The Essentials of CAGD
 Chapter 5: Putting Curves to Work

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd
(C) 2000

Outline

(1) Introduction to Putting Curves to Work
(2) Cubic Interpolation

3 Interpolation Beyond Cubics
4. Aitken's Algorithm
(5) Approximation
6) Finding the Right Parameters
(7) Hermite Interpolation

Introduction to Putting Curves to Work

Parametric curves describe geometric shapes
Design methods: interpolation and approximation

An interpolating polynomial curve Evaluated at forty points Intermediate steps in the computations shown (Aitken's algorithm)

Cubic Interpolation

Given: 2D or 3D points

$$
\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}
$$

Cubic Interpolation

Given: four point and parameter pairs \mathbf{p}_{i}, t_{i}
Find: a cubic Bézier curve $\mathbf{x}(t)$ such that

$$
\begin{gathered}
\mathbf{x}\left(t_{i}\right)=\mathbf{p}_{i} \quad i=0,1,2,3 \\
\mathbf{x}(t)=B_{0}^{3}(t) \mathbf{b}_{0}+B_{1}^{3}(t) \mathbf{b}_{1}+B_{2}^{3}(t) \mathbf{b}_{2}+B_{3}^{3}(t) \mathbf{b}_{3} \\
{\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]=\left[\begin{array}{llll}
B_{0}^{3}\left(t_{0}\right) & B_{1}^{3}\left(t_{0}\right) & B_{2}^{3}\left(t_{0}\right) & B_{3}^{3}\left(t_{0}\right) \\
B_{0}^{3}\left(t_{1}\right) & B_{1}^{3}\left(t_{1}\right) & B_{2}^{3}\left(t_{1}\right) & B_{3}^{3}\left(t_{1}\right) \\
B_{0}^{3}\left(t_{2}\right) & B_{1}^{3}\left(t_{2}\right) & B_{2}^{3}\left(t_{2}\right) & B_{3}^{3}\left(t_{2}\right) \\
B_{0}^{3}\left(t_{3}\right) & B_{1}^{3}\left(t_{3}\right) & B_{2}^{3}\left(t_{3}\right) & B_{3}^{3}\left(t_{3}\right)
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{0} \\
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3}
\end{array}\right]} \\
\mathbf{P}=M \mathbf{B}
\end{gathered}
$$

Solution: $\mathbf{B}=M^{-1} \mathbf{P}$

Cubic Interpolation

Example: Given \mathbf{p}_{i} and $t_{i}=i / 3$

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
-1 \\
0
\end{array}\right]}
\end{array} \begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Cubic Interpolation

Example con't: Given \mathbf{p}_{i} and $t_{i}=i / 3$

$$
\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Linear system solver returns

$$
\left[\begin{array}{c}
-1 \\
7 / 6 \\
-7 / 6 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
9 / 2 \\
-9 / 2 \\
0
\end{array}\right]
$$

\mathbf{b}_{i} for interpolating cubic:

$$
\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\left[\begin{array}{l}
7 / 6 \\
9 / 2
\end{array}\right]\left[\begin{array}{l}
-7 / 6 \\
-9 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Interpolation Beyond Cubics

Polynomial interpolation for given data points

$$
\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}
$$

Also given: corresponding parameter values t_{0}, \ldots, t_{n}
Interpolation problem leads to the linear system

$$
\mathbf{P}=M \mathbf{B}
$$

M is an $(n+1) \times(n+1)$ matrix with elements

$$
m_{i, j}=B_{j}^{n}\left(t_{i}\right)
$$

Solve using any linear system solver

Interpolation Beyond Cubics

Polynomial interpolation is guaranteed to work
Does not always produce satisfying results for higher degrees

Top: 16 points on a semicircle Bottom: one data point changed x-coordinate of gray data point modified by 0.002

A small change in data can lead to large changes in the interpolating curve \Rightarrow ill-conditioned process

Interpolation Beyond Cubics

Interpolating curve can be in form other than Bézier

- Different polynomial forms will give the identical result

Example: monomial form

$$
\mathbf{x}(t)=\mathbf{a}_{0}+\mathbf{a}_{1} t+\ldots+\mathbf{a}_{n} t^{n}
$$

Unknowns are the coefficients \mathbf{a}_{i}

$$
\text { Linear system: } \quad \mathbf{P}=M \mathbf{A}
$$

M is an $(n+1) \times(n+1)$ matrix with elements

$$
m_{i, j}=t_{i}^{j}
$$

Interpolation Beyond Cubics

Example: Lagrange polynomials

$$
L_{i}^{n}(t)=\frac{\left(t-t_{0}\right) \ldots\left(t-t_{i-1}\right)\left(t-t_{i+1}\right) \ldots\left(t-t_{n}\right)}{\left(t_{i}-t_{0}\right) \ldots\left(t_{i}-t_{i-1}\right)\left(t_{i}-t_{i+1}\right) \ldots\left(t_{i}-t_{n}\right)}
$$

