{K-n}$: set $I=K-n-1-$ the last domain interval)
Determine interval it is in and multiplicity r

- If $u=u_{I} \Rightarrow r$ is multiplicity of u_{I}, otherwise $r=0$

Simplify the de Boor algorithm

$$
\begin{gathered}
\mathbf{d}_{i}^{k}(u)=\frac{u_{i+n-k}-u}{u_{i+n-k}-u_{i-1}} \mathbf{d}_{i-1}^{k-1}(u)+\frac{u-u_{i-1}}{u_{i+n-k}-u_{i-1}} \mathbf{d}_{i}^{k-1}(u) \\
\text { for } \quad k=1, \ldots, n-r, \quad \text { and } \\
i=l-n+k+1, \ldots, l+1
\end{gathered}
$$

The point on the curve is

$$
\mathbf{x}(u)=\mathbf{d}_{l+1-r}^{n-r}(u)
$$

Properties of B-spline Curves

Affine invariance

Differentiability:

At a simple knot u_{i} curve is C^{n-1}
At knot with multiplicity r curve is C^{n-r}

Endpoint interpolation:

Full multiplicity at end knots \Rightarrow curve will pass through end control points
If $u_{0}=\ldots=u_{n-1} \quad \Rightarrow \quad \mathbf{x}\left(u_{n-1}\right)=\mathbf{d}_{0}$
If $u_{K-n}=\ldots=u_{K-1} \quad \Rightarrow \quad \mathbf{x}\left(u_{K-n}\right)=\mathbf{d}_{D-1}$

Properties of B-spline Curves

Local control:

Change a control point \mathbf{d}_{i}
\Rightarrow Only the closest $n+1$ curve segments change

Curve degrees (from top): $n=2,3,4$

- Affected curve areas become larger as the degree increases

Property clear from de Boor algorithm

Makes B-spline curves flexible - Can modify only part of curve

Properties of B-spline Curves

Bézier curves:

For some very special knot sequence configurations
B-spline curves are actually Bézier curves
Conditions:

$$
\begin{aligned}
& K=2 n-1 \\
& u_{0}=\ldots=u_{n-1} \\
& u_{n}=\ldots=u_{2 n-1}
\end{aligned}
$$

Example: cubic with knot sequence $0,0,0,1,1,1$
de Boor algorithm "collapses" to the de Casteljau algorithm \Rightarrow B-spline curves are a true superset of Bézier curves

Properties of B-spline Curves

Endpoint derivatives:

If the knot sequence has end knots of multiplicity n

$$
\begin{gathered}
\dot{\mathbf{x}}\left(u_{n-1}\right)=\frac{n}{u_{n}-u_{n-1}}\left[\mathbf{d}_{1}-\mathbf{d}_{0}\right] \\
\dot{\mathbf{x}}\left(u_{K-n}\right)=\frac{n}{u_{K-n}-u_{K-n-1}}\left[\mathbf{d}_{D-1}-\mathbf{d}_{D-2}\right]
\end{gathered}
$$

Properties of B-spline Curves

Convex hull:

Each point on the curve lies within the convex hull of the control polygon
Each point on the curve lies within the convex hull of no more than $n+1$ nearby control points

B-splines: The Building Block

B-splines: the basis functions for B-spline curves

- Generalization of Bernstein polynomials
- Composed of several polynomial pieces
- Pieces fit together with certain smoothness

Two piecewise polynomials
Top: piecewise linear and C^{0}
Bottom: piecewise quadratic and C^{1}

B-splines: The Building Block

In Figure: Bézier points of each polynomial segment

- Endpoints of each polynomial marked by solid squares

A B-spline is zero almost everywhere
It assumes nonzero values only for a finite interval

- This region called the function's support

B-splines: The Building Block

Degree n B-spline functions:

$$
\mathbf{d}_{i}=\left[\begin{array}{l}
\xi_{i} \\
d_{i}
\end{array}\right] \quad \text { where } \quad \xi_{i}=\frac{1}{n}\left(u_{i}+\ldots+u_{i+n-1}\right)
$$

d_{i} are called the control ordinates of the function
The ξ_{i} are the Greville abscissae

- They are moving averages of the knots
- Number of n-tuples of consecutive knots equals number of ξ_{i} \Rightarrow As many Greville abscissae as there are control points

B-splines: The Building Block

Example: A cubic B-spline function with knot sequence

$$
\begin{array}{cccccccc}
0 & 0 & 0 & 3 & 6 & 12 & 12 & 12 \\
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7}
\end{array}
$$

Greville abscissae:

$$
\begin{array}{cccccc}
0 & 1 & 3 & 7 & 10 & 12 \\
\xi_{0} & \xi_{1} & \xi_{2} & \xi_{3} & \xi_{4} & \xi_{5}
\end{array}
$$

Depicted by solid triangular marks

B-splines: The Building Block

Application of B-spline functions: plot B-splines

- For some $k: d_{k}=1$ and $d_{i}=0$ for all other control ordinates
- Corresponding B-spline function called $N_{k}^{n}(u)$

