The Essentials of CAGD
 Chapter 4: Bézier Curves: Cubic and Beyond

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd
(C) 2000

Outline

(1) Introduction to Bézier Curves: Cubic and Beyond
(2) Bézier Curves
(3) Derivatives Revisited

4 The de Casteljau Algorithm Revisited
(5) The Matrix Form and Monomials Revisited
(6) Degree Elevation
(7) Degree Reduction
8) Bézier Curves over General Intervals
(9) Functional Bézier Curves
(10) More on Bernstein Polynomials

Introduction to Bézier Curves: Cubic and Beyond

An excerpt from P. de Casteljau's writings

Bézier curves are not restricted to cubics

- Here we explore these more general curves

Bézier Curves

A Bézier curve of degree n

$$
\begin{gathered}
\mathbf{x}(t)=\mathbf{b}_{0} B_{0}^{n}(t)+\mathbf{b}_{1} B_{1}^{n}(t)+\ldots+\mathbf{b}_{n} B_{n}^{n}(t) \\
B_{i}^{n}(t) \text { are Bernstein polynomials } \\
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}
\end{gathered}
$$

Binomial coefficients:

$$
\binom{n}{i}= \begin{cases}\frac{n!}{i!(n-i)!} & \text { if } 0 \leq i \leq n \\ 0 & \text { else }\end{cases}
$$

$$
B_{i}^{4}(t) \text { over }[0,1]
$$

$$
(1-t)^{4} \quad 4(1-t)^{3} t \quad 6(1-t)^{2} t^{2} \quad 4(1-t) t^{3} \quad t^{4}
$$

Bézier Curves

Several examples of higher degree Bézier curves
User might influence the shape by

- Adding more control points
- Moving control points

Properties from the cubic case carry over

Derivatives Revisited

$$
\dot{\mathbf{x}}(t)=n\left[\Delta \mathbf{b}_{0} B_{0}^{n-1}+\ldots+\Delta \mathbf{b}_{n-1} B_{n-1}^{n-1}\right] \quad \text { where } \quad \Delta \mathbf{b}_{i}=\mathbf{b}_{i+1}-\mathbf{b}_{i}
$$

$\Rightarrow A$ degree $n-1$ Bézier curve with vector coefficients
The $k^{\text {th }}$ derivative

$$
\frac{\mathrm{d}^{k} \mathbf{x}(t)}{\mathrm{d} t^{k}}=\frac{n!}{(n-k)!}\left[\Delta^{k} \mathbf{b}_{0} B_{0}^{n-k}(t)+\ldots+\Delta^{k} \mathbf{b}_{n-k} B_{n-k}^{n-k}(t)\right]
$$

Δ^{k} is the forward difference operator - recursively defined by

$$
\Delta^{k} \mathbf{b}_{i}=\Delta^{k-1} \mathbf{b}_{i+1}-\Delta^{k-1} \mathbf{b}_{i} \quad \text { where } \quad \Delta^{0} \mathbf{b}_{i}=\mathbf{b}_{i}
$$

Examples:

$$
\begin{array}{ll}
k=2: & \mathbf{b}_{i+2}-2 \mathbf{b}_{i+1}+\mathbf{b}_{i} \\
k=3: & \mathbf{b}_{i+3}-3 \mathbf{b}_{i+2}+3 \mathbf{b}_{i+1}-\mathbf{b}_{i} \\
k=4: & \mathbf{b}_{i+4}-4 \mathbf{b}_{i+3}+6 \mathbf{b}_{i+2}-4 \mathbf{b}_{i+1}+\mathbf{b}_{i}
\end{array}
$$

Derivatives Revisited

At the endpoints the derivative calculations simplify
(Abbreviated notation for the $k^{\text {th }}$ derivative)

$$
\begin{aligned}
\mathbf{x}^{(k)}(0) & =\frac{n!}{(n-k)!} \Delta^{k} \mathbf{b}_{0} \\
\mathbf{x}^{(k)}(1) & =\frac{n!}{(n-k)!} \Delta^{k} \mathbf{b}_{n-k}
\end{aligned}
$$

One nice feature of Bézier curves:
Simple geometric interpretation of the first and second derivatives at the endpoints

