The Essentials of CAGD
 Chapter 8: Shape

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

(C) 2000

Outline

(1) Introduction to Shape
(2) The Frenet Frame
(3) Curvature and Torsion
(4) Surface Curvatures

(5) Reflection Lines

Introduction to Shape

Surface geometry with reflection lines

Often times a designer thinks of a curve in terms such as "fair," "smooth," or "sweet"

How can such concepts be incorporated into computer programs?

The central concept of any kind of shape description is curvature

This chapter investigates shape analysis

The Frenet Frame

Discuss shape of a curve in local terms

- Shape at a particular point $\mathbf{x}(t)$

Create a local coordinate system at $\mathbf{x}(t)$

- Use to express local curve properties

Base system on first and second derivatives of the curve:

$$
\dot{\mathbf{x}}(t) \quad \text { and } \quad \ddot{\mathbf{x}}(t)
$$

The Frenet Frame

Local coordinate system (frame) defined by 3 vectors:

- unit length and orthogonal

$$
\begin{array}{rlr}
\mathbf{t} & =\frac{\dot{\mathbf{x}}(t)}{\|\dot{\mathbf{x}}(t)\|} & \text { tangent } \tag{tangent}\\
\mathbf{b} & =\frac{\dot{\mathbf{x}}(t) \wedge \ddot{\mathbf{x}}(t)}{\|\dot{\mathbf{x}}(t) \wedge \ddot{\mathbf{x}}(t)\|} & \text { binormal } \\
\mathbf{n} & =\mathbf{b} \wedge \mathbf{t} & \text { normal }
\end{array}
$$

Called the Frenet frame at $\mathbf{x}(t)$

The Frenet Frame

Note: if either

$$
\dot{\mathbf{x}}(t)=\mathbf{0} \quad \text { or } \quad \dot{\mathbf{x}}(t) \wedge \ddot{\mathbf{x}}(t)=\mathbf{0}
$$

\Rightarrow Frenet frame not defined

The Frenet Frame

Let $\mathbf{x}(t)$ trace out points on curve
Corresponding Frenet frames also slide along the curve
Application: Positioning objects along a curve -Letter always at the same location relative to the Frenet frame

The Frenet Frame

Example:

Curvature and Torsion

How is the Frenet frame related to the shape of a curve?
Move along the curve and observe how frame changes

- More the curve is bent \Rightarrow the faster the frame will change

Rate of change of the unit tangent vector \mathbf{t} denotes the curvature of the curve

- Straight line: curvature is zero
- Circle: curvature is constant

Curvature denoted by κ

$$
\kappa(t)=\frac{\|\dot{\mathbf{x}}(t) \wedge \ddot{\mathbf{x}}(t)\|}{\|\dot{\mathbf{x}}(t)\|^{3}}
$$

Curvature and Torsion

Curvature related to circle that best
 approximates the curve at $\mathbf{x}(t)$

- Called the osculating circle
- Radius $\rho=1 / \kappa$
- Center

$$
\mathbf{c}(t)=\mathbf{x}(t)+\rho(t) \mathbf{n}(t)
$$

Osculating circle lies in the osculating plane

- Spanned by \mathbf{t} and \mathbf{n}

Curvature and Torsion

Example:

$$
\kappa(0)=\frac{2}{3} \quad \text { and } \quad \kappa(1)=0
$$

Agrees nicely with intuitive notion of "curvedness"

Center of the osculating circle at $t=0$:

$$
\mathbf{c}(0)=\left[\begin{array}{c}
3 / 2 \\
0
\end{array}\right]
$$

$\mathbf{c}(0)$ undefined since $\rho=1 / 0$

Curvature and Torsion

For the special case of Bézier curves

$$
\kappa(0)=2 \frac{n-1}{n} \frac{\operatorname{area}\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}\right]}{\left\|\mathbf{b}_{1}-\mathbf{b}_{0}\right\|^{3}}
$$

$\kappa(0)=0$ if $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}$ are collinear

$$
\kappa(1)=2 \frac{n-1}{n} \frac{\operatorname{area}\left[\mathbf{b}_{n-2}, \mathbf{b}_{n-1}, \mathbf{b}_{n}\right]}{\left\|\mathbf{b}_{n}-\mathbf{b}_{n-1}\right\|^{3}}
$$

Curvature at parameter values other than 0 or 1
\Rightarrow Subdivide at the desired parameter value and proceed as above

Curvature and Torsion

By definition a 3D curve has nonnegative curvature
For 2D curves: may assign a sign to curvature

$$
\kappa(t)=\frac{\operatorname{det}[\dot{\mathbf{x}}(t) \ddot{\mathbf{x}}(t)]}{\|\dot{\mathbf{x}}(t)\|^{3}}
$$

