The Essentials of CAGD Chapter 6: Bézier Patches

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

(C) 2000

Outline
(1) Introduction to Bézier Patches
(2) Parametric Surfaces
(3) Bilinear Patches
(4) Bézier Patches
(5) Properties of Bézier Patches
(6) Derivatives
(?) Higher Order Derivatives
(8) The de Casteljau Algorithm
(0) Normals
(10) Changing Degrees
(1) Subdivision
(1) Ruled Bézier Patches
(B) Functional Bézier Patches
(44) Monomial Patches

Introduction to Bézier Patches

The "Utah" teapot composed of Bézier patches
Surfaces:

- Basic definitions
- Extend the concept of Bézier curves

Parametric Surfaces

Parametric curve: mapping of the real line into 2- or 3-space
Parametric surface: mapping of the real plane into 3-space
\mathbb{R}^{2} is the domain of the surface

- A plane with a (u, v) coordinate system

Corresponding 3D surface point:

$$
\mathbf{x}(u, v)=\left[\begin{array}{l}
f(u, v) \\
g(u, v) \\
h(u, v)
\end{array}\right]
$$

Parametric Surfaces

Example:

Parametric surface

$$
\mathbf{x}(u, v)=\left[\begin{array}{c}
u \\
v \\
u^{2}+v^{2}
\end{array}\right]
$$

Only a portion of surface illustrated
This is a functional surface
Parametric surfaces may be rotated or moved around

- More general than $z=f(x, y)$

Bilinear Patches

Typically interested in a finite piece of a parametric surface - The image of a rectangle in the domain

The finite piece of surface called a patch
Let domain be the unit square

$$
\{(u, v): 0 \leq u, v \leq 1\}
$$

Map it to a surface patch defined by four points

$$
\mathbf{x}(u, v)=\left[\begin{array}{ll}
1-u & u
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\
\mathbf{b}_{1,0} & \mathbf{b}_{1,1}
\end{array}\right]\left[\begin{array}{c}
1-v \\
v
\end{array}\right]
$$

Surface patch is linear in both the u and v parameters \Rightarrow bilinear patch

Bilinear Patches

Bilinear patch:

$$
\mathbf{x}(u, v)=\left[\begin{array}{ll}
1-u & u
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\
\mathbf{b}_{1,0} & \mathbf{b}_{1,1}
\end{array}\right]\left[\begin{array}{c}
1-v \\
v
\end{array}\right]
$$

Geometric interpretation: rewrite as

$$
\mathbf{x}(u, v)=(1-v) \mathbf{p}^{u}+v \mathbf{q}^{u}
$$

where

$$
\begin{aligned}
& \mathbf{p}^{u}=(1-u) \mathbf{b}_{0,0}+u \mathbf{b}_{1,0} \\
& \mathbf{q}^{u}=(1-u) \mathbf{b}_{0,1}+u \mathbf{b}_{1,1}
\end{aligned}
$$

Bilinear Patches

Example: Given four points $\mathbf{b}_{i, j}$ and compute $\mathbf{x}(0.25,0.5)$

$$
\mathbf{b}_{0,0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{b}_{1,0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{b}_{0,1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{b}_{1,1}=\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
\mathbf{p}^{u}=0.75\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+0.25\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0.25 \\
0 \\
0
\end{array}\right] \\
\mathbf{q}^{u}=0.75\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+0.25\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0.25 \\
1 \\
0.25
\end{array}\right] \\
\mathbf{x}(0.25,0.5)=0.5 \mathbf{p}^{u}+0.5 \mathbf{q}^{u}=\left[\begin{array}{c}
0.25 \\
0.5 \\
0.125
\end{array}\right]
\end{gathered}
$$

Bilinear Patches

Rendered image of patch in previous example

Bilinear Patches

Bilinear patch:

$$
\mathbf{x}(u, v)=(1-v) \mathbf{p}^{u}+v \mathbf{q}^{u}
$$

Is equivalent to

$$
\mathbf{x}(u, v)=(1-u) \mathbf{p}^{v}+u \mathbf{q}^{v}
$$

where

$$
\begin{aligned}
& \mathbf{p}^{v}=(1-v) \mathbf{b}_{0,0}+v \mathbf{b}_{0,1} \\
& \mathbf{q}^{v}=(1-v) \mathbf{b}_{1,0}+v \mathbf{b}_{1,1}
\end{aligned}
$$

