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Introduction to Putting Curves to Work
Parametric curves describe geometric shapes
Design methods: interpolation and approximation

An interpolating polynomial curve
Evaluated at forty points

Intermediate steps in the computations shown (Aitken’s algorithm)
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Cubic Interpolation

Given: 2D or 3D points

p0,p1,p2,p3

Find: curve passing through them
Called interpolation

Fit with a cubic Bézier curve

Assign parameter values

x(ti ) = pi

Requirement: ti ≤ ti+1

Example: ti = i/3
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Cubic Interpolation

Given: four point and parameter pairs pi , ti

Find: a cubic Bézier curve x(t) such that

x(ti ) = pi i = 0, 1, 2, 3

x(t) = B3
0 (t)b0 + B3

1 (t)b1 + B3
2 (t)b2 + B3

3 (t)b3
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p3









=









B3
0 (t0) B3

1 (t0) B3
2 (t0) B3

3 (t0)
B3
0 (t1) B3

1 (t1) B3
2 (t1) B3

3 (t1)
B3
0 (t2) B3

1 (t2) B3
2 (t2) B3

3 (t2)
B3
0 (t3) B3

1 (t3) B3
2 (t3) B3

3 (t3)

















b0
b1
b2
b3









P = MB

Solution: B = M−1P
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Cubic Interpolation

Example: Given pi and ti = i/3
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Cubic Interpolation

Example con’t: Given pi and ti = i/3

[
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0
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1
0
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Linear system solver returns
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−7/6
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0
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bi for interpolating cubic:
[
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0

] [

7/6
9/2
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−7/6
−9/2

] [

1
0

]
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Interpolation Beyond Cubics

Polynomial interpolation for given data points

p0, . . . ,pn

Also given: corresponding parameter values t0, . . . , tn

Interpolation problem leads to the linear system

P = MB

M is an (n + 1)× (n + 1) matrix with elements

mi ,j = Bn
j (ti )

Solve using any linear system solver

Farin & Hansford The Essentials of CAGD 8 / 26



Interpolation Beyond Cubics

Polynomial interpolation is guaranteed to work
Does not always produce satisfying results for higher degrees

Top: 16 points on a semicircle

Bottom: one data point changed
x-coordinate of gray data point
modified by 0.002

A small change in data can lead to large changes in the interpolating curve
⇒ ill-conditioned process
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Interpolation Beyond Cubics

Interpolating curve can be in form other than Bézier
– Different polynomial forms will give the identical result

Example: monomial form

x(t) = a0 + a1t + . . . + ant
n

Unknowns are the coefficients ai

Linear system: P = MA

M is an (n + 1)× (n + 1) matrix with elements

mi ,j = t
j
i
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Interpolation Beyond Cubics

Example: Lagrange polynomials

Lni (t) =
(t − t0) . . . (t − ti−1)(t − ti+1) . . . (t − tn)

(ti − t0) . . . (ti − ti−1)(ti − ti+1) . . . (ti − tn)

(∗ − ti) term missing in numerator and denominator of i th polynomial

Allow a very direct form for the interpolant:

x(t) = Ln0(t)p0 + . . .+ Lnn(t)pn

⇒ Data points appear explicitly
– Called the cardinal form of the interpolant
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Aitken’s Algorithm

Recursive algorithm to compute points on interpolating polynomial curve
– Some of the characteristics of the de Casteljau algorithm

Derive via cubic case

Start with 2 quadratic curves
p20(t) through p0,p1, p2
p21(t) through p1,p2, p3

Construct interpolating cubic:

p30(t) =
t3 − t

t3 − t0
p20(t) +

t − t0

t3 − t0
p21(t)
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Aitken’s Algorithm

p30(t) =
t3 − t

t3 − t0
p20(t) +

t − t0

t3 − t0
p21(t)

Verify interpolation to all four data points

Check p0:

p30(t0) =
t3 − t0

t3 − t0
p20(t0) +

t0 − t0

t3 − t0
p21(t0) = p0

Check p1:
– Observe that the factors sum to one
– Both p20(t1) = p1 and p21(t1) = p1
⇒ p30(t1) = p1

Same idea for p2 and p3
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Aitken’s Algorithm

Finding the quadratic interpolants
– Same process works again:

p20(t) =
t2 − t

t2 − t0
p10(t) +

t − t0

t2 − t0
p11(t)

p21(t) =
t3 − t

t3 − t1
p11(t) +

t − t1

t3 − t1
p12(t)

New terms p1i are simply linear
interpolants of the data

p11(t) =
t2 − t

t2 − t1
p1 +

t − t1

t2 − t1
p2
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Aitken’s Algorithm

Just as in the de Casteljau algorithm
Convenient to arrange the intermediate points in a triangular array:

p0
p1 p10
p2 p11 p20
p3 p12 p21 p30

Left-most column: given points (and parameter values)

Aitken’s algorithm computes the points in each successive column

Point on the curve is p30
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Aitken’s Algorithm
Example: Evaluate at t = 1.5
Interpolating cubic through

p0 =

[

−1
0

]

p1 =

[

0
1

]

p2 =

[

0
−1

]

p3 =

[

1
0

]

