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Basic surface theory = several applications

A Bézier surface trimmed by a ConS (Curve on a Surface)



: 16 points p; ;j and associated parameter values (uj, vj)

Interpolating bicubic patch x(u, v) such that

Poo Po1 Po2 Po3 x(uo, vo) x(uo,vi) x(uo,v2) x(uo,vs)
P1o P11 P12 P13| _ X(U17 Vo) X(U1, V1) X(U1, V2) X(U17 V3)
P20 P21 P22 P23 X(U27 Vo) X(U2, V1) X(U2, V2) X(U27 V3)
P30 P31 P32 P33 X(U37 Vo) X(U3, V1) X(U3, V2) X(U37 V3)
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Recall that

x(u1, v2) = [B3(tn) B (w) B3(u) B3(u)]

bo,o
bio
bz o
b3

bo,1
b1
by 1
b3 1

bo>
b1
b5
b3

bos| [B3(v2)
bis| |Bi(v2)
bas| |B3(v2)
bss| |B3(v2)
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Interpolation problem written as

P=M'BN
B3(u) Bi(wo) B3(uo) Bj3(uo)
yT — | Bo(u) Bi(un) B3(wn) B3(w)
Bi(u2) Bi(wa) B3(wp) Bj3(u»)
Bi(us) Bi(us) B3(us) B3(us)
B3(vo) Bg(vi) Bg(v2) By(vs)
N — |Bilw) Bi(v) Bi(v)) Bi(vs)
B3(w) B3(vi) B3(w2) B3(v3)
B3(vo) B3(vi) B3(v2) Bj3(v3)
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P=M'BN
: Decompose into a sequence of linear systems
P=CN then C=M'B

Solve two sets of four systems — Example from each:

[Pl,o P1,1 P12 P1,3]=[C1,0 Ci1 Ci12 C1,3]/V

o1 bo,1
CLi| _ T b1
€21 b 1
€31 b3 1
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Given p; ; depicted as triangles

Step1: P=CN Step2: C=MTB
Sketch error: the u- and v- parameter directions need to be reversed.
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B=(M"'PN!

The tensor product approach is more efficient
— Important for larger problems
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Standard parameter selection:

(Uo, uy, uz, Us) = (Vo, Vi, V2, V3) = (0> 1/372/3> 1)

Different values might improve the result
— Requires effort
— Must define improve
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Given: array of points with associated parameter values (uj, vj)

Pmo --- Pmn

Find: a Bézier patch

x(u,v) = MTBN such that x(uj,v;) = pi,
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P=M'BN
Tensor product approach:
P=CN = C=M'B

— m+ 1 linear systems for the rows of C
— n+ 1 linear systems for the columns of B

Could use polynomials other than the Bernstein polynomials
— Obtain the same interpolating surface

High degree polynomials tend to oscillate
— Just as in the curve case
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A common practical situation:
— Four boundary curves of a surface designed
— Whole surface must be constructed

S. Coons developed most widely used technique in the 1960s for Ford

— Here: Boundary curves are Bézier curves
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Given: Four boundary polygons
As an array of points

b"J i:O...m, j:0...n
Example: m=n=3

boo bo1 bo> bo3
b1 by 3
b2 b>3
bso bs31 b3o b3

Find: Missing (four) interior points
—Depicted by squares
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Blend of two linear interpolations and one bilinear interpolation:
i i
bii=(1——)boj+ —bmn;
L) ( m) O’J m myJ
J
+(1—-=
( n

i i1!boo bon| |1
B [1_5 E] |:bm,0 bm,n:||: ]

for

)bio + J;bi,n

;

.n—1

J
n
1..

i=1...m—1 and j=
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Three building blocks for a Coons patch
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Given: points, partials, and mixed partials

Note: Some partial directions should be reversed.

x(0,0) x,(0,0) x,(0,1) x(0,1)
x4(0,0) x4, (0,0) x,(0,1) x,(0,1)
x4(1,0) xu(1,0) x,(1,1) x,(1,1)
x(1,0)  x,(1,0) x,(1,1) x(1,1)