Bilinear Patches

Bilinear patch also called a hyperbolic paraboloid

Isoparametric curve: only one parameter is allowed to vary
Isoparametric curves on a bilinear patch $\Rightarrow 2$ families of straight lines (\bar{u}, v) : line constant in u but varying in v (u, \bar{v}) : line constant in v but varying in u

Four special isoparametric curves (lines):

$$
(u, 0) \quad(u, 1) \quad(0, v) \quad(1, v)
$$

Bilinear Patches

A hyperbolic paraboloid also contains curves
Consider the line $u=v$ in the domain
As a parametric line: $u(t)=t, v(t)=t$
Domain diagonal mapped to the 3D curve on the surface

$$
\mathbf{d}(t)=\mathbf{x}(t, t)
$$

In more detail:

$$
\mathbf{d}(t)=\left[\begin{array}{ll}
1-t & t
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\
\mathbf{b}_{1,0} & \mathbf{b}_{1,1}
\end{array}\right]\left[\begin{array}{c}
1-t \\
t
\end{array}\right]
$$

Collecting terms now gives

$$
\mathbf{d}(t)=(1-t)^{2} \mathbf{b}_{0,0}+2(1-t) t\left[\frac{1}{2} \mathbf{b}_{0,1}+\frac{1}{2} \mathbf{b}_{1,0}\right]+t^{2} \mathbf{b}_{1,1}
$$

\Rightarrow quadratic Bézier curve

Bilinear Patches

Example: Compute the curve on the surface for $u(t)=t, v(t)=t$

$$
\mathbf{c}_{0}=\mathbf{b}_{0,0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\mathbf{c}_{1}=\frac{1}{2}\left[\mathbf{b}_{1,0}+\mathbf{b}_{0,1}\right]=\left[\begin{array}{c}
0.5 \\
0.5 \\
0
\end{array}\right]
$$

$$
\mathbf{c}_{2}=\mathbf{b}_{1,1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$$
\mathbf{d}(t)=\mathbf{c}_{0} B_{0}^{2}(t)+\mathbf{c}_{1} B_{1}^{2}(t)+\mathbf{c}_{2} B_{2}^{2}(t)
$$

Bézier Patches

Bilinear patch using linear Bernstein polynomials:

$$
\mathbf{x}(u, v)=\left[\begin{array}{ll}
B_{0}^{1}(u) & B_{1}^{1}(u)
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\
\mathbf{b}_{1,0} & \mathbf{b}_{1,1}
\end{array}\right]\left[\begin{array}{l}
B_{0}^{1}(v) \\
B_{1}^{1}(v)
\end{array}\right]
$$

Generalization:

$$
\begin{aligned}
\mathbf{x}(u, v) & =\left[\begin{array}{lll}
B_{0}^{m}(u) & \ldots & B_{m}^{m}(u)
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{b}_{0,0} & \ldots & \mathbf{b}_{0, n} \\
\vdots & & \vdots \\
\mathbf{b}_{m, 0} & \ldots & \mathbf{b}_{m, n}
\end{array}\right]\left[\begin{array}{c}
B_{0}^{n}(v) \\
\vdots \\
B_{n}^{n}(v)
\end{array}\right] \\
& =\mathbf{b}_{0,0} B_{0}^{m}(u) B_{0}^{n}(v)+\ldots+\mathbf{b}_{i, j} B_{i}^{m}(u) B_{j}^{n}(v)+\ldots+\mathbf{b}_{m, n} B_{m}^{m}(u) B_{n}^{n}(v)
\end{aligned}
$$