(t0, t1, t2, t3) = (0, 1, 2, 3)
[

−1
0

]

[

0
1

] [

0.5
1.5

]

[

0
−1

] [

0
0

] [

0.125
0.375

]

[

1
0

] [

−0.5
−1.5

] [

−0.125
−0.375

] [

0
0

]

= p3
0(1.5)

A sampling of the computation of the intermediate points:

p1
0 = −0.5p0 + 1.5p1 p2

0 = 0.25p1
0 + 0.75p1

1 p3
0 = 0.5p2

0 + 0.5p2
1
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Aitken’s Algorithm

nth degree interpolating curve

for r = 1, . . . , n
for i = 0, . . . , n − r

pri (t) =
ti+r − t

ti+r − ti
pr−1
i (t) +

t − ti

ti+r − ti
pr−1
i+1 (t)

Linear interpolation between pr−1
i and pr−1

i+1 over [ti+r , ti ]

⇒ Affine map of interval onto line through pr−1
i and pr−1

i+1

Example: See chapter introduction Figure

Polynomial interpolation is a global operation
– Every data point involved in calculation
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Approximation
Some data not suited to interpolation
– Too many data points ⇒ Higher degree interpolation is ill-conditioned
– Data may be noisy

Approximation: curve passes “near” points
– Still captures shape suggested by given points

Least squares approximation: best known technique
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Approximation

Least squares approximation

Given: l + 1 data points p0, . . . ,pl and parameter values ti

Find: polynomial curve x(t) of a given degree n

such that distances ‖pi − x(ti )‖ are small

Ideal situation:
pi = x(ti ) i = 0, . . . , l ⇒ b0B

n
0 (ti ) + . . . + bnB

n
n (ti ) = pi













Bn
0 (t0) . . . Bn

n (t0)
...
...

Bn
0 (tl) . . . Bn

n (tl )



















b0

...
bn






=













p0

...

...
pl













MB = P
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Approximation

Least squares approximation continued

Assume number of data points l > degree n of the curve
⇒ linear system is overdetermined

Multiply both sides by MT:

MTMB = MTP

Linear system with n + 1 equations in n+ 1 unknowns
– Square and symmetric coefficient matrix MTM

– MTM always invertible
– System of normal equations

Curve B is the one polynomial of degree n

which minimizes the sum of the ‖pi − x(ti )‖
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Approximation
Example: 79 data (noisy) points from a cross section of a wing
Parameter values selected to reflect the spacing of the data

Approximated by a least squares quintic

Choice of the “right” degree for this type of problem not easy
– Trial and error or application dependent
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Finding the Right Parameters

Input to both curve interpolation and approximation:
1) data points pi i = 0, l
2) associated parameter values ti
In many applications parameter values must be chosen

Some choices:

Uniform set of parameters: ti = i/l

Chord length parameters: parameters reflect the spacing of the data points

t0 = 0

t1 = t0 + ‖p1 − p0‖

...

tl = tl−1 + ‖pl − pl−1‖

Farin & Hansford The Essentials of CAGD 22 / 26



Finding the Right Parameters

Normalize the parameters: scaling between zero and one

ti =
ti − t0

tl − t0

Chord length method superior to uniform method (mostly)
– Considers geometry of the data
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Hermite Interpolation

Curve fitting to points and tangent vectors

Given: two points p0,p1
and two tangent vectors v0, v1

Find: cubic polynomial interpolant
x(t) such that

x(0) = p0

ẋ(0) = v0

ẋ(1) = v1

x(1) = p1
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Hermite Interpolation

Write x(t) in cubic Bézier form

b0 = p0 b3 = p1

Recall endpoint derivative for Bézier
curves:

ẋ(0) = 3∆b0 ẋ(1) = 3∆b2

⇒ Easily solve for b1 and b2:

b1 = p0 +
1

3
v0 b2 = p1 −

1

3
v1
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Hermite Interpolation
Rewrite interpolant so given data appear explicitly

x(t) = p0B
3
0 (t) + (p0 +

1

3
v0)B

3
1 (t) + (p1 −

1

3
v1)B

3
2 (t) + p1B

3
3 (t).

Rearrange and form cubic Hermite polynomials H3
i (t) :

x(t) = p0H
3
0 (t) + v0H

3
1 (t) + v1H

3
2 (t) + p1H

3
3 (t)

H3
0 (t) = B3

0 (t) + B3
1 (t)

H3
1 (t) =

1

3
B3
1 (t)

H3
2 (t) = −

1

3
B3
2 (t)

H3
3 (t) = B3

2 (t) + B3
3 (t)

Cardinal form for the interpolant to point and tangent data

Length of v0 and v1 important factor for curve’s shape
Farin & Hansford The Essentials of CAGD 26 / 26


	Outline
	Introduction to Putting Curves to Work
	Cubic Interpolation
	Interpolation Beyond Cubics
	Aitken's Algorithm
	Approximation
	Finding the Right Parameters
	Hermite Interpolation