Every piecewise polynomial function $f(u)$ may be written as a combination of these B-splines:

$$
f(u)=d_{0} N_{0}^{n}(u)+\ldots+d_{D-1} N_{D-1}^{n}(u)
$$

Every parametric B-spline curve may be written as

$$
\mathbf{x}(u)=\mathbf{d}_{0} N_{0}^{n}(u)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{n}(u)
$$

N_{i}^{n}, also called basis splines (or B-splines for short)

B-splines: The Building Block

B-splines satisfy the recursion

$$
N_{i}^{n}(u)=\frac{u-u_{i-1}}{u_{i+n-1}-u_{i-1}} N_{i}^{n-1}(u)+\frac{u_{i+n}-u}{u_{i+n}-u_{i}} N_{i+1}^{n-1}(u)
$$

Recursion is anchored by the definition

$$
N_{i}^{0}(u)= \begin{cases}1 & \text { if } u_{i-1} \leq u<u_{i} \\ 0 & \text { else }\end{cases}
$$

Describes each degree n basis function as a linear blend of two degree $n-1$ basis functions

- Starts with the piecewise constant basis function
- Recall: similar concept with the de Casteljau algorithm

B-splines: The Building Block

The cubic B-splines N_{0}^{3}, N_{1}^{3}, and N_{2}^{3} over the given knot sequence

B-splines: The Building Block

Properties of B-splines:
(1) Partition of unity:

$$
N_{0}^{n}(u)+\ldots+N_{D-1}^{n}(u) \equiv 1
$$

(3) Linear precision: If the d_{i} are sampled at the ξ_{i} from a linear function:
$d_{i}=a \xi_{i}+b$
\Rightarrow corresponding B -spline function is that linear function
(3) Local support: Every B-spline is nonzero only over $n+1$ intervals: $N_{i}^{n}(u)>0$ only if $u \in\left[u_{i-1}, u_{i+n}\right)$

B-splines: The Building Block

All cubic B-splines over the three given knot sequences Notice the multiplicity

Knot Insertion

A tool for adding a knot \Rightarrow creating a refined control polygon

- Trace of the curve same as the original curve

$$
\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 2 & 3 & 3 & 3 \\
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7}
\end{array}
$$

Note ξ_{i} and \mathbf{d}_{i} positions
Add $u=1.5$
\Rightarrow New knot sequence and Greville abscissae:

0	0	0	1	1.5	2	3	3	3
u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
\Rightarrow								
\Rightarrow	Refined control polygon							

Process of refinement known as corner cutting

Knot Insertion

Application of knot insertion: The de Boor algorithm
First stage: parameter u is inserted into the polygon
\Rightarrow Results in a refined polygon
When the knot is inserted n times \Rightarrow point on the curve
de Boor algorithm does not modify the knot sequence or the polygon - Leaves it in original form for the next evaluation

Knot Insertion

Application of knot insertion:
Converting from B-spline to piecewise Bézier form
B-spline curves are piecewise polynomials
\Rightarrow Must exists a Bézier polygon for each piece
All knots multiplicity n then B-spline polygon is a Bézier polygon
\Rightarrow Insert every knot in the knot sequence to full multiplicity n

Example:

Given cubic B-spline curve with knot sequence

0	0	0	1	2	3	3	3
u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}

Insert knots

0	0	0	1	1	1	2	2	2	3	3	3
u_{0}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	u_{11}

Knot Insertion

Piecewise Bézier polygons for the three curves

- The Bézier polygon approximates the curve more closely
- Many calculations are easier for Bézier curves than B-splines
- The order in which the knots are inserted doesn't matter

Periodic B-spline Curves

Two B-spline curves which are seemingly without beginning or end Top: quadratic Bottom: cubic

Periodic B-spline Curves

Periodic B-spline curve constructed as special case of a "normal" one Goals:

- Seamless control polygon
- Evaluation at first and last domain knot produce the same point

Recall: de Boor algorithm involves only $n+1$ control points
\Rightarrow Number of control points that must overlap

- First $2 n-2$ knot intervals influence the position of the "first" point
- Last $2 n-2$ intervals influence the position of the "last" point

Let $\Delta_{i}=u_{i+1}-u_{i} \Rightarrow$ knot sequence constructed as

$$
\Delta_{0}, \Delta_{1}, \ldots, \Delta_{2 n-3}, \Delta_{2 n-2}, \ldots \Delta_{K-2 n}, \Delta_{0}, \Delta_{1}, \ldots \Delta_{2 n-3}
$$

and the de Boor points such that

$$
\left.\mathbf{d}_{0}=\mathbf{d}_{D-n}, \quad \mathbf{d}_{1}=\mathbf{d}_{D-(n-1)}, \quad \ldots, \quad \mathbf{d}_{(} n-1\right)=\mathbf{d}_{D-1}
$$

Periodic B-spline Curves

Cubic example:

Left: not "quite" periodic
Knot sequence: $0,1,2,3,4,5,6,7,8$ (curve evaluated between $[2,6]$)
First control point is solid square in the lower left corner
Right: Truly periodic