Examples: $m=n=1$: bilinear $\quad m=n=3$: bicubic

Bézier Patches

$$
\mathbf{x}(u, v)=\left[\begin{array}{lll}
B_{0}^{m}(u) & \ldots & B_{m}^{m}(u)
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{b}_{0,0} & \ldots & \mathbf{b}_{0, n} \\
\vdots & & \vdots \\
\mathbf{b}_{m, 0} & \ldots & \mathbf{b}_{m, n}
\end{array}\right]\left[\begin{array}{c}
B_{0}^{n}(v) \\
\vdots \\
B_{n}^{n}(v)
\end{array}\right]
$$

Abbreviated as

$$
\mathbf{x}(u, v)=M^{\mathrm{T}} \mathbf{B} N
$$

2-stage explicit evaluation method at given (u, v)
Step 1: generate \mathbf{c}_{i}

$$
\mathbf{C}=M^{\mathrm{T}} \mathbf{B}=\left[\mathbf{c}_{0}, \ldots, \mathbf{c}_{n}\right]
$$

Step 2: generate point on surface

$$
\mathbf{x}(u, v)=\mathbf{C} N
$$

("explicit" because Bernstein polynomials evaluated)

Bézier Patches

$$
\mathbf{x}(u, v)=M^{\mathrm{T}} \mathbf{B} N \quad \Rightarrow \quad \mathbf{x}(u, v)=\mathbf{C} N
$$

Control points $\mathbf{c}_{0}, \ldots, \mathbf{c}_{n}$ of \mathbf{C} do not depend on the parameter value v

Curve $\mathbf{C N}$: curve on surface

- Constant u
- Variable v
\Rightarrow isoparametric curve or isocurve

Bézier Patches

Example: Evaluate the 2×3 control net at $(u, v)=(0.5,0.5)$

Step 1) Compute quadratic Bernstein polynomials for $u=0.5$:

$$
M^{\mathrm{T}}=\left[\begin{array}{lll}
0.25 & 0.5 & 0.25
\end{array}\right]
$$

\Rightarrow Intermediate control points

$$
\mathbf{C}=M^{\mathrm{T}} \mathbf{B}=\left[\left[\begin{array}{c}
0 \\
3 \\
4.5
\end{array}\right] \quad\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
6 \\
3 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
9 \\
3 \\
3
\end{array}\right]\right]
$$

Bézier points of an isoparametric curve containing $\mathbf{x}(0.5,0.5)$

Bézier Patches

Step 2) Compute cubic Bernstein polynomials for $v=0.5$:

$$
\begin{gathered}
N=\left[\begin{array}{l}
0.125 \\
0.375 \\
0.375 \\
0.125
\end{array}\right] \\
\mathbf{x}(0.5,0.5)=\mathbf{C} N=\left[\begin{array}{c}
4.5 \\
3 \\
0.9375
\end{array}\right]
\end{gathered}
$$

Bézier Patches

Another approach to
2-stage explicit evaluation:

$$
\begin{gathered}
\mathbf{x}(u, v)=M^{\mathrm{T}} \mathbf{B} N \\
\mathbf{D}=\mathbf{B} N \\
\mathbf{x}=M^{\mathrm{T}} \mathbf{D}
\end{gathered}
$$

Properties of Bézier Patches

Bézier patches properties essentially the same as the curve ones
(1) Endpoint interpolation:

- Patch passes through the four corner control points
- Control polygon boundaries define patch boundary curves
- Symmetry:

Shape of patch independent of corner selected to be $\mathbf{b}_{0,0}$

- Affine invariance:

Apply affine map to control net and then evaluate identical to applying affine map to the original patch

- Convex hull property:
$\mathbf{x}(u, v)$ in the convex hull of the control net for $(u, v) \in[0,1] \times[0,1]$
(0) Bilinear precision: Sketch on next slide
(0) Tensor product:
\Rightarrow evaluation via isoparametric curves

Properties of Bézier Patches

A degree 3×4 control net with bilinear precision

Boundary control points evenly spaced on lines connecting the corner control points

Interior control points evenly-spaced on lines connecting boundary control points on adjacent edges

Properties of Bézier Patches

Tensor product property very powerful conceptual tool for understanding Bézier patches

Shape as a record of the shape of a template moving through space
Template can change shape as it moves Shape and position is guided by "columns" of Bézier control points

Derivatives

A derivative is the tangent vector of a curve on the surface Called a partial derivative

