The Essentials of CAGD

Chapter 7: Working with Polynomial Patches

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

Outline

- 1 Introduction to Working with Polynomial Patches
- 2 Bicubic Interpolation
- 3 Interpolation using Higher Degrees
- Coons Patches
- 5 Bicubic Hermite Interpolation
- Trimmed Patches
- Least Squares Approximation

Introduction to Working with Polynomial Patches

Basic surface theory \Rightarrow several applications

A Bézier surface trimmed by a ConS (Curve on a Surface)

Given: 16 points $\mathbf{p}_{i,j}$ and associated parameter values (u_i, v_j)

Find: Interpolating bicubic patch $\mathbf{x}(u, v)$ such that

$$\mathbf{P} = \begin{bmatrix} \mathbf{p}_{0,0} & \mathbf{p}_{0,1} & \mathbf{p}_{0,2} & \mathbf{p}_{0,3} \\ \mathbf{p}_{1,0} & \mathbf{p}_{1,1} & \mathbf{p}_{1,2} & \mathbf{p}_{1,3} \\ \mathbf{p}_{2,0} & \mathbf{p}_{2,1} & \mathbf{p}_{2,2} & \mathbf{p}_{2,3} \\ \mathbf{p}_{3,0} & \mathbf{p}_{3,1} & \mathbf{p}_{3,2} & \mathbf{p}_{3,3} \end{bmatrix} = \begin{bmatrix} \mathbf{x}(u_0, v_0) & \mathbf{x}(u_0, v_1) & \mathbf{x}(u_0, v_2) & \mathbf{x}(u_0, v_3) \\ \mathbf{x}(u_1, v_0) & \mathbf{x}(u_1, v_1) & \mathbf{x}(u_1, v_2) & \mathbf{x}(u_1, v_3) \\ \mathbf{x}(u_2, v_0) & \mathbf{x}(u_2, v_1) & \mathbf{x}(u_2, v_2) & \mathbf{x}(u_2, v_3) \\ \mathbf{x}(u_3, v_0) & \mathbf{x}(u_3, v_1) & \mathbf{x}(u_3, v_2) & \mathbf{x}(u_3, v_3) \end{bmatrix}$$

Recall that

$$\mathbf{x}(u_1, v_2) = \begin{bmatrix} B_0^3(u_1) & B_1^3(u_1) & B_2^3(u_1) & B_3^3(u_1) \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0,0} & \mathbf{b}_{0,1} & \mathbf{b}_{0,2} & \mathbf{b}_{0,3} \\ \mathbf{b}_{1,0} & \mathbf{b}_{1,1} & \mathbf{b}_{1,2} & \mathbf{b}_{1,3} \\ \mathbf{b}_{2,0} & \mathbf{b}_{2,1} & \mathbf{b}_{2,2} & \mathbf{b}_{2,3} \\ \mathbf{b}_{3,0} & \mathbf{b}_{3,1} & \mathbf{b}_{3,2} & \mathbf{b}_{3,3} \end{bmatrix} \begin{bmatrix} B_0^3(v_2) \\ B_1^3(v_2) \\ B_2^3(v_2) \\ B_3^3(v_2) \end{bmatrix}$$

Interpolation problem written as

$$\mathbf{P} = \mathbf{M}^{\mathrm{T}} \mathbf{B} \mathbf{N}$$

$$M^{\mathrm{T}} = \begin{bmatrix} B_0^3(u_0) & B_1^3(u_0) & B_2^3(u_0) & B_3^3(u_0) \\ B_0^3(u_1) & B_1^3(u_1) & B_2^3(u_1) & B_3^3(u_1) \\ B_0^3(u_2) & B_1^3(u_2) & B_2^3(u_2) & B_3^3(u_2) \\ B_0^3(u_3) & B_1^3(u_3) & B_2^3(u_3) & B_3^3(u_3) \end{bmatrix}$$

$$N = \begin{bmatrix} B_0^3(v_0) & B_0^3(v_1) & B_0^3(v_2) & B_0^3(v_3) \\ B_1^3(v_0) & B_1^3(v_1) & B_1^3(v_2) & B_1^3(v_3) \\ B_2^3(v_0) & B_2^3(v_1) & B_2^3(v_2) & B_2^3(v_3) \\ B_3^3(v_0) & B_3^3(v_1) & B_3^3(v_2) & B_3^3(v_3) \end{bmatrix}$$