Derivatives

By differentiating the N_{i}^{n} and manipulating the indices
\Rightarrow The first derivative for a B-spline curve:

$$
\begin{gathered}
\dot{\mathbf{x}}(u)=n\left[\mathbf{f}_{0} N_{1}^{n-1}+\ldots+\mathbf{f}_{i-1} N_{i}^{n-1}+\ldots+\mathbf{f}_{D-2} N_{D-1}^{n-1}\right] \\
\mathbf{f}_{i-1}=\frac{\Delta \mathbf{d}_{i-1}}{u_{n+i-1}-u_{i-1}} \quad i=1, \ldots, D-1
\end{gathered}
$$

The de Boor algorithm provides an easy way to implement this Points $\mathbf{d}_{I}^{n-1}(u)$ and $\mathbf{d}_{l+1}^{n-1}(u)$ span the curve's tangent:

$$
\dot{\mathbf{x}}(u)=\frac{n}{u_{I+1}-u_{l}}\left[\mathbf{d}_{I+1}^{n-1}(u)-\mathbf{d}_{I}^{n-1}(u)\right]
$$

- Involves knot sequence spans of length n
- Similar to the first derivative of a Bézier curve computed via the de Casteljau algorithm

Derivatives

If B-spline curve has multiplicity n at the ends

$$
\begin{gathered}
\dot{\mathbf{x}}\left(u_{n-1}\right)=\frac{n}{u_{n}-u_{n-1}}\left[\mathbf{d}_{1}-\mathbf{d}_{0}\right] \\
\dot{\mathbf{x}}\left(u_{K-n}\right)=\frac{n}{u_{K-n}-u_{K-n-1}}\left[\mathbf{d}_{D-1}-\mathbf{d}_{D-2}\right]
\end{gathered}
$$

Derivatives

The second derivative:

$$
\begin{gathered}
\ddot{\mathbf{x}}(u)=n(n-1)\left[\mathbf{s}_{1} N_{2}^{n-2}+\ldots+\mathbf{s}_{i-1} N_{i}^{n-2}+\ldots+\mathbf{s}_{D-2} N_{D-1}^{n-2}\right] \\
\mathbf{s}_{i-1}=\frac{\Delta \mathbf{f}_{i-1}}{u_{n+1-2}-u_{i-1}} \quad i=2, \ldots, D-1
\end{gathered}
$$

- Involves spans of length $n-1$ Implement via the de Boor algorithm
- Compute the intermediate de Boor points up to \mathbf{d}_{i}^{n-2}
- Remaining two steps of the algorithm are modified as follows:

$$
\begin{aligned}
& \mathbf{d}_{i}^{k}(u)=\frac{-k}{u_{i+n-k}-u_{i-1}} \mathbf{d}_{i-1}^{k-1}(u)+\frac{k}{u_{i+n-k}-u_{i-1}} \mathbf{d}_{i}^{k-1}(u) \\
& \text { for } \quad k=n-1, n, \quad \text { and } \quad i=I-n+k+1, \ldots, I+1
\end{aligned}
$$

Then the second derivative is

$$
\ddot{\mathbf{x}}(u)=\mathbf{d}_{l+1}^{n}(u)
$$

Derivatives

Example: cubic curve
Knot sequence $0,0,0,2,2,2$ One cubic Bézier curve

Evaluate curve at $u=1.0$ de Boor algorithm produces

d_{i}^{0}	\mathbf{d}_{i}^{1}	$\mathrm{d}_{i}{ }^{\text {2 }}$	$\mathbf{d}_{i}{ }^{3}$
$\left[\begin{array}{c}-1 \\ 0\end{array}\right]$			
$\left[\begin{array}{l}0 \\ 1\end{array}\right]$	$\left[\begin{array}{c}-1 / 2 \\ 1 / 2\end{array}\right]$		
$\left[\begin{array}{l}1 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$	$\left[\begin{array}{c}0 \\ 1 / 2\end{array}\right]$	
$\left[\begin{array}{c}0 \\ -1\end{array}\right]$	$\left[\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right]$	$\left[\begin{array}{c}1 / 2 \\ 0\end{array}\right]$	$\left[\begin{array}{l}1 / 4 \\ 1 / 4\end{array}\right]$

Derivatives

Example: continued
First derivative: \mathbf{d}_{i}^{2} :

$$
\left.\dot{\mathrm{x}}(1.0)=\frac{3}{2}\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right]-\left[\begin{array}{c}
0 \\
1 / 2
\end{array}\right]\right]=\left[\begin{array}{c}
3 / 4 \\
-3 / 4
\end{array}\right]
$$

Second derivative:
Begins with \mathbf{d}_{i}^{1} and execute the modified de Boor algorithm:

$$
\begin{array}{ll}
{\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right]} \\
{\left[\begin{array}{c}
1 / 2 \\
1 / 2
\end{array}\right]} & {\left[\begin{array}{c}
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right]} & {\left[\begin{array}{c}
0 \\
-1
\end{array}\right]}
\end{array}\left[\begin{array}{l}
-3 / 2 \\
-3 / 2
\end{array}\right] .
$$

