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Introduction to Bézier Patches

The “Utah” teapot composed of Bézier patches

Surfaces:
– Basic definitions
– Extend the concept of Bézier curves
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Parametric Surfaces

Parametric curve: mapping of the real line into 2- or 3-space

Parametric surface: mapping of the real plane into 3-space

R
2 is the domain of the surface

– A plane with a (u, v) coordinate system

Corresponding 3D surface point:

x(u, v) =





f (u, v)
g(u, v)
h(u, v)




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Parametric Surfaces

Example:
Parametric surface

x(u, v) =





u

v

u2 + v2





Only a portion of surface illustrated

This is a functional surface

Parametric surfaces may be rotated
or moved around
– More general than z = f (x , y)
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Bilinear Patches

Typically interested in a finite piece of a parametric surface
– The image of a rectangle in the domain

The finite piece of surface called a patch

Let domain be the unit square

{(u, v) : 0 ≤ u, v ≤ 1}

Map it to a surface patch defined by four points

x(u, v) =
[

1− u u
]

[

b0,0 b0,1
b1,0 b1,1

] [

1− v

v

]

Surface patch is linear in both the u and v parameters
⇒ bilinear patch
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Bilinear Patches

Bilinear patch:

x(u, v) =
[

1− u u
]

[

b0,0 b0,1
b1,0 b1,1

] [

1− v

v

]

Geometric interpretation: rewrite as

x(u, v) = (1− v)pu + vqu

where

pu = (1− u)b0,0 + ub1,0

qu = (1− u)b0,1 + ub1,1
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Bilinear Patches

Example: Given four points bi ,j and compute x(0.25, 0.5)

b0,0 =





0
0
0



 b1,0 =





1
0
0



 b0,1 =





0
1
0



 b1,1 =





1
1
1





pu = 0.75





0
0
0



+ 0.25





1
0
0



 =





0.25
0
0





qu = 0.75





0
1
0



+ 0.25





1
1
1



 =





0.25
1

0.25





x(0.25, 0.5) = 0.5pu + 0.5qu =





0.25
0.5
0.125




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Bilinear Patches
Rendered image of patch in previous example
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Bilinear Patches

Bilinear patch:
x(u, v) = (1− v)pu + vqu

Is equivalent to
x(u, v) = (1− u)pv + uqv

where

pv = (1− v)b0,0 + vb0,1

qv = (1− v)b1,0 + vb1,1
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Bilinear Patches

Bilinear patch also called a hyperbolic paraboloid

Isoparametric curve: only one parameter is allowed to vary

Isoparametric curves on a bilinear patch ⇒ 2 families of straight lines
(ū, v): line constant in u but varying in v

(u, v̄): line constant in v but varying in u

Four special isoparametric curves (lines):

(u, 0) (u, 1) (0, v) (1, v)
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Bilinear Patches
A hyperbolic paraboloid also contains curves

Consider the line u = v in the domain

As a parametric line: u(t) = t, v(t) = t

Domain diagonal mapped to the 3D curve on the surface

d(t) = x(t, t)

In more detail:

d(t) =
[

1− t t
]

[

b0,0 b0,1
b1,0 b1,1

] [

1− t

t

]

Collecting terms now gives

d(t) = (1− t)2b0,0 + 2(1 − t)t[
1

2
b0,1 +

1

2
b1,0] + t2b1,1

⇒ quadratic Bézier curve
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Bilinear Patches

Example: Compute the curve on the surface for u(t) = t, v(t) = t

c0 = b0,0 =





0
0
0





c1 =
1

2
[b1,0 + b0,1] =





0.5
0.5
0





c2 = b1,1 =





1
1
1





d(t) = c0B
2
0 (t) + c1B

2
1 (t) + c2B

2
2 (t)
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Bézier Patches

Bilinear patch using linear Bernstein polynomials:

x(u, v) =
[

B1
0 (u) B1

1 (u)
]

[

b0,0 b0,1
b1,0 b1,1

] [

B1
0 (v)

B1
1 (v)

]

Generalization:

x(u, v) =
[

Bm
0 (u) . . . Bm

m (u)
]







b0,0 . . . b0,n
...

...
bm,0 . . . bm,n













Bn
0 (v)
...