$$\mathbf{P} = M^{\mathrm{T}} \mathbf{B} N$$

Tensor Product Approach: Decompose into a sequence of linear systems

$$\mathbf{P} = \mathbf{C} N$$
 then $\mathbf{C} = M^{\mathrm{T}} \mathbf{B}$

Solve two sets of four systems – Example from each:

$$\begin{bmatrix} \mathbf{p}_{1,0} & \mathbf{p}_{1,1} & \mathbf{p}_{1,2} & \mathbf{p}_{1,3} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{1,0} & \mathbf{c}_{1,1} & \mathbf{c}_{1,2} & \mathbf{c}_{1,3} \end{bmatrix} N$$

$$\begin{bmatrix} \mathbf{c}_{0,1} \\ \mathbf{c}_{1,1} \\ \mathbf{c}_{2,1} \\ \mathbf{c}_{3,1} \end{bmatrix} = M^{\mathrm{T}} \begin{bmatrix} \mathbf{b}_{0,1} \\ \mathbf{b}_{1,1} \\ \mathbf{b}_{2,1} \\ \mathbf{b}_{3,1} \end{bmatrix}$$

7/33

Farin & Hansford The Essentials of CAGD

Given $\mathbf{p}_{i,j}$ depicted as triangles

Step 1: P = CN

Step 2: $\mathbf{C} = M^{\mathrm{T}}\mathbf{B}$

Sketch error: the u- and v- parameter directions need to be reversed.

Direct approach:

$$\mathbf{B} = (M^{\mathrm{T}})^{-1} \mathbf{P} N^{-1}$$

The tensor product approach is more efficient

- Important for larger problems

Standard parameter selection:

$$(u_0, u_1, u_2, u_3) = (v_0, v_1, v_2, v_3) = (0, 1/3, 2/3, 1)$$

Different values might improve the result

- Requires effort
- Must define improve

Interpolation using Higher Degrees

Given: array of points with associated parameter values (u_i, v_j)

$$\mathbf{P} = \begin{bmatrix} \mathbf{p}_{0,0} & \cdots & \mathbf{p}_{0,n} \\ \vdots & & \vdots \\ \mathbf{p}_{m,0} & \cdots & \mathbf{p}_{m,n} \end{bmatrix}$$

Find: a Bézier patch

$$\mathbf{x}(u,v) = M^{\mathrm{T}}\mathbf{B}N$$
 such that $\mathbf{x}(u_i,v_j) = \mathbf{p}_{i,j}$

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_{0,0} & \dots & \mathbf{b}_{0,n} \\ \vdots & & \vdots \\ \mathbf{b}_{m,0} & \dots & \mathbf{b}_{m,n} \end{bmatrix}$$

Interpolation using Higher Degrees

$$\mathbf{P} = M^{\mathrm{T}} \mathbf{B} N$$

Tensor product approach:

$$P = CN \Rightarrow C = M^{T}B$$

- -m+1 linear systems for the rows of **C**
- -n+1 linear systems for the columns of **B**

Could use polynomials other than the Bernstein polynomials

Obtain the same interpolating surface

High degree polynomials tend to oscillate

- Just as in the curve case

A common practical situation:

- Four boundary curves of a surface designed
- Whole surface must be constructed
- S. Coons developed most widely used technique in the 1960s for Ford $\,$
- Here: Boundary curves are Bézier curves

Given: Four boundary polygons As an array of points

$$\mathbf{b}_{i,j}$$
 $i=0\ldots m, j=0\ldots n$

Example: m = n = 3

${\bf b}_{0,0}$	$\mathbf{b}_{0,1}$	${\bf b}_{0,2}$	${\bf b}_{0,3}$
$\mathbf{b}_{1,0}$			${\bf b}_{1,3}$
${\bf b}_{2,0}$			$b_{2,3}$
$b_{3,0}$	${\bf b}_{3,1}$	$b_{3,2}$	$b_{3,3}$

Find: Missing (four) interior points –Depicted by squares

General Coons formula:

Blend of two linear interpolations and one bilinear interpolation:

$$\mathbf{b}_{i,j} = (1 - \frac{i}{m})\mathbf{b}_{0,j} + \frac{i}{m}\mathbf{b}_{m,j}$$

$$+ (1 - \frac{j}{n})\mathbf{b}_{i,0} + \frac{j}{n}\mathbf{b}_{i,n}$$

$$- \left[1 - \frac{i}{m} \quad \frac{i}{m}\right] \begin{bmatrix} \mathbf{b}_{0,0} & \mathbf{b}_{0,n} \\ \mathbf{b}_{m,0} & \mathbf{b}_{m,n} \end{bmatrix} \begin{bmatrix} 1 - \frac{j}{n} \\ \frac{j}{n} \end{bmatrix}$$
for $i = 1 \dots m - 1$ and $j = 1 \dots n - 1$

Three building blocks for a Coons patch

Given: points, partials, and mixed partials

Note: Some partial directions should be reversed.

$$\begin{bmatrix} \mathbf{x}(0,0) & \mathbf{x}_{\nu}(0,0) & \mathbf{x}_{\nu}(0,1) & \mathbf{x}(0,1) \\ \mathbf{x}_{u}(0,0) & \mathbf{x}_{u\nu}(0,0) & \mathbf{x}_{u\nu}(0,1) & \mathbf{x}_{u}(0,1) \\ \mathbf{x}_{u}(1,0) & \mathbf{x}_{u\nu}(1,0) & \mathbf{x}_{u\nu}(1,1) & \mathbf{x}_{u}(1,1) \\ \mathbf{x}(1,0) & \mathbf{x}_{\nu}(1,0) & \mathbf{x}_{\nu}(1,1) & \mathbf{x}(1,1) \end{bmatrix}$$

Find: Interpolating cubic Bézier patch

4 patch boundaries ⇒ 4 cubic Hermite *curve* interpolation problems

$$\begin{array}{lll} \mathbf{b}_{0,0} = \mathbf{x}(0,0) & \mathbf{b}_{3,0} = \mathbf{x}(1,0) \\ \mathbf{b}_{0,1} = \mathbf{b}_{0,0} + \frac{1}{3}\mathbf{x}_{\nu}(0,0) & \mathbf{b}_{3,1} = \mathbf{b}_{3,0} + \frac{1}{3}\mathbf{x}_{\nu}(1,0) \\ \mathbf{b}_{1,0} = \mathbf{b}_{0,0} + \frac{1}{3}\mathbf{x}_{u}(0,0) & \mathbf{b}_{2,0} = \mathbf{b}_{3,0} - \frac{1}{3}\mathbf{x}_{u}(1,0) \\ \mathbf{b}_{0,3} = \mathbf{x}(0,1) & \mathbf{b}_{3,3} = \mathbf{x}(1,1) \\ \mathbf{b}_{0,2} = \mathbf{b}_{0,3} - \frac{1}{3}\mathbf{x}_{\nu}(0,1) & \mathbf{b}_{3,2} = \mathbf{b}_{3,3} - \frac{1}{3}\mathbf{x}_{\nu}(1,1) \\ \mathbf{b}_{1,3} = \mathbf{b}_{0,3} + \frac{1}{3}\mathbf{x}_{u}(0,1) & \mathbf{b}_{2,3} = \mathbf{b}_{3,3} - \frac{1}{3}\mathbf{x}_{u}(1,1) \end{array}$$

Interior control points found using the twist vector data

$$\mathbf{x}_{uv}(0,0) = 9[\mathbf{b}_{1,1} - \mathbf{b}_{1,0} - \mathbf{b}_{0,1} + \mathbf{b}_{0,0}]$$

Solve for $\mathbf{b}_{1,1}$:

$$\mathbf{b}_{1,1} = \frac{1}{9} \mathbf{x}_{uv}(0,0) + \mathbf{b}_{0,1} + \mathbf{b}_{1,0} - \mathbf{b}_{0,0}$$

At other corners:

$$\begin{aligned} \mathbf{b}_{2,1} &= -\frac{1}{9} \mathbf{x}_{uv}(1,0) + \mathbf{b}_{3,1} - \mathbf{b}_{3,0} + \mathbf{b}_{2,0} \\ \mathbf{b}_{1,2} &= -\frac{1}{9} \mathbf{x}_{uv}(0,1) + \mathbf{b}_{1,3} - \mathbf{b}_{0,3} + \mathbf{b}_{0,2} \\ \mathbf{b}_{2,2} &= \frac{1}{9} \mathbf{x}_{uv}(1,1) - \mathbf{b}_{3,3} + \mathbf{b}_{2,3} + \mathbf{b}_{3,2} \end{aligned}$$