There are two isoparametric curves through a surface point

The $v=$ constant curve is a curve on the surface with parameter u

- Differentiate with respect to u

$$
\mathbf{x}_{u}(u, v)=\frac{\partial \mathbf{x}(u, v)}{\partial u}
$$

Called the u-partial

Derivatives

Example: Find partial $\mathbf{x}_{v}(0.5,0.5)$ of

Control polygon C for the $u=0.5$ isoparametric curve

Derivatives

Example con't: Derivative curve

$$
\mathbf{x}_{v}(0.5, v)=3\left(\Delta \mathbf{c}_{0} B_{0}^{2}(v)+\Delta \mathbf{c}_{1} B_{1}^{2}(v)+\Delta \mathbf{c}_{2} B_{2}^{2}(v)\right)
$$

$\Delta \mathbf{c}_{0}=\left[\begin{array}{c}3 \\ 0 \\ -4.5\end{array}\right] \quad \Delta \mathbf{c}_{1}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right] \quad \Delta \mathbf{c}_{2}\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]$
Evaluate at $v=0.5$

$$
\mathbf{x}_{v}(0.5,0.5)=\left[\begin{array}{c}
9 \\
0 \\
-1.125
\end{array}\right]
$$

u-partials \Rightarrow differentiate the isoparametric curve with control points $\mathbf{D}=\mathbf{B} N$

Derivatives

Computing derivatives via a closed-form expression
$\mathbf{x}_{u}(u, v)=m\left[\begin{array}{lll}B_{0}^{m-1}(u) & \ldots & B_{m-1}^{m-1}(u)\end{array}\right]\left[\begin{array}{ccc}\Delta^{1,0} \mathbf{b}_{0,0} & \ldots & \Delta^{1,0} \mathbf{b}_{0, n} \\ \vdots & & \vdots \\ \Delta^{1,0} \mathbf{b}_{m-1,0} & \ldots & \Delta^{1,0} \mathbf{b}_{m-1, n}\end{array}\right]\left[\begin{array}{c}B_{0}^{n}(v) \\ \vdots \\ B_{n}^{n}(v)\end{array}\right]$
$\Delta^{1,0} \mathbf{b}_{i, j}$ denote forward differences:

$$
\Delta^{1,0} \mathbf{b}_{i, j}=\mathbf{b}_{i+1, j}-\mathbf{b}_{i, j}
$$

\Rightarrow Closed-form u-partial derivative expression is a degree $(m-1) \times n$ patch with a control net consisting of vectors rather than points

Derivatives

u-partial formed from differences of control points of the original patch in the u-direction

$$
\begin{aligned}
& \mathbf{x}_{u}(u, v)=2\left[\begin{array}{ll}
B_{0}^{1}(u) & B_{1}^{1}(u)
\end{array}\right] \mathbf{B}^{\prime}\left[\begin{array}{l}
B_{0}^{3}(v) \\
B_{1}^{3}(v) \\
B_{2}^{3}(v) \\
B_{3}^{3}(v)
\end{array}\right] \\
& \mathbf{B}^{\prime}=\left[\begin{array}{c}
{\left[\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
0 \\
3 \\
0 \\
0 \\
0 \\
3 \\
3
\end{array}\right]\left[\begin{array}{l}
0 \\
3 \\
3 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
3 \\
0 \\
0 \\
0 \\
3 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
3 \\
-6
\end{array}\right] \\
& \mathbf{x}_{u}(0.5,0.5)=\left[\begin{array}{l}
0 \\
6 \\
0
\end{array}\right]
\end{aligned}
$$

Derivatives

Closed-form v-partial derivative

$$
\begin{gathered}
\mathbf{x}_{v}(u, v)=n\left[\begin{array}{lll}
B_{0}^{m}(u) & \ldots & B_{m}^{m}(u)
\end{array}\right]\left[\begin{array}{cccc}
\Delta^{0,1} \mathbf{b}_{0,0} & \ldots & \Delta^{0,1} \mathbf{b}_{0, n-1} \\
\vdots & & \vdots \\
\Delta^{0,1} \mathbf{b}_{m, 0} & \ldots & \Delta^{0,1} \mathbf{b}_{m, n-1}
\end{array}\right]\left[\begin{array}{c}
B_{0}^{n-1}(v) \\
\vdots \\
B_{n-1}^{n-1}(v)
\end{array}\right] \\
\Delta^{0,1} \mathbf{b}_{i, j}=\mathbf{b}_{i, j+1}-\mathbf{b}_{i, j}
\end{gathered}
$$