Bn
n (v)







=b0,0B
m
0 (u)Bn

0 (v) + . . .+ bi ,jB
m
i (u)Bn

j (v) + . . .+ bm,nB
m
m (u)Bn

n (v)

Examples: m = n = 1: bilinear m = n = 3: bicubic
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Bézier Patches

x(u, v) =
[

Bm
0 (u) . . . Bm

m (u)
]







b0,0 . . . b0,n
...

...
bm,0 . . . bm,n













Bn
0 (v)
...

Bn
n (v)







Abbreviated as
x(u, v) = MTBN

2-stage explicit evaluation method at given (u, v)
Step 1: generate ci

C = MTB = [c0, . . . , cn]

Step 2: generate point on surface

x(u, v) = CN

(“explicit” because Bernstein polynomials evaluated)
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Bézier Patches

x(u, v) = MTBN ⇒ x(u, v) = CN

Control points c0, . . . , cn of C
do not depend on the parameter
value v

Curve CN: curve on surface
– Constant u
– Variable v

⇒ isoparametric curve or isocurve
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Bézier Patches
Example: Evaluate the 2× 3 control net at (u, v) = (0.5, 0.5)

B =

































0
0
6









3
0
0









6
0
0









9
0
6









0
3
3









3
3
0









6
3
0









9
3
0









0
6
6









3
6
0









6
6
0









9
6
6

































Step 1) Compute quadratic Bernstein polynomials for u = 0.5:

MT =
[

0.25 0.5 0.25
]

⇒ Intermediate control points

C = MTB =









0
3
4.5









3
3
0









6
3
0









9
3
3









Bézier points of an isoparametric curve containing x(0.5, 0.5)
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Bézier Patches

Step 2) Compute cubic Bernstein polynomials for v = 0.5:

N =









0.125
0.375
0.375
0.125









x(0.5, 0.5) = CN =





4.5
3

0.9375





Farin & Hansford The Essentials of CAGD 18 / 46



Bézier Patches

Another approach to
2-stage explicit evaluation:

x(u, v) = MTBN

D = BN

x = MTD

v -isoparametric curve
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Properties of Bézier Patches

Bézier patches properties essentially the same as the curve ones

1 Endpoint interpolation:
– Patch passes through the four corner control points
– Control polygon boundaries define patch boundary curves

2 Symmetry:
Shape of patch independent of corner selected to be b0,0

3 Affine invariance:
Apply affine map to control net and then evaluate
identical to applying affine map to the original patch

4 Convex hull property:
x(u, v) in the convex hull of the control net for (u, v) ∈ [0, 1] × [0, 1]

5 Bilinear precision: Sketch on next slide

6 Tensor product:
⇒ evaluation via isoparametric curves
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Properties of Bézier Patches
A degree 3× 4 control net with bilinear precision

Boundary control points evenly spaced on lines connecting the corner
control points

Interior control points evenly-spaced on lines connecting boundary control
points on adjacent edges
Patch identical to the bilinear interpolant to the four corner control pointsFarin & Hansford The Essentials of CAGD 21 / 46



Properties of Bézier Patches
Tensor product property very powerful conceptual tool for understanding
Bézier patches

Shape as a record of the shape of a template moving through space

Template can change shape as it moves
Shape and position is guided by “columns” of Bézier control points
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Derivatives

A derivative is the tangent vector of a curve on the surface
Called a partial derivative

There are two isoparametric curves
through a surface point

The v = constant curve
is a curve on the surface with
parameter u
– Differentiate with respect to u

xu(u, v) =
∂x(u, v)

∂u

Called the u−partial
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Derivatives

Example: Find partial xv (0.5, 0.5) of

B =

































0
0
6









3
0
0









6
0
0









9
0
6









0
3
3









3
3
0









6
3
0









9
3
0









0
6
6









3
6
0









6
6
0









9
6
6

































Control polygon C for the u = 0.5 isoparametric curve
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Derivatives

Example con’t: Derivative curve

xv (0.5, v) = 3(∆c0B
2
0 (v) + ∆c1B

2
1 (v) + ∆c2B

2
2 (v))

∆c0 =





3
0

−4.5



 ∆c1 =





3
0
0



 ∆c2





3
0
3





Evaluate at v = 0.5

xv(0.5, 0.5) =





9
0

−1.125





u−partials ⇒ differentiate the
isoparametric curve with control
points D = BN
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Derivatives

Computing derivatives via a closed-form expression

xu(u, v) = m
[

Bm−1
0 (u) . . . Bm−1

m−1 (u)
]







∆1,0b0,0 . . . ∆1,0b0,n

...
...