Derivatives Revisited

Example

$$
\begin{aligned}
\mathbf{x}(t) & =(1-t)^{3}\left[\begin{array}{c}
-1 \\
0
\end{array}\right]+3(1-t)^{2} t\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& +3(1-t) t^{2}\left[\begin{array}{c}
0 \\
-1
\end{array}\right]+t^{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\ddot{\mathbf{x}}(0) & =6 \Delta^{2} \mathbf{b}_{0}=6\left(\mathbf{b}_{2}-2 \mathbf{b}_{1}+\mathbf{b}_{0}\right) \\
\ddot{\mathbf{x}}(0) & =6\left(\left[\begin{array}{c}
0 \\
-1
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-6 \\
-18
\end{array}\right]
\end{aligned}
$$

The de Casteljau Algorithm Revisited

$$
\begin{aligned}
& \text { Evaluation of a degree } n \text { Bézier curve } \\
& \text { via the de Casteljau algorithm } \\
& \text { for } r=1, \ldots, n \\
& \text { for } i=0, \ldots, n-r \\
& \qquad \mathbf{b}_{i}^{r}(t)=(1-t) \mathbf{b}_{i}^{r-1}+t \mathbf{b}_{i+1}^{r-1}
\end{aligned}
$$

Point on the curve: $\mathbf{x}(t)=\mathbf{b}_{0}^{n}(t)$

Several de Casteljau algorithm evaluations of a degree four Bézier curve Note locus of each $\mathbf{b}_{i}^{r}(t)$

The de Casteljau Algorithm Revisited

The de Casteljau algorithm subdivides the curve into a "left" and a "right" segment

$$
\begin{gathered}
\mathbf{b}_{0}, \mathbf{b}_{0}^{1}, \ldots, \mathbf{b}_{0}^{n} \\
\mathbf{b}_{0}^{n}, \mathbf{b}_{1}^{n-1}, \ldots, \mathbf{b}_{n}
\end{gathered}
$$

Recall: these are points along diagonal and base of the schematic triangular diagram

Quintic curve subdivided at $t=3 / 4$

The de Casteljau Algorithm Revisited

The de Casteljau algorithm provides a way for computing the first derivative

$$
\dot{\mathbf{x}}(t)=n\left[\mathbf{b}_{1}^{n-1}-\mathbf{b}_{0}^{n-1}\right]
$$

Difference of the points in the next to last step

First derivative of a quartic curve at $t=1 / 2$

The de Casteljau Algorithm Revisited

Second derivative can also be extracted from the de Casteljau algorithm

$$
\ddot{\mathbf{x}}(t)=n(n-1)\left[\mathbf{b}_{2}^{n-2}-2 \mathbf{b}_{1}^{n-2}+\mathbf{b}_{0}^{n-2}\right]
$$

A scaling of the second difference of the $(n-2)^{\text {nd }}$ column in the schematic triangular diagram

The Matrix Form and Monomials Revisited

Sometimes convenient to write a Bézier curve in matrix form
Generalizing the cubics
Define two vectors N and \mathbf{B} by

$$
N=\left[\begin{array}{c}
B_{0}^{n}(t) \\
\vdots \\
B_{n}^{n}(t)
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{c}
\mathbf{b}_{0} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right]
$$

then the Bézier curve becomes

$$
\mathbf{x}(t)=N^{\mathrm{T}} \mathbf{B}
$$

This notation will be useful for dealing with surfaces

The Matrix Form and Monomials Revisited

Matrix notation useful for converting between the Bernstein and monomial basis functions

Recall for cubics:

$$
\begin{aligned}
& \mathbf{b}(t)=\left[\begin{array}{llll}
\mathbf{b}_{0} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3}
\end{array}\right] \\
& {\left[\begin{array}{llll}
\mathbf{a}_{0} & \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{b}_{0} & \mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Columns \Rightarrow scaled forms of the derivative at $t=0$

$$
\mathbf{a}_{0}=\mathbf{b}_{0} \quad \text { and } \quad \mathbf{a}_{i}=\binom{n}{i} \Delta^{i} \mathbf{b}_{0} \quad \text { for } i=1 \ldots n
$$

The Matrix Form and Monomials Revisited

The Bernstein form is more appealing from a geometric point of view

- Curve defined by control points which mimic the shape of the curve Monomial form defined in terms of its derivatives

Bernstein form numerically more stable than the monomial form

Degree Elevation

A degree n polynomial is also one of degree $n+1$

- Leading monomial form coefficient is zero

A quadratic Bézier curve to demonstrate

$$
\mathbf{x}(t)=(1-t)^{2} \mathbf{b}_{0}+2(1-t) t \mathbf{b}_{1}+t^{2} \mathbf{b}_{2}
$$