$\left(*-t_{i}\right)$ term missing in numerator and denominator of $i^{t h}$ polynomial
Allow a very direct form for the interpolant:

$$
\mathbf{x}(t)=L_{0}^{n}(t) \mathbf{p}_{0}+\ldots+L_{n}^{n}(t) \mathbf{p}_{n}
$$

\Rightarrow Data points appear explicitly

- Called the cardinal form of the interpolant

Aitken's Algorithm

Recursive algorithm to compute points on interpolating polynomial curve

- Some of the characteristics of the de Casteljau algorithm

Derive via cubic case
Start with 2 quadratic curves $\mathbf{p}_{0}^{2}(t)$ through $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}$
$\mathbf{p}_{1}^{2}(t)$ through $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$
Construct interpolating cubic:

$$
\mathbf{p}_{0}^{3}(t)=\frac{t_{3}-t}{t_{3}-t_{0}} \mathbf{p}_{0}^{2}(t)+\frac{t-t_{0}}{t_{3}-t_{0}} \mathbf{p}_{1}^{2}(t)
$$

Aitken's Algorithm

$$
\mathbf{p}_{0}^{3}(t)=\frac{t_{3}-t}{t_{3}-t_{0}} \mathbf{p}_{0}^{2}(t)+\frac{t-t_{0}}{t_{3}-t_{0}} \mathbf{p}_{1}^{2}(t)
$$

Verify interpolation to all four data points
Check \mathbf{p}_{0} :

$$
\mathbf{p}_{0}^{3}\left(t_{0}\right)=\frac{t_{3}-t_{0}}{t_{3}-t_{0}} \mathbf{p}_{0}^{2}\left(t_{0}\right)+\frac{t_{0}-t_{0}}{t_{3}-t_{0}} \mathbf{p}_{1}^{2}\left(t_{0}\right)=\mathbf{p}_{0}
$$

Check \mathbf{p}_{1} :

- Observe that the factors sum to one
- Both $\mathbf{p}_{0}^{2}\left(t_{1}\right)=\mathbf{p}_{1}$ and $\mathbf{p}_{1}^{2}\left(t_{1}\right)=\mathbf{p}_{1}$
$\Rightarrow \mathbf{p}_{0}^{3}\left(t_{1}\right)=\mathbf{p}_{1}$
Same idea for \mathbf{p}_{2} and \mathbf{p}_{3}

Aitken's Algorithm

Finding the quadratic interpolants

- Same process works again:

$$
\begin{aligned}
& \mathbf{p}_{0}^{2}(t)=\frac{t_{2}-t}{t_{2}-t_{0}} \mathbf{p}_{0}^{1}(t)+\frac{t-t_{0}}{t_{2}-t_{0}} \mathbf{p}_{1}^{1}(t) \\
& \mathbf{p}_{1}^{2}(t)=\frac{t_{3}-t}{t_{3}-t_{1}} \mathbf{p}_{1}^{1}(t)+\frac{t-t_{1}}{t_{3}-t_{1}} \mathbf{p}_{2}^{1}(t)
\end{aligned}
$$

New terms \mathbf{p}_{i}^{1} are simply linear interpolants of the data

$$
\mathbf{p}_{1}^{1}(t)=\frac{t_{2}-t}{t_{2}-t_{1}} \mathbf{p}_{1}+\frac{t-t_{1}}{t_{2}-t_{1}} \mathbf{p}_{2}
$$

Aitken's Algorithm

Just as in the de Casteljau algorithm
Convenient to arrange the intermediate points in a triangular array:

$$
\begin{array}{llll}
\mathbf{p}_{0} & & & \\
\mathbf{p}_{1} & \mathbf{p}_{0}^{1} & & \\
\mathbf{p}_{2} & \mathbf{p}_{1}^{1} & \mathbf{p}_{0}^{2} & \\
\mathbf{p}_{3} & \mathbf{p}_{2}^{1} & \mathbf{p}_{1}^{2} & \mathbf{p}_{0}^{3}
\end{array}
$$