\Rightarrow Closed-form v-partial derivative is a degree $m \times(n-1)$ patch

Higher Order Derivatives

A Bézier patch may be differentiated several times
\Rightarrow Derivatives of order k or $k^{\text {th }}$ partials
v-partials: $\mathbf{x}_{v}^{(k)}(u, v)=$

$$
\frac{n!}{(n-k)!}\left[\begin{array}{lll}
B_{0}^{m}(u) & \ldots & B_{m}^{m}(u)
\end{array}\right]\left[\begin{array}{ccc}
\Delta^{0, k} \mathbf{b}_{0,0} & \ldots & \Delta^{0, k} \mathbf{b}_{0, n-1} \\
\vdots & & \vdots \\
\Delta^{0, k} \mathbf{b}_{m, 0} & \ldots & \Delta^{0, k} \mathbf{b}_{m, n-1}
\end{array}\right]\left[\begin{array}{c}
B_{0}^{n-k}(v) \\
\vdots \\
B_{n-1}^{n-k}(v)
\end{array}\right]
$$

$k^{\text {th }}$ forward differences $\Delta^{0, k} \mathbf{b}_{i, j}$

- Acting only on the second subscripts

Higher Order Derivatives

Mixed partial or twist vector

$$
\begin{gathered}
\mathbf{x}_{u, v}(u, v)=\frac{\partial \mathbf{x}_{u}(u, v)}{\partial v} \text { or } \frac{\partial \mathbf{x}_{v}(u, v)}{\partial u} \\
\mathbf{x}_{u, v}(u, v)= \\
m n\left[\begin{array}{lll}
B_{0}^{m-1}(u) & \ldots & B_{m-1}^{m-1}(u)
\end{array}\right]\left[\begin{array}{ccc}
\Delta^{1,1} \mathbf{b}_{0,0} & \ldots & \Delta^{1,1} \mathbf{b}_{0, n-1} \\
\vdots & & \vdots \\
\Delta^{1,1} \mathbf{b}_{m-1,0} & \ldots & \Delta^{1,1} \mathbf{b}_{m-1, n-1}
\end{array}\right]\left[\begin{array}{c}
B_{0}^{n-1}(v) \\
\vdots \\
B_{n-1}^{n-1}(v)
\end{array}\right]
\end{gathered}
$$

Higher Order Derivatives

$$
\begin{aligned}
\Delta^{1,1} \mathbf{b}_{i, j} & =\Delta^{0,1}\left(\mathbf{b}_{i+1, j}-\mathbf{b}_{i, j}\right) \\
& =\Delta^{0,1} \mathbf{b}_{i+1, j}-\Delta^{0,1} \mathbf{b}_{i, j} \\
& =\mathbf{b}_{i+1, j+1}-\mathbf{b}_{i+1, j}-\mathbf{b}_{i, j+1}+\mathbf{b}_{i, j}
\end{aligned}
$$

Higher Order Derivatives

Example: Bilinear patch

$$
\begin{aligned}
\mathbf{b}_{0,0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{b}_{1,0} & =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{b}_{0,1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{b}_{1,1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\mathbf{x}_{u, v}(u, v) & =B_{0}^{0}(u) \Delta^{1,1} \mathbf{b}_{0,0} B_{0}^{0}(v) \\
& =\Delta^{1,1} \mathbf{b}_{0,0} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$B_{0}^{0}(u)=1$ for all u
\Rightarrow a bilinear patch has a constant twist vector

Higher Order Derivatives

The Bernstein basis functions property:

$$
\begin{gathered}
B_{0}^{n}(0)=1 \quad \text { and } \quad B_{i}^{n}(0)=0 \quad \text { for } i=1, n \\
B_{n}^{n}(1)=1 \quad \text { and } \quad B_{i}^{n}(1)=0 \quad \text { for } i=0, n-1
\end{gathered}
$$

