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Introduction to Bézier Curves: Cubic and Beyond

An excerpt from P. de Casteljau’s writings

Bézier curves are not restricted to cubics
– Here we explore these more general curves
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Bézier Curves

B4
i (t) over [0, 1]

A Bézier curve of degree n

x(t) = b0B
n
0 (t)+b1B

n
1 (t)+. . .+bnB

n
n (t)

Bn
i (t) are Bernstein polynomials

Bn
i (t) =

(

n

i

)

(1− t)n−i t i

Binomial coefficients:

(

n

i

)

=

{

n!
i !(n−i)! if 0 ≤ i ≤ n

0 else

(1− t)4 4(1 − t)3t 6(1 − t)2t2 4(1 − t)t3 t4
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Bézier Curves

Several examples of higher degree Bézier curves

User might influence the shape by
– Adding more control points
– Moving control points
Properties from the cubic case carry over
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Derivatives Revisited

ẋ(t) = n[∆b0B
n−1
0 + . . .+∆bn−1B

n−1
n−1 ] where ∆bi = bi+1 − bi

⇒ A degree n − 1 Bézier curve with vector coefficients

The kth derivative

d
kx(t)

dtk
=

n!

(n − k)!
[∆kb0B

n−k
0 (t) + . . .+∆kbn−kB

n−k
n−k (t)]

∆k is the forward difference operator – recursively defined by

∆kbi = ∆k−1bi+1 −∆k−1bi where ∆0bi = bi

Examples:

k = 2 : bi+2 − 2bi+1 + bi

k = 3 : bi+3 − 3bi+2 + 3bi+1 − bi

k = 4 : bi+4 − 4bi+3 + 6bi+2 − 4bi+1 + bi
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Derivatives Revisited

At the endpoints the derivative calculations simplify
(Abbreviated notation for the kth derivative)

x(k)(0) =
n!

(n − k)!
∆kb0

x(k)(1) =
n!

(n − k)!
∆kbn−k

One nice feature of Bézier curves:
Simple geometric interpretation of the first and second derivatives at the
endpoints
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Derivatives Revisited
Example

x(t) = (1− t)3
[

−1
0

]

+ 3(1 − t)2t

[

0
1

]

+ 3(1− t)t2
[

0
−1

]

+ t3
[

1
0

]

ẍ(0) = 6∆2b0 = 6(b2 − 2b1 + b0)

ẍ(0) = 6(

[

0
−1

]

− 2

[

0
1

]

+

[

−1
0

]

)

=

[

−6
−18

]
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The de Casteljau Algorithm Revisited

Evaluation of a degree n Bézier curve
via the de Casteljau algorithm
for r = 1, . . . , n

for i = 0, . . . , n − r

bri (t) = (1− t)br−1
i + tbr−1

i+1

Point on the curve:
x(t) = bn0(t)

Several de Casteljau algorithm evaluations of a degree four Bézier curve
Note locus of each bri (t)
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The de Casteljau Algorithm Revisited

The de Casteljau algorithm
subdivides the curve into a
“left” and a “right” segment

b0,b
1
0, . . . ,b

n
0

bn0,b
n−1
1 , . . . ,bn

Recall: these are points along
diagonal and base of the schematic
triangular diagram

Quintic curve subdivided at t = 3/4
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The de Casteljau Algorithm Revisited

The de Casteljau algorithm provides
a way for computing the first
derivative

ẋ(t) = n[bn−1
1 − bn−1

0 ]

Difference of the points in the next
to last step

First derivative of a quartic curve at t = 1/2
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The de Casteljau Algorithm Revisited

Second derivative can also be extracted from the de Casteljau algorithm

ẍ(t) = n(n− 1)[bn−2
2 − 2bn−2

1 + bn−2
0 ]

A scaling of the second difference of the (n − 2)nd column in the
schematic triangular diagram
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The Matrix Form and Monomials Revisited

Sometimes convenient to write a Bézier curve in matrix form

Generalizing the cubics
Define two vectors N and B by

N =







Bn
0 (t)
...