∆1,0bm−1,0 . . . ∆1,0bm−1,n













Bn
0 (v)
...

Bn
n (v)







∆1,0bi ,j denote forward differences:

∆1,0bi ,j = bi+1,j − bi ,j

⇒ Closed-form u-partial derivative expression is a degree (m − 1)× n

patch with a control net consisting of vectors rather than points
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Derivatives

u-partial formed from differences of control points of the original patch in
the u-direction

xu(u, v) = 2
[

B1
0 (u) B1

1 (u)
]

B′









B3
0 (v)

B3
1 (v)

B3
2 (v)

B3
3 (v)









B′ =





















0
3
−3









0
3
0









0
3
0









0
3
−6









0
3
3









0
3
0









0
3
0









0
3
6





















xu(0.5, 0.5) =





0
6
0





Farin & Hansford The Essentials of CAGD 27 / 46



Derivatives

Closed-form v -partial derivative

xv(u, v) = n
[

Bm
0 (u) . . . Bm

m (u)
]







∆0,1b0,0 . . . ∆0,1b0,n−1

...
...

∆0,1bm,0 . . . ∆0,1bm,n−1













Bn−1
0 (v)
...

Bn−1
n−1 (v)







∆0,1bi ,j = bi ,j+1 − bi ,j

⇒ Closed-form v -partial derivative is a degree m × (n − 1) patch
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Higher Order Derivatives

A Bézier patch may be differentiated several times
⇒ Derivatives of order k or kth partials

v−partials: x
(k)
v (u, v) =

n!

(n − k)!

[

Bm
0 (u) . . . Bm

m (u)
]







∆0,kb0,0 . . . ∆0,kb0,n−1

...
...

∆0,kbm,0 . . . ∆0,kbm,n−1













Bn−k
0 (v)
...

Bn−k
n−1 (v)







kth forward differences ∆0,kbi ,j
– Acting only on the second subscripts
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Higher Order Derivatives

Mixed partial or twist vector

xu,v (u, v) =
∂xu(u, v)

∂v
or

∂xv (u, v)

∂u

xu,v (u, v) =

mn
[

Bm−1
0 (u) . . . Bm−1

m−1 (u)
]







∆1,1b0,0 . . . ∆1,1b0,n−1

...
...

∆1,1bm−1,0 . . . ∆1,1bm−1,n−1













Bn−1
0 (v)
...

Bn−1
n−1 (v)






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Higher Order Derivatives

∆1,1bi ,j = ∆0,1(bi+1,j − bi ,j)

= ∆0,1bi+1,j −∆0,1bi ,j

= bi+1,j+1 − bi+1,j − bi ,j+1 + bi ,j
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Higher Order Derivatives

Example: Bilinear patch

b0,0 =





0
0
0



 b1,0 =





1
0
0



 b0,1 =





0
1
0



 b1,1 =





1
1
1





xu,v (u, v) = B0
0 (u)∆

1,1b0,0B
0
0 (v)

= ∆1,1b0,0

=





0
0
1





B0
0 (u) = 1 for all u

⇒ a bilinear patch has a constant twist vector
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Higher Order Derivatives

The Bernstein basis functions property:

Bn
0 (0) = 1 and Bn

i (0) = 0 for i = 1, n

Bn
n (1) = 1 and Bn

i (1) = 0 for i = 0, n − 1

⇒ Simple form of the twist at the corners of the patch

xu,v (0, 0) = mn∆1,1b0,0 xu,v (0, 1) = mn∆1,1b0,n−1

xu,v (1, 0) = mn∆1,1bm−1,0 xu,v (1, 1) = mn∆1,1bm−1,n−1
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The de Casteljau Algorithm

Evaluation of a Bézier patch: x(u, v) = MTBN

Define an intermediate set of points

C = MTB

c0 = Bm
0 (u)b0,0 + . . .+ Bm

m (u)bm,0

c1 = Bm
0 (u)b0,1 + . . .+ Bm

m (u)bm,1

. . .