Trick: multiply the quadratic expression by $[t+(1-t)]$
Results in a cubic curve with control points

$$
\mathbf{x}(t)=B_{0}^{3} \mathbf{b}_{0}+B_{1}^{3}\left[\frac{1}{3} \mathbf{b}_{0}+\frac{2}{3} \mathbf{b}_{1}\right]+B_{2}^{3}\left[\frac{2}{3} \mathbf{b}_{1}+\frac{1}{3} \mathbf{b}_{2}\right]+B_{3}^{3} \mathbf{b}_{2}
$$

Trace of the cubic form of curve identical to original quadratic

Degree Elevation

Example: Quadratic Bézier curve

$$
\mathbf{b}_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \quad \mathbf{b}_{2}=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Degree elevation results in

$$
\mathbf{x}(t)=\mathbf{c}_{0} B_{0}^{3}+\mathbf{c}_{1} B_{1}^{3}+\mathbf{c}_{2} B_{2}^{3}+\mathbf{c}_{3} B_{3}^{3}
$$

$$
\mathbf{c}_{0}=\mathbf{b}_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\mathbf{c}_{1}=\left[\frac{1}{3} \mathbf{b}_{0}+\frac{2}{3} \mathbf{b}_{1}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

$$
\mathbf{c}_{2}=\left[\frac{2}{3} \mathbf{b}_{1}+\frac{1}{3} \mathbf{b}_{2}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

$$
\mathbf{c}_{3}=\mathbf{b}_{2}=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Degree Elevation

Degree n Bézier curve with control polygon $\mathbf{b}_{0}, \ldots, \mathbf{b}_{n}$
Degree elevate to Bézier curve with control polygon $\mathbf{c}_{0}, \ldots, \mathbf{c}_{n+1}$

$$
\begin{aligned}
& \mathbf{c}_{0}=\mathbf{b}_{0} \\
& \vdots \\
& \mathbf{c}_{i}=\frac{i}{n+1} \mathbf{b}_{i-1}+\left(1-\frac{i}{n+1}\right) \mathbf{b}_{i} \\
& \vdots \\
& \mathbf{c}_{n+1}=\mathbf{b}_{n}
\end{aligned}
$$

Degree Elevation

Written as a matrix operation

$$
\left[\begin{array}{cccccc}
1 & & & & & \\
\star & \star & & & & \\
& \star & \star & & \\
& & & \vdots & \vdots \\
& & & & \star & \star \\
& & & & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{b}_{0} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{0} \\
\vdots \\
\mathbf{c}_{n+1}
\end{array}\right]
$$

Abbreviated:

$$
D \mathbf{B}=\mathbf{C} \quad D \text { is }(n+2) \times(n+1)
$$

Example:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 2 / 3 & 0 \\
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{0} \\
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{c}_{0} \\
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right]
$$

Degree Elevation

Degree elevation may be applied repeatedly

Resulting sequence of control polygons will converge to the curve

Convergence is too slow for practical purposes

Degree Reduction

Some CAD systems allow up to degree 40 and others use degree 3 only
Reducing a degree 40 curve to a cubic is not trivial

- In practice several degree 3 curves needed
\Rightarrow Interplay between subdivision and degree reduction

Degree Reduction

Must approximate a degree $n+1$ curve by degree n curve
Recall degree elevation

$$
\left[\begin{array}{ccccc}
1 & & & & \\
\star & \star & & & \\
& \star & \star & & \\
& & & \vdots & \vdots \\
& & & & \star \\
& & & & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{b}_{0} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{0} \\
\vdots \\
\mathbf{c}_{n+1}
\end{array}\right] \quad D \mathbf{B}=\mathbf{C}
$$

Degree reduction: Given \mathbf{C} then find \mathbf{B}
Problem: D not a square matrix \rightarrow cannot invert
Solution: multiply both sides by D^{T}

$$
D^{\mathrm{T}} D \mathbf{B}=D^{\mathrm{T}} \mathbf{C}
$$

Degree Reduction

Example: Revisit degree elevation example

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 2 / 3 & 0 \\
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{0} \\
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{c}_{0} \\
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right]} \\
D^{\mathrm{T}} D=\frac{1}{9}\left[\begin{array}{ccc}
10 & 2 & 0 \\
2 & 8 & 2 \\
0 & 2 & 10
\end{array}\right] \quad D^{\mathrm{T}} C=\frac{1}{3}\left[\begin{array}{cc}
2 & 2 \\
12 & 8 \\
22 & 2
\end{array}\right]
\end{gathered}
$$