Left-most column: given points (and parameter values)
Aitken's algorithm computes the points in each successive column
Point on the curve is \mathbf{p}_{0}^{3}

Aitken's Algorithm

Example: Evaluate at $t=1.5$
Interpolating cubic through

$$
\left.\left.\begin{array}{cc}
\mathbf{p}_{0}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \quad \mathbf{p}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \mathbf{p}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \quad \mathbf{p}_{3}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \left(t_{0}, t_{1}, t_{2}, t_{3}\right)=(0,1,2,3) \\
{\left[\begin{array}{c}
-1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
0 \\
1
\end{array}\right]} \\
0 \\
-1
\end{array}\right] \quad\left[\begin{array}{l}
0.5 \\
1.5
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0.125 \\
0.375
\end{array}\right] \quad\left[\begin{array}{l}
-0.5 \\
-1.5
\end{array}\right]\left[\begin{array}{l}
-0.125 \\
-0.375
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\mathbf{p}_{0}^{3}(1.5)\right] .
$$

A sampling of the computation of the intermediate points:

$$
\mathbf{p}_{0}^{1}=-0.5 \mathbf{p}_{0}+1.5 \mathbf{p}_{1} \quad \mathbf{p}_{0}^{2}=0.25 \mathbf{p}_{0}^{1}+0.75 \mathbf{p}_{1}^{1} \quad \mathbf{p}_{0}^{3}=0.5 \mathbf{p}_{0}^{2}+0.5 \mathbf{p}_{1}^{2}
$$

Aitken's Algorithm

$n^{\text {th }}$ degree interpolating curve

$$
\begin{aligned}
& \text { for } r=1, \ldots, n \\
& \quad \text { for } i=0, \ldots, n-r
\end{aligned}
$$

$$
\mathbf{p}_{i}^{r}(t)=\frac{t_{i+r}-t}{t_{i+r}-t_{i}} \mathbf{p}_{i}^{r-1}(t)+\frac{t-t_{i}}{t_{i+r}-t_{i}} \mathbf{p}_{i+1}^{r-1}(t)
$$

Linear interpolation between \mathbf{p}_{i}^{r-1} and \mathbf{p}_{i+1}^{r-1} over $\left[t_{i+r}, t_{i}\right]$
\Rightarrow Affine map of interval onto line through \mathbf{p}_{i}^{r-1} and \mathbf{p}_{i+1}^{r-1}
Example: See chapter introduction Figure
Polynomial interpolation is a global operation

- Every data point involved in calculation

Approximation

Some data not suited to interpolation

- Too many data points \Rightarrow Higher degree interpolation is ill-conditioned
- Data may be noisy

Approximation: curve passes "near" points

- Still captures shape suggested by given points

Approximation

Least squares approximation

Given: $I+1$ data points $\mathbf{p}_{0}, \ldots, \mathbf{p}_{I}$ and parameter values t_{i}
Find: polynomial curve $\mathbf{x}(t)$ of a given degree n such that distances $\left\|\mathbf{p}_{i}-\mathbf{x}\left(t_{i}\right)\right\|$ are small

Ideal situation:

$$
\mathbf{p}_{i}=\mathbf{x}\left(t_{i}\right) \quad i=0, \ldots, l \quad \Rightarrow \quad \mathbf{b}_{0} B_{0}^{n}\left(t_{i}\right)+\ldots+\mathbf{b}_{n} B_{n}^{n}\left(t_{i}\right)=\mathbf{p}_{i}
$$

$$
\left[\begin{array}{ccc}
B_{0}^{n}\left(t_{0}\right) & \ldots & B_{n}^{n}\left(t_{0}\right) \\
& \vdots & \\
& \vdots & \\
B_{0}^{n}\left(t_{l}\right) & \ldots & B_{n}^{n}\left(t_{l}\right)
\end{array}\right]\left[\begin{array}{c}
\mathbf{b}_{0} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{0} \\
\vdots \\
\vdots \\
\mathbf{p}_{l}
\end{array}\right]
$$

$$
M \mathbf{B}=\mathbf{P}
$$

Approximation

Least squares approximation continued

Assume number of data points $/>$ degree n of the curve \Rightarrow linear system is overdetermined

Multiply both sides by M^{T} :

$$
M^{\mathrm{T}} M \mathbf{B}=M^{\mathrm{T}} \mathbf{P}
$$

Linear system with $n+1$ equations in $n+1$ unknowns

- Square and symmetric coefficient matrix $M^{\mathrm{T}} M$
- $M^{\mathrm{T}} M$ always invertible
- System of normal equations