\Rightarrow Simple form of the twist at the corners of the patch

$$
\begin{array}{ll}
\mathbf{x}_{u, v}(0,0)=m n \Delta^{1,1} \mathbf{b}_{0,0} & \mathbf{x}_{u, v}(0,1)=m n \Delta^{1,1} \mathbf{b}_{0, n-1} \\
\mathbf{x}_{u, v}(1,0)=m n \Delta^{1,1} \mathbf{b}_{m-1,0} & \mathbf{x}_{u, v}(1,1)=m n \Delta^{1,1} \mathbf{b}_{m-1, n-1}
\end{array}
$$

The de Casteljau Algorithm

Evaluation of a Bézier patch: $\mathbf{x}(u, v)=M^{T} \mathbf{B} N$
Define an intermediate set of points

$$
\mathbf{C}=M^{\mathrm{T}} \mathbf{B}
$$

$$
\begin{aligned}
& \mathbf{c}_{0}=B_{0}^{m}(u) \mathbf{b}_{0,0}+\ldots+B_{m}^{m}(u) \mathbf{b}_{m, 0} \\
& \mathbf{c}_{1}=B_{0}^{m}(u) \mathbf{b}_{0,1}+\ldots+B_{m}^{m}(u) \mathbf{b}_{m, 1}
\end{aligned}
$$

$$
\mathbf{c}_{n}=B_{0}^{m}(u) \mathbf{b}_{0, n}+\ldots+B_{m}^{m}(u) \mathbf{b}_{m, n}
$$

Evaluate n degree m curves with the de Casteljau algorithm

The de Casteljau Algorithm

Final evaluation step: $\mathbf{x}(u, v)=\mathbf{C} N$
\Rightarrow Evaluate this degree n Bézier curve with the de Casteljau algorithm
The 2-stage de Casteljau evaluation method

- Repeated calls to the de Casteljau algorithm for curves

Advantage of this geometric approach:

- Allows computation of a point and derivative

Control polygon C:

- Evaluate point $\mathbf{x}(u, v)=\mathbf{C N}$ and tangent \mathbf{x}_{v}

Control polygon $\mathbf{D}=\mathbf{B} N$:

- Evaluate point $\mathbf{x}=M^{\mathrm{T}} \mathbf{D}$ and tangent \mathbf{x}_{u}

Normals

The normal vector or normal is a fundamental geometric concept

- Used throughout computer graphics and CAD/CAM

At a given point $\mathbf{x}(u, v)$
the normal is perpendicular to the surface

Tangent plane at $\mathbf{x}(u, v)$

- Defined by $\mathbf{x}, \mathbf{x}_{u}, \mathbf{x}_{v}$ \Rightarrow A point and two vectors

The normal \mathbf{n} is a unit vector defined by

$$
\mathbf{n}=\frac{\mathbf{x}_{u} \wedge \mathbf{x}_{v}}{\left\|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right\|}
$$

Normals

3-stage de Casteljau evaluation method

 Ingredients for \mathbf{n} are $\mathbf{x}, \mathbf{x}_{u}$, and \mathbf{x}_{v}© For all $m+1$ rows
Compute $n-1$ levels of dCA
$-v$ parameter \rightarrow triangles
(ㄹ) Compute $m-1$ levels of dCA

- parameter $u \rightarrow$ squares
(0) Four points (squares) form a bilinear patch
- Its tangent plane is surface's tangent plane
- Evaluate and compute the partials
- Vectors must be scaled for original patch

Normals

Example: 3-stage de Casteljau evaluation method at $(u, v)=(0.5,0.5)$

Results in a bilinear patch
Bilinear patch shares the same tangent plane as the original patch \mathbf{x}

$$
\mathbf{n}=\left[\begin{array}{c}
-0.1240 \\
0 \\
-0.9922
\end{array}\right]
$$