Find: Interpolating cubic Bézier patch
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= 4 cubic Hermite curve interpolation problems

b(),o = X(O7 0) b370 == X(]., 0)
1 1
bO,l = bo7o + §XV(0,O) b3,1 = b3,o + ng(l, 0)
1 1
bio=bgo + §Xu(07 0) boo =bzg — §Xu(1, 0)
b0,3 = X(O, ].) b3,3 = X(]., 1)

1 1
bo> = bo3 — ng(O, 1) b3> = b33 — §XV(1, 1)

1 1
bi3=bg3+ gxu(O, 1) by3 =b33 — gxu(l, 1)
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found using the twist vector data
Xuv(0,0) =9[b1 1 — by o — bg 1 + bg ]
Solve for by 1:
bi1= %Xuv((h 0)+bg1+bio—boo
At other corners:
b1 = _éxuv(la 0) +bzi —bsg+byy
b1y = _éxuv(oa 1) +by3—bg3z+bgo

1
boo = §Xuv(17 1) —bs3+byz+bso
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A bicubic Bézier patch with zero twists

Twist data can be difficult to create
— Coons solution to given boundary data easier construction
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Parametric curve (u(t), v(t))
in the domain of surface x(u, v)

Mapped to a

x(u(t), v(t))

21/33



ConS application:

Areas marked as
“invalid” or “invisible”

— Given two planes
— Blending surface between them
— Dashed parts of planes “invisible”
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Degree p domain curve mapped onto a degree m x n surface x(u, v)
= Degree (m + n)p ConS (in general)

Isoparametric line in domain
= Degree m or n isoparametric ConS
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Closed domain curve divides domain into two parts
Closed ConS divides the surface into two parts

. Is domain point (u, v)
inside the domain curve?

— Construct arbitrary ray emanating

from (u, v)

— Count number intersections with

all domain curves and boundary
(Tangencies count as 2

intersections)

— Even: outside Odd : inside

24/33



Orientation of trim curves
— Inside trim curves clockwise

— Outer-boundary is counterclockwise
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Trimmed surfaces are a bread-and-butter tool in all CAD/CAM systems

Arise in many applications
Most common: intersection between two surfaces

— Resulting intersection curve is a ConS on either of the two surfaces
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Given: set of points
Pk kZO,...K—l

— Not on a rectangular grid
aligned with patch boundaries

Example: points from laser digitizer

JRSS— 5 — Number of points can be large

Comiein] For each py need corresponding
parameter pair (uk, vk)
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Find a Bézier patch that fits the data as “good” as possible
— Control net coefficients b; j with i =0,...,mand j =0,...,n

Use a linearized notation to solve the problem

— Traverse the control net row by row
bo,o
x(u,v) = [BF(u)B(v),-... BR(u)Bi(V)] |
bm,n
Best case: each data point lies on the approximating surface
bo,o

Px = X(Uk7 Vk) = [B(’)"(uk)Bé’(vk), ey B,’nn(uk)B,?(Vk)]
bm,n

)
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Combining all K of these equations

[po| [ By (u0)BY(vo) ... BT(uo)BR(vo) ]
: : bo,o
: : bm,n
1P| [Bo'(uk)B(vk) .. Bp(uk)By(vk)
P = MB

K equations in (m + 1)(n + 1) unknowns
Example: m = n = 3 bicubic case and K = several hundred

= 16 unknowns
= Linear system is overdetermined
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Overdetermined linear system

In general no exact solution
Good approximation found by forming normal equations

M'P = MTMB
(Same procedure as for curve problem)
Example: bicubic case 16 equations in 16 unknowns
B is the to the given data in Bézier form

Least squares solution minimizes the sum of the squared distances of each
data point to the resulting surface
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If # data points = # control points = interpolation
(No need to form normal equations)
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Finding parameter values

If data points can be projected into a
plane:
— Example: project into (x,y)—plane
— Drop z—coordinate

(ks vie) = (X, i)
— Scale to unit square
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Finding parameter values con't

If data cannot be projected into a
plane:

Look for a basic surface
with a known parametrization
that mimics the shape of the data

Example: a cylinder or a sphere
— Projected each point onto a
cylinder

— Generates a (f, z) parameter pair
— Scale parameters to unit square
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