Bn
n (t)






B =







b0
...
bn







then the Bézier curve becomes

x(t) = NTB

This notation will be useful for dealing with surfaces
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The Matrix Form and Monomials Revisited

Matrix notation useful for converting between
the Bernstein and monomial basis functions

Recall for cubics:

b(t) =
[

b0 b1 b2 b3

]









1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

















1
t

t2

t3









[

a0 a1 a2 a3
]

=
[

b0 b1 b2 b3

]









1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1









Columns ⇒ scaled forms of the derivative at t = 0

a0 = b0 and ai =

(

n

i

)

∆ib0 for i = 1 . . . n
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The Matrix Form and Monomials Revisited

The Bernstein form is more appealing from a geometric point of view

– Curve defined by control points which mimic the shape of the curve

Monomial form defined in terms of its derivatives

Bernstein form numerically more stable than the monomial form
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Degree Elevation

A degree n polynomial is also one of degree n + 1
– Leading monomial form coefficient is zero

A quadratic Bézier curve to demonstrate

x(t) = (1− t)2b0 + 2(1− t)tb1 + t2b2

Trick: multiply the quadratic expression by [t + (1− t)]

Results in a cubic curve with control points

x(t) = B3
0b0 + B3

1 [
1

3
b0 +

2

3
b1] + B3

2 [
2

3
b1 +

1

3
b2] + B3

3b2

Trace of the cubic form of curve identical to original quadratic

Farin & Hansford The Essentials of CAGD 16 / 33



Degree Elevation

Curve drawn incorrectly

Max y-value occurs at

[

3
3/2

]

Example: Quadratic Bézier curve

b0 =

[

0
0

]

b1 =

[

3
3

]

b2 =

[

6
0

]

Degree elevation results in

x(t) = c0B
3
0 + c1B

3
1 + c2B

3
2 + c3B

3
3

c0 = b0 =

[

0
0

]

c1 = [
1

3
b0 +

2

3
b1] =

[

2
2

]

c2 = [
2

3
b1 +

1

3
b2] =

[

4
2

]

c3 = b2 =

[

6
0

]
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Degree Elevation

Degree n Bézier curve with control polygon b0, . . . ,bn

Degree elevate to Bézier curve with control polygon c0, . . . , cn+1

c0 = b0

...

ci =
i

n+ 1
bi−1 + (1−

i

n + 1
)bi

...

cn+1 = bn
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Degree Elevation

Written as a matrix operation



















1
⋆ ⋆

⋆ ⋆
...

...
⋆ ⋆

1

























b0
...
bn






=







c0
...

cn+1







Abbreviated:
DB = C D is (n + 2)× (n + 1)

Example:








1 0 0
1/3 2/3 0
0 2/3 1/3
0 0 1













b0
b1
b2



 =









c0
c1
c2
c3
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Degree Elevation

Degree elevation may be applied
repeatedly

Resulting sequence of control
polygons will converge to the curve

Convergence is too slow for practical
purposes
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Degree Reduction

Some CAD systems allow up to degree 40 and others use degree 3 only

Reducing a degree 40 curve to a cubic is not trivial
– In practice several degree 3 curves needed

⇒ Interplay between subdivision and degree reduction
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Degree Reduction

Must approximate a degree n+ 1 curve by degree n curve

Recall degree elevation



















1
⋆ ⋆

⋆ ⋆
...