cn = Bm
0 (u)b0,n + . . .+ Bm

m (u)bm,n

Evaluate n degree m curves with the
de Casteljau algorithm

Farin & Hansford The Essentials of CAGD 34 / 46



The de Casteljau Algorithm

Final evaluation step: x(u, v) = CN

⇒ Evaluate this degree n Bézier curve with the de Casteljau algorithm

The 2-stage de Casteljau evaluation method
– Repeated calls to the de Casteljau algorithm for curves

Advantage of this geometric approach:
– Allows computation of a point and derivative

Control polygon C:
– Evaluate point x(u, v) = CN and tangent xv

Control polygon D = BN:
– Evaluate point x = MTD and tangent xu
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Normals

The normal vector or normal is a fundamental geometric concept
– Used throughout computer graphics and CAD/CAM

At a given point x(u, v)
the normal is perpendicular to the
surface

Tangent plane at x(u, v)
– Defined by x, xu , xv

⇒ A point and two vectors

The normal n is a unit vector defined
by

n =
xu ∧ xv

‖xu ∧ xv‖
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Normals

3-stage de Casteljau evaluation method
Ingredients for n are x, xu , and xv

1 For all m + 1 rows
Compute n − 1 levels of dCA
– v parameter → triangles

2 Compute m − 1 levels of dCA
– parameter u → squares

3 Four points (squares) form a
bilinear patch
– Its tangent plane is surface’s
tangent plane
– Evaluate and compute the
partials
– Vectors must be scaled for
original patch
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Normals

Example: 3-stage de Casteljau evaluation method at (u, v) = (0.5, 0.5)

Results in a bilinear patch

Bilinear patch shares the same
tangent plane as the original patch x

n =





−0.1240
0

−0.9922




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Changing Degrees

Bézier patch degrees: m in u−direction and n in v−direction

Degree elevation for curves used to degree elevate patch

Example: Raise m to m + 1 then resulting control net will have
– n+ 1 columns of control points
– Each column contains m + 2 control points
– Still describes same surface

Degree reduction performed on a row-by-row or column-by-column basis
– Repeatedly applying the curve algorithm
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Changing Degrees

Degree elevation of a bilinear patch
– Elevate to degree 2 in u
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Subdivision

Curve subdivision: Splitting one curve segment into two segments

Patch subdivision: split into two
patches

Example:
u0 splits the domain unit square into
two rectangles
Patch split along an isoparametric
curve

Method:
Perform curve subdivision
for each degree m column of the
control net at parameter u0
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Ruled Bézier Patches

Ruled surface is linear in one isoparametric direction

v -direction linear: x(u, v) = (1− v)x(u, 0) + vx(u, 1)

u-direction linear: x(u, v) = (1− u)x(0, v) + ux(1, v)

⇒ Simple method to fit a surface between two curves
–Two curves the same degree

Example: A bilinear surface
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Ruled Bézier Patches

Let the two curves be given

u = 0 : b0,0, . . . ,bm,0 and u = 1 : b0,1, . . . ,bm,1

Ruled surface:

x(u, v) = [Bm
0 (u), . . . ,Bm

m (u)]







b0,0 b0,1
...

...
bm,0 bm,1







[

B1
0 (v)

B1
1 (v)

]

A developable surface is a special ruled surface
– Important in manufacturing
– Bending a piece of sheet metal without tearing or stretching
– Special conditions for a ruled surface to be developable

(Gaussian curvature must be zero everywhere)
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Functional Bézier Patches

Functional or nonparametric Bézier patches are analogous to their curve
counterparts

The graph of a functional surface is a parametric surface of the form:





x

y

z



 =





x(u)
y(v)
z(u, v)



 =





u

v

f (u, v)





Important feature: single-valued
⇒ Useful in some applications such as sheet metal stamping
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Functional Bézier Patches

Control points for a functional Bézier patch defined over [0, 1] × [0, 1]

bi ,j =





i/m
j/n
bi ,j





Over an arbitrary rectangular region [a, b]× [c , d ]:

(Direct generalization of functional Bézier curves over an arbitrary interval)
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Monomial Patches

x(u, v) =
[

1 u . . . um
]







a0,0 . . . a0,n
...

...
am,0 . . . am,n

















1
v
...
vn











= UTAV

Analogous to curves:
– a0,0 represents a point on the patch at (u, v) = (0, 0)
– All other ai ,j are partial derivatives

Conversion between monomial and the Bézier forms:
– Analogous to curves

ai ,j =

(

m

i

)(

n

j

)

∆i ,jb0,0
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