Curve \mathbf{B} is the one polynomial of degree n which minimizes the sum of the $\left\|\mathbf{p}_{i}-\mathbf{x}\left(t_{i}\right)\right\|$

Approximation

Example: 79 data (noisy) points from a cross section of a wing Parameter values selected to reflect the spacing of the data

Approximated by a least squares quintic

Choice of the "right" degree for this type of problem not easy

- Trial and error or application dependent

Finding the Right Parameters

Input to both curve interpolation and approximation:

1) data points $\mathbf{p}_{i} \quad i=0, /$
2) associated parameter values t_{i}

In many applications parameter values must be chosen
Some choices:
Uniform set of parameters: $t_{i}=i / /$
Chord length parameters: parameters reflect the spacing of the data points

$$
\begin{aligned}
& t_{0}=0 \\
& t_{1}=t_{0}+\left\|\mathbf{p}_{1}-\mathbf{p}_{0}\right\| \\
& \vdots \\
& t_{l}=t_{l-1}+\left\|\mathbf{p}_{l}-\mathbf{p}_{l-1}\right\|
\end{aligned}
$$

Finding the Right Parameters

Normalize the parameters: scaling between zero and one

$$
t_{i}=\frac{t_{i}-t_{0}}{t_{l}-t_{0}}
$$

Chord length method superior to uniform method (mostly) - Considers geometry of the data

Hermite Interpolation

Curve fitting to points and tangent vectors

Given: two points $\mathbf{p}_{0}, \mathbf{p}_{1}$
and two tangent vectors $\mathbf{v}_{0}, \mathbf{v}_{1}$
Find: cubic polynomial interpolant $\mathbf{x}(t)$ such that

$$
\begin{aligned}
& \mathbf{x}(0)=\mathbf{p}_{0} \\
& \dot{\mathbf{x}}(0)=\mathbf{v}_{0} \\
& \dot{\mathbf{x}}(1)=\mathbf{v}_{1} \\
& \mathbf{x}(1)=\mathbf{p}_{1}
\end{aligned}
$$

Hermite Interpolation

Write $\mathbf{x}(t)$ in cubic Bézier form

$$
\mathbf{b}_{0}=\mathbf{p}_{0} \quad \mathbf{b}_{3}=\mathbf{p}_{1}
$$

Recall endpoint derivative for Bézier curves:

$$
\dot{\mathbf{x}}(0)=3 \Delta \mathbf{b}_{0} \quad \dot{\mathbf{x}}(1)=3 \Delta \mathbf{b}_{2}
$$

\Rightarrow Easily solve for \mathbf{b}_{1} and \mathbf{b}_{2} :

$$
\mathbf{b}_{1}=\mathbf{p}_{0}+\frac{1}{3} \mathbf{v}_{0} \quad \mathbf{b}_{2}=\mathbf{p}_{1}-\frac{1}{3} \mathbf{v}_{1}
$$

Hermite Interpolation

Rewrite interpolant so given data appear explicitly

$$
\mathbf{x}(t)=\mathbf{p}_{0} B_{0}^{3}(t)+\left(\mathbf{p}_{0}+\frac{1}{3} \mathbf{v}_{0}\right) B_{1}^{3}(t)+\left(\mathbf{p}_{1}-\frac{1}{3} \mathbf{v}_{1}\right) B_{2}^{3}(t)+\mathbf{p}_{1} B_{3}^{3}(t)
$$

Rearrange and form cubic Hermite polynomials $H_{i}^{3}(t)$:

$$
\begin{aligned}
& \mathbf{x}(t)=\mathbf{p}_{0} H_{0}^{3}(t)+\mathbf{v}_{0} H_{1}^{3}(t)+\mathbf{v}_{1} H_{2}^{3}(t)+\mathbf{p}_{1} H_{3}^{3}(t) \\
& H_{0}^{3}(t)=B_{0}^{3}(t)+B_{1}^{3}(t) \\
& H_{1}^{3}(t)=\frac{1}{3} B_{1}^{3}(t) \\
& H_{2}^{3}(t)=-\frac{1}{3} B_{2}^{3}(t) \\
& H_{3}^{3}(t)=B_{2}^{3}(t)+B_{3}^{3}(t)
\end{aligned}
$$

Cardinal form for the interpolant to point and tangent data Length of \mathbf{v}_{0} and \mathbf{v}_{1} important factor for curve's shape

