The Essentials of CAGD
 Chapter 2: Lines and Planes

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd
(C) 2000

Outline

(1) Introduction to Lines and Planes
(2) Linear Interpolation
(3) Line Forms
4. Planes
(5) Linear Pieces: Polygons
(6) Linear Pieces: Triangulations
(7) Working with Triangulations

Introduction to Lines and Planes

> Building blocks of polygons and triangles

Fundamental operation:
Linear interpolation

Triangulation of the "Stanford bunny"

Linear Interpolation

Points \mathbf{p} and \mathbf{q} define a line How can we describe all points on this line?

Imagine a particle \mathbf{x} traversing the line
Where is $\mathbf{x}(t)$ at any given time t ?
Want $\mathbf{x}(0)=\mathbf{p}$ and $\mathbf{x}(1)=\mathbf{q}$

$$
\mathbf{x}(t)=(1-t) \mathbf{p}+t \mathbf{q}
$$

This is the parametric form of a line with parameter t

What is t corresponds to the midpoint of the line segment?

Linear Interpolation

Example

$$
\mathbf{p}=\left[\begin{array}{c}
20 \\
2
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{l}
-10 \\
-10
\end{array}\right]
$$

At $t=\frac{1}{3}$:

$$
\mathbf{x}\left(\frac{1}{3}\right)=\frac{2}{3} \mathbf{p}+\frac{1}{3} \mathbf{q}=\left[\begin{array}{c}
10 \\
-2
\end{array}\right]
$$

Domain is real numbers
Range of the map is $\mathbf{x}(t)$
Also: preimage, image

Linear Interpolation

Linear interpolation is an affine map

- Ratios preserved

$$
\operatorname{ratio}(0, t, 1)=\frac{t}{1-t} \quad \text { and } \quad \operatorname{ratio}(\mathbf{p}, \mathbf{x}(t), \mathbf{q})=\frac{t}{1-t}
$$

Linear Interpolation

3D parametric line

Parameter t not restricted to $[0,1]$
Example

$$
\mathbf{p}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]
$$

At $t=-1$:

$$
\mathbf{x}(-1)=2 \mathbf{p}-\mathbf{q}=\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right]
$$

Linear Interpolation

Line segment between \mathbf{p} and \mathbf{q} over parameter interval $[a, b]$
Parameter transformation: affine map taking $u \in[a, b]$ to $t \in[0,1]$

$$
t=\frac{u-a}{b-a} \quad \text { and } \quad 1-t=\frac{b-u}{b-a}
$$

Global parameter \boldsymbol{u} and Local parameter t

Linear Interpolation

Example

$$
\mathbf{p}=\left[\begin{array}{c}
1900 \\
1 \mathrm{~K}
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{c}
2000 \\
100 \mathrm{~K}
\end{array}\right]
$$

What is the data point for the year 1990?
The year 1990 is a global parameter
The local parameter for the line through \mathbf{p} and \mathbf{q} :

$$
t=\frac{1990-1900}{2000-1900}=\frac{9}{10}
$$

The data point for 1990:

$$
\mathbf{x}\left(\frac{9}{10}\right)=\frac{1}{10} \mathbf{p}+\frac{9}{10} \mathbf{q}=\left[\begin{array}{c}
1990 \\
90100
\end{array}\right]
$$

Line Forms

Parametric form: $\mathbf{x}(t)=(1-t) \mathbf{p}+t \mathbf{q}$
Explicit form: $y=a x+b \quad$ (a is the slope, b is the y-intercept)
Parametric form is more general
What is explicit form of line through points

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right] ?
$$

No explicit 3D line form

Line Forms

Convert explicit to parametric:

- Choose any two points on the line ...

$$
\mathbf{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=(1-t)\left[\begin{array}{l}
0 \\
b
\end{array}\right]+t\left[\begin{array}{c}
1 \\
a+b
\end{array}\right]
$$

Rewrite parametric form: $\mathbf{x}(t)=\mathbf{p}+t(\mathbf{q}-\mathbf{p})$
Let $\mathbf{v}=\mathbf{q}-\mathbf{p}$ and \mathbf{v}^{\perp} perpendicular to \mathbf{v}

$$
\text { Point-normal form: } \quad \mathbf{v}^{\perp}[\mathbf{x}-\mathbf{p}]=0
$$

Let $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$ then point-normal form transformed to
Implicit form: $a x+b y=c$

Line Forms

Example

Given implicit line $3 x-2 y=1$
Are the following points on the line?

$$
\mathbf{p}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{p}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Sketch the implicit line using parametric form

$$
\mathbf{x}(t)=\mathbf{p}+t \mathbf{v}
$$

$$
\begin{aligned}
& \mathbf{p}=\mathbf{p}_{1} \\
& \mathbf{v}^{\perp}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \Rightarrow \mathbf{v}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{aligned}
$$

Planes

Plane defined by three noncollinear points $\mathbf{p}, \mathbf{q}, \mathbf{r}$
Point \mathbf{x} in plane:

$$
\mathbf{x}=u \mathbf{p}+v \mathbf{q}+w \mathbf{r} \quad \text { where } \quad u+v+w=1
$$