...
⋆ ⋆

1

























b0

...
bn






=







c0
...

cn+1






DB = C

Degree reduction: Given C then find B

Problem: D not a square matrix → cannot invert

Solution: multiply both sides by DT

DTDB = DTC
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Degree Reduction
Example: Revisit degree elevation example









1 0 0
1/3 2/3 0
0 2/3 1/3
0 0 1













b0

b1

b2



 =









c0
c1
c2
c3









DTD =
1

9





10 2 0
2 8 2
0 2 10



 DTC =
1

3





2 2
12 8
22 2





First column of DTC corresponds to the x−components
Second column corresponds to the y−components
– x and y sent separately to linear system solver

B =





0 0
3 3
6 0



 ⇒ b0 =

[

0
0

]

b1 =

[

3
3

]

b2 =

[

6
0

]
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Degree Reduction

Degree reduction via solution to

DTDB = DTC

In general will not pass through the original curve endpoints c0 and cn+1

Could be enforced after solving the linear system
⇒ endpoint interpolation

In the example above:
Automatic because the cubic was a degree elevated quadratic!
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Bézier Curves over General Intervals

Associate a Bézier curve with the parameter interval [a, b] rather than [0, 1]

Let u be the global parameter associated with [a, b]

Parameter transformation

t =
u − a

b − a

⇒ Local parameter t

Local parameter needed for de Casteljau algorithm evaluation
– Obtain the curve segment that runs from b0 to bn
– Trace of Bézier curve same regardless of the parameter interval
associated with it

Plugging global parameter into the de Casteljau algorithm results in
extrapolation
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Functional Bézier Curves

Recall graphs of functions versus parametric curves in Chapter 3
– Parametric curve is more general than a functional curve
– Graph of a functional curve can be thought of as a parametric curve

[

x

y

]

=

[

x(t)
y(t)

]

=

[

t

g(t)

]

⇒ One dimension restricted to be a linear polynomial

Another name for a functional curve: nonparametric curve
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Functional Bézier Curves

Write a (polynomial) functional curve in Bézier form

For now: t ∈ [0, 1]
g(t) = b0B

n
0 + . . .+ bnB

n
n

bi are scalar values: Bézier ordinates

Remains to write the linear polynomial t as a degree n polynomial
– Match the degree of g(t)
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Functional Bézier Curves

Bézier curves have linear precision

Degree n linear interpolant requires
evenly spaced control points
⇒ Abscissa values evenly spaced

b(t) =

[

0
b0

]

Bn
0 + . . .

+

[

j/n
bj

]

Bn
j + . . .

+

[

1
bn

]

Bn
n

Function with t ∈ [a, b]
⇒ abscissa values

a + j
(b − a)

n
j = 0, . . . , n

Farin & Hansford The Essentials of CAGD 28 / 33



More on Bernstein Polynomials

Look a little closer at Bn
i to

understand the behavior of Bézier
curves

de Casteljau algorithm generally
preferred for the evaluation

To plot the Bernstein polynomials:
– Note they are functions
– Formulate them as Bézier curves

Quadratic Bernstein polynomials
(See earlier slide for degree 4 figure)
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More on Bernstein Polynomials
The binomial coefficients

(

n
i

)

look complicated

Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Each element in a row generated by adding the two elements in the
previous row that lie above the element

For degree n: take from the (n + 1)st row

B4
i : (1− t)4 4(1 − t)3t 6(1− t)2t2 4(1 − t)t3 t4
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More on Bernstein Polynomials

The Bernstein polynomials also called Bernstein basis functions
– Monomials are another example of basis functions

A set of polynomials of degree n that form a basis allow you to write any
polynomial of degree less than or equal to n in terms of a unique
combination of the basis functions
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More on Bernstein Polynomials

Partition of unity property:
For any particular value of t

Bn
0 (t) + . . . + Bn

n (t) = 1

Useful identity to keep in mind when debugging a program!

Each Bernstein polynomial is nonnegative within the interval [0, 1]

Nonnegative property and partition of unity property
⇒ Bézier curves have the convex hull property
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More on Bernstein Polynomials

Symmetry in the Bernstein polynomials:

Bn
i (t) = Bn

n−i(1− t)

⇒ Bézier curves have the symmetry property

Bézier points numbered from “left to right” or “right to left”
⇒ Same curve geometry
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