A bicubic Bézier patch with zero twists

Twist data can be difficult to create

- Coons solution to given boundary data easier construction

Parametric curve (u(t), v(t)) in the domain of surface $\mathbf{x}(u, v)$

Mapped to a curve on the surface ConS

$$\mathbf{x}(u(t), v(t))$$

ConS application: trimmed surfaces

Areas marked as "invalid" or "invisible"

Example:

- Given two planes
- Blending surface between them
- Dashed parts of planes "invisible"

Degree p domain curve mapped onto a degree $m \times n$ surface $\mathbf{x}(u, v)$

 \Rightarrow Degree (m+n)p ConS (in general)

Isoparametric line in domain

 \Rightarrow Degree m or n isoparametric ConS

Closed domain curve divides domain into two parts Closed ConS divides the surface into two parts

Problem: Is domain point (u, v) inside the domain curve?

Solution:

- Construct arbitrary ray emanating from (u, v)
- Count number intersections with all domain curves and boundary (Tangencies count as 2 intersections)
- Even: outside Odd: inside

Orientation of trim curves

- Inside trim curves clockwise
- Outer-boundary is counterclockwise

Trimmed surfaces are a bread-and-butter tool in all CAD/CAM systems

Arise in many applications

Most common: intersection between two surfaces

- Resulting intersection curve is a ConS on either of the two surfaces

Given: set of points \mathbf{p}_k $k = 0, \dots K - 1$

 Not on a rectangular grid aligned with patch boundaries

Example: points from laser digitizer

- Number of points can be large

For each \mathbf{p}_k need corresponding parameter pair (u_k, v_k)

Find a Bézier patch that fits the data as "good" as possible – Control net coefficients $\mathbf{b}_{i,j}$ with $i=0,\ldots,m$ and $j=0,\ldots,n$

Use a linearized notation to solve the problem

- Traverse the control net row by row

$$\mathbf{x}(u,v) = \begin{bmatrix} B_0^m(u)B_0^n(v), \dots, B_m^m(u)B_n^n(v) \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0,0} \\ \vdots \\ \mathbf{b}_{m,n} \end{bmatrix}$$

Best case: each data point lies on the approximating surface

$$\mathbf{p}_k = \mathbf{x}(u_k, v_k) = \begin{bmatrix} B_0^m(u_k) B_0^n(v_k), \dots, B_m^m(u_k) B_n^n(v_k) \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0,0} \\ \vdots \\ \mathbf{b}_{m,n} \end{bmatrix}$$

28 / 33

Farin & Hansford The Essentials of CAGD

Combining all K of these equations

$$\begin{bmatrix} \mathbf{p}_0 \\ \vdots \\ \vdots \\ \mathbf{p}_K \end{bmatrix} = \begin{bmatrix} B_0^m(u_0)B_0^n(v_0) & \dots & B_m^m(u_0)B_n^n(v_0) \\ & \vdots & & & \\ \vdots & & & & \\ B_0^m(u_K)B_0^n(v_K) & \dots & B_m^m(u_K)B_n^n(v_K) \end{bmatrix} \begin{bmatrix} \mathbf{b}_{0,0} \\ \vdots \\ \mathbf{b}_{m,n} \end{bmatrix}$$

$$\mathbf{P} = M\mathbf{B}$$

$$K$$
 equations in $(m+1)(n+1)$ unknowns

Example: m = n = 3 bicubic case and K = several hundred

- \Rightarrow 16 unknowns
- ⇒ Linear system is *overdetermined*

29/33

Overdetermined linear system

$$P = MB$$

In general no exact solution Good approximation found by forming *normal equations*

$$M^{\mathrm{T}}\mathbf{P} = M^{\mathrm{T}}M\mathbf{B}$$

(Same procedure as for curve problem)

Example: bicubic case 16 equations in 16 unknowns

B is the least squares approximation to the given data in Bézier form

Least squares solution minimizes the sum of the squared distances of each data point to the resulting surface

If # data points = # control points \Rightarrow interpolation (No need to form normal equations)

Finding parameter values

If data points can be projected into a plane:

- Example: project into (x, y) plane
- Drop z—coordinate
 - $(u_k,v_k)=(x_k,y_k)$
- Scale to unit square

Finding parameter values con't

If data cannot be projected into a plane:

Look for a *basic surface* with a known parametrization that mimics the shape of the data

Example: a cylinder or a sphere

- Projected each point onto a cylinder
- Generates a (θ,z) parameter pair
- Scale parameters to unit square