Volume of tetrahedron:

$$
\operatorname{vol}(\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{x})=\frac{1}{6}\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
\mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{x}
\end{array}\right|=0
$$

Why?
Tetrahedron with zero volume is a plane $\Rightarrow \mathbf{x}$ is in the plane spanned by $\mathbf{p}, \mathbf{q}, \mathbf{r}$

Planes

Point-vector form of a plane

$$
\mathbf{x}=u \mathbf{p}+v \mathbf{q}+w \mathbf{r}=\mathbf{r}+u(\mathbf{p}-\mathbf{r})+v(\mathbf{q}-\mathbf{r})
$$

Implicit form:

Vector orthogonal (normal) to the plane

$$
\mathbf{n}=[\mathbf{p}-\mathbf{r}] \wedge[\mathbf{q}-\mathbf{r}]
$$

Point-normal form: for any point \mathbf{x} in the plane

$$
\mathbf{n}[\mathbf{x}-\mathbf{r}]=0
$$

Transformed to

$$
a x+b y+c z=d \quad \text { where } \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Which form best form for \{testing if, calculating\} \mathbf{x} in the plane?

Planes

Example

Given: three points

$$
\mathbf{p}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \mathbf{q}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad \mathbf{r}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Find: implicit plane through points

$$
\begin{gathered}
\mathbf{n}=[\mathbf{p}-\mathbf{r}] \wedge[\mathbf{q}-\mathbf{r}]=\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right] \\
{\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
x-1 \\
y-1 \\
z
\end{array}\right]=0} \\
x+y+z=2
\end{gathered}
$$

Linear Pieces: Polygons

Vertices: $\mathbf{p}_{1}, \ldots, \mathbf{p}_{N}$ Edges \mathbf{p}_{i} to \mathbf{p}_{i+1}

Polygons may be open or closed

Linear Pieces: Polygons

Closed polygons classified as
convex or nonconvex
Convexity tests:

1. "Rubberband" test

Convex hull: area enclosed by rubberband
2. Line segment inclusion test

Linear Pieces: Triangulations

Most fundamental entity in computer graphics: triangles
Most rendering boils down to determining how a triangular facet interacts with the lighting model

CAD/CAM has historically used triangles as a centerpiece geometric entity for computations such as tool paths and finite element analysis (FEM)

- The reason: computations are very simple and fast

Linear Pieces: Triangulations

Triangulations can be generated
 through the use of laser digitizers

- Scan an object using laser rays
- Scanning generates x, y, z coordinates of points
- Software creates triangulation

Resulting triangulations tend to be large (100K + triangles)

- "Digital Michelangelo" Project (2B triangles)

Linear Pieces: Triangulations

Triangulation: a set of triangles connecting a set of points in 2D or 3D
A triangulation must satisfy the following conditions:

1. Vertices of triangles consist of given points
2. Interiors of any two triangles do not intersect
3. If two triangles not disjoint, then share a vertex or have coinciding edge
4. All triangles oriented consistently - "outward" normals

Linear Pieces: Triangulations

Many possibilities for a data structure - might include

- A point list
- A triangle list
- A neighbor list

Application dictates optimal data structure
Bad example: STL (Stereo Lithography Language)

- Data points listed multiply
- Each triangle is given explicitly by its vertices
- No neighbor information is given

Linear Pieces: Triangulations

Point list:
$\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}, \mathbf{p}_{5}, \mathbf{p}_{6}$
The triangle and neighbor lists: triangle vertices neighbors

0	$1,6,4$	$5,-1,2$
1	$5,0,3$,	$-1,3,-1$
2	$1,2,6$	$4,0,-1$
3	$5,3,6$	$5,4,1$
4	$2,5,6$	$3,2,-1$
5	$4,6,3$	$3,-1,0$

Working with Triangulations

Problem: Triangulation too dense for efficient representation

Decimation:

Reduction in size of a triangulation
Remove as many triangles as possible while staying as close to the initial triangulation

Basic idea:
If multiple triangles part of one plane then replace by fewer triangles

- Planarity tolerance

Working with Triangulations

Edge Collapse Decimation:

Reduce the number of triangles by collapsing an edge

- See previous Sketch: Marked edge collapsed to midpoint
- Number of triangles reduced
- Valid triangulation maintained
- Repeat ...

Working with Triangulations

Star \mathbf{p}^{\star} of a point \mathbf{p} :
Set of all triangles having \mathbf{p} as a vertex
\mathbf{p}_{6}^{\star} consists triangles $0,2,3,4,5$

Working with Triangulations

Edge collapse with a plane-based flatness test:
Triangulation edge \mathbf{p} and \mathbf{q}
Check if all triangles formed by $\mathbf{p}^{\star} \cup \mathbf{q}^{\star}$ are sufficiently planar

- Form plane from centroid point and average normal
- All points within a given tolerance to this plane?

Yes: collapse edge

Working with Triangulations

Multiresolution representation:

Fine to coarse triangulations
Application:
transmission through the internet