Changing Degrees

Bézier patch degrees: m in u-direction and n in v-direction
Degree elevation for curves used to degree elevate patch
Example: Raise m to $m+1$ then resulting control net will have
$-n+1$ columns of control points

- Each column contains $m+2$ control points
- Still describes same surface

Degree reduction performed on a row-by-row or column-by-column basis

- Repeatedly applying the curve algorithm

Changing Degrees

Degree elevation of a bilinear patch
 - Elevate to degree 2 in u

Subdivision

Curve subdivision: Splitting one curve segment into two segments
Patch subdivision: split into two patches

Example:
u_{0} splits the domain unit square into two rectangles
Patch split along an isoparametric curve

Method:
Perform curve subdivision for each degree m column of the control net at parameter u_{0}

Ruled Bézier Patches

Ruled surface is linear in one isoparametric direction

$$
\begin{array}{ll}
v \text {-direction linear: } & \mathbf{x}(u, v)=(1-v) \mathbf{x}(u, 0)+v \mathbf{x}(u, 1) \\
u \text {-direction linear: } & \mathbf{x}(u, v)=(1-u) \mathbf{x}(0, v)+u \mathbf{x}(1, v)
\end{array}
$$

\Rightarrow Simple method to fit a surface between two curves
-Two curves the same degree
Example: A bilinear surface

Ruled Bézier Patches

Let the two curves be given

$$
u=0: \quad \mathbf{b}_{0,0}, \ldots, \mathbf{b}_{m, 0} \quad \text { and } \quad u=1: \quad \mathbf{b}_{0,1}, \ldots, \mathbf{b}_{m, 1}
$$

Ruled surface:

$$
\mathbf{x}(u, v)=\left[B_{0}^{m}(u), \ldots, B_{m}^{m}(u)\right]\left[\begin{array}{cc}
\mathbf{b}_{0,0} & \mathbf{b}_{0,1} \\
\vdots & \vdots \\
\mathbf{b}_{m, 0} & \mathbf{b}_{m, 1}
\end{array}\right]\left[\begin{array}{c}
B_{0}^{1}(v) \\
B_{1}^{1}(v)
\end{array}\right]
$$

A developable surface is a special ruled surface

- Important in manufacturing
- Bending a piece of sheet metal without tearing or stretching
- Special conditions for a ruled surface to be developable (Gaussian curvature must be zero everywhere)

Functional Bézier Patches

Functional or nonparametric Bézier patches are analogous to their curve counterparts

The graph of a functional surface is a parametric surface of the form:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x(u) \\
y(v) \\
z(u, v)
\end{array}\right]=\left[\begin{array}{c}
u \\
v \\
f(u, v)
\end{array}\right]
$$

Important feature: single-valued
\Rightarrow Useful in some applications such as sheet metal stamping

Functional Bézier Patches

Control points for a functional Bézier patch defined over $[0,1] \times[0,1]$

$$
\mathbf{b}_{i, j}=\left[\begin{array}{c}
i / m \\
j / n \\
b_{i, j}
\end{array}\right]
$$

Over an arbitrary rectangular region $[a, b] \times[c, d]$:
(Direct generalization of functional Bézier curves over an arbitrary interval)

Monomial Patches

$$
\begin{aligned}
\mathbf{x}(u, v) & =\left[\begin{array}{lll}
1 & u \ldots & u^{m}
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{a}_{0,0} & \ldots & \mathbf{a}_{0, n} \\
\vdots & & \vdots \\
\mathbf{a}_{m, 0} & \ldots & \mathbf{a}_{m, n}
\end{array}\right]\left[\begin{array}{c}
1 \\
v \\
\vdots \\
v^{n}
\end{array}\right] \\
& =U^{\mathrm{T}} \mathbf{A} V
\end{aligned}
$$

Analogous to curves:

- $\mathbf{a}_{0,0}$ represents a point on the patch at $(u, v)=(0,0)$
- All other $\mathbf{a}_{i, j}$ are partial derivatives

Conversion between monomial and the Bézier forms:

- Analogous to curves

$$
\mathbf{a}_{i, j}=\binom{m}{i}\binom{n}{j} \Delta^{i, j} \mathbf{b}_{0,0}
$$