First column of $D^{\mathrm{T}} C$ corresponds to the x-components
Second column corresponds to the y-components
$-x$ and y sent separately to linear system solver

$$
B=\left[\begin{array}{ll}
0 & 0 \\
3 & 3 \\
6 & 0
\end{array}\right] \quad \Rightarrow \mathbf{b}_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \quad \mathbf{b}_{2}=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Degree Reduction

Degree reduction via solution to

$$
D^{\mathrm{T}} D \mathbf{B}=D^{\mathrm{T}} \mathbf{C}
$$

In general will not pass through the original curve endpoints \mathbf{c}_{0} and \mathbf{c}_{n+1}
Could be enforced after solving the linear system
\Rightarrow endpoint interpolation
In the example above:
Automatic because the cubic was a degree elevated quadratic!

Bézier Curves over General Intervals

Associate a Bézier curve with the parameter interval $[a, b]$ rather than $[0,1]$
Let u be the global parameter associated with $[a, b]$
Parameter transformation

$$
t=\frac{u-a}{b-a}
$$

\Rightarrow Local parameter t
Local parameter needed for de Casteljau algorithm evaluation

- Obtain the curve segment that runs from \mathbf{b}_{0} to \mathbf{b}_{n}
- Trace of Bézier curve same regardless of the parameter interval associated with it

Plugging global parameter into the de Casteljau algorithm results in extrapolation

Functional Bézier Curves

Recall graphs of functions versus parametric curves in Chapter 3

- Parametric curve is more general than a functional curve
- Graph of a functional curve can be thought of as a parametric curve

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
t \\
g(t)
\end{array}\right]
$$

\Rightarrow One dimension restricted to be a linear polynomial
Another name for a functional curve: nonparametric curve

Functional Bézier Curves

Write a (polynomial) functional curve in Bézier form
For now: $t \in[0,1]$

$$
g(t)=b_{0} B_{0}^{n}+\ldots+b_{n} B_{n}^{n}
$$

b_{i} are scalar values: Bézier ordinates
Remains to write the linear polynomial t as a degree n polynomial - Match the degree of $g(t)$

Functional Bézier Curves

Bézier curves have linear precision
Degree n linear interpolant requires evenly spaced control points \Rightarrow Abscissa values evenly spaced

$$
\begin{aligned}
\mathbf{b}(t) & =\left[\begin{array}{c}
0 \\
b_{0}
\end{array}\right] B_{0}^{n}+\ldots \\
& +\left[\begin{array}{c}
j / n \\
b_{j}
\end{array}\right] B_{j}^{n}+\ldots \\
& +\left[\begin{array}{c}
1 \\
b_{n}
\end{array}\right] B_{n}^{n}
\end{aligned}
$$

Function with $t \in[a, b]$
\Rightarrow abscissa values

$$
a+j \frac{(b-a)}{n} \quad j=0, \ldots, n
$$

More on Bernstein Polynomials

Quadratic Bernstein polynomials (See earlier slide for degree 4 figure)

Look a little closer at B_{i}^{n} to understand the behavior of Bézier curves
de Casteljau algorithm generally preferred for the evaluation

To plot the Bernstein polynomials:

- Note they are functions
- Formulate them as Bézier curves

More on Bernstein Polynomials

The binomial coefficients $\binom{n}{i}$ look complicated
Pascal's triangle

Each element in a row generated by adding the two elements in the previous row that lie above the element

For degree n : take from the $(n+1)^{\text {st }}$ row
$B_{i}^{4}:$
$(1-t)^{4}$
$4(1-t)^{3} t$
$6(1-t)^{2} t^{2}$
$4(1-t) t^{3}$

More on Bernstein Polynomials

The Bernstein polynomials also called Bernstein basis functions

- Monomials are another example of basis functions

A set of polynomials of degree n that form a basis allow you to write any polynomial of degree less than or equal to n in terms of a unique combination of the basis functions

More on Bernstein Polynomials

Partition of unity property:
For any particular value of t

$$
B_{0}^{n}(t)+\ldots+B_{n}^{n}(t)=1
$$

Useful identity to keep in mind when debugging a program!

Each Bernstein polynomial is nonnegative within the interval $[0,1]$

Nonnegative property and partition of unity property
\Rightarrow Bézier curves have the convex hull property

More on Bernstein Polynomials

Symmetry in the Bernstein polynomials:

$$
B_{i}^{n}(t)=B_{n-i}^{n}(1-t)
$$

\Rightarrow Bézier curves have the symmetry property
Bézier points numbered from "left to right" or "right to left" \Rightarrow Same curve geometry