Signed curvature \Rightarrow inflection points

- Where the curvature changes sign
- For Bézier curves: area $\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}\right]$ can be assigned a sign in 2D
- Sign does not actually belong to the curvature Indication of change in relation to the right-hand rule

Curvature and Torsion

Example:

$$
\begin{aligned}
& \operatorname{area}\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}\right]=\frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]=-1 \\
& \left\|\mathbf{b}_{1}-\mathbf{b}_{0}\right\|=1 \\
& \kappa(0)=2 \cdot \frac{2}{3} \cdot-\frac{1}{1}=-\frac{4}{3} \\
& \kappa(1)=\frac{4}{3} \cdot \frac{1}{2} \operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
1 & 1 & 2
\end{array}\right]=\frac{4}{3}
\end{aligned}
$$

Curvature is continuous along cubic polynomial
\Rightarrow Curvature zero somewhere

Curvature and Torsion

Curvature and Torsion

The torsion τ measures the change in a curve's binormal vector

$$
\tau(t)=\frac{\operatorname{det}[\dot{\mathbf{x}}, \ddot{\mathbf{x}}, \ddot{\mathbf{x}}]}{\|\dot{\mathbf{x}} \wedge \ddot{\mathbf{x}}\|^{2}}
$$

The binormal of a planar curve is constant
\Rightarrow a quadratic curve has zero torsion

For Bézier curves:

$$
\tau(0)=\frac{3}{2} \frac{n-2}{n} \frac{\text { volume }\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]}{\operatorname{area}\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}\right]^{2}}
$$

Surface Curvatures

Point on surface: $\mathbf{x}(u, v)$
Normal: $\mathbf{n}(u, v)$
Plane \mathbf{P} through \mathbf{x} containing \mathbf{n} intersects the surface in a planar curve
\Rightarrow a normal section of \mathbf{x}
Compute signed curvature of normal section at \mathbf{x}

- Called normal curvature $\kappa_{\mathbf{p}}$

Surface Curvatures

Rotate \mathbf{P} around \mathbf{n}

For each new position of \mathbf{P} \Rightarrow New normal section \Rightarrow New normal curvature
$\kappa_{\text {max }}$: largest normal curvature $\kappa_{\text {min }}$: smallest
\Rightarrow Principal curvatures at \mathbf{x}
If $\kappa_{\text {min }}$ and $\kappa_{\text {max }}$ both positive or both negative
$\Rightarrow \mathbf{x}$ called an elliptic point
(Sphere and ellipsoid: all points elliptic)

Sketch shows center of each osculating circle

Surface Curvatures

$\kappa_{\text {min }}$ and $\kappa_{\text {max }}$ are of opposite sign $\Rightarrow \mathbf{x}$ called a hyperbolic point Also called saddle point

All points on hyperboloids and bilinear patches are hyperbolic

Best "real life" example of surfaces with hyperbolic points: potato chips

Surface Curvatures

$\kappa_{\text {min }}$ or $\kappa_{\text {max }}$ is zero \mathbf{x} is called a parabolic point

Examples: cylinders or cones

Surface Curvatures

Three cases succinctly described by

$$
K=\kappa_{\min } \kappa_{\max }
$$

Called Gaussian curvature
(1) Elliptic point: $K>0$
(2) Hyperbolic point: $K<0$
(3) Parabolic point: $K=0$

Most surfaces are not composed entirely of one type of Gaussian curvature
Developable surfaces: surfaces with $K=0$ everywhere

Surface Curvatures

Computing Gaussian curvature:

$$
\begin{gathered}
F=\operatorname{det}\left[\begin{array}{ll}
\mathbf{x}_{u} \mathbf{x}_{u} & \mathbf{x}_{u} \mathbf{x}_{v} \\
\mathbf{x}_{u} \mathbf{x}_{v} & \mathbf{x}_{v} \mathbf{x}_{v}
\end{array}\right] \quad \text { First fundamental form } \\
S=\operatorname{det}\left[\begin{array}{ll}
\mathbf{n} \mathbf{x}_{u, u} & \mathbf{n} \mathbf{x}_{u, v} \\
\mathbf{n} \mathbf{x}_{u, v} & \mathbf{n} \mathbf{x}_{v, v}
\end{array}\right] \quad \text { Second fundamental form } \\
K=\frac{S}{F}
\end{gathered}
$$

Surface Curvatures

Gaussian curvature doesn't say everything about shape

Sketch: intuitively quite curved yet $\kappa_{\text {min }}=0$ everywhere

Surface Curvatures

More shape measures:
Mean curvature

$$
M=\frac{1}{2}\left[\kappa_{\min }+\kappa_{\max }\right]
$$

Computed as

$$
M=\frac{\left[\mathbf{n} \mathbf{x}_{v v}\right] \mathbf{x}_{u}^{2}-2\left[\mathbf{n} \mathbf{x}_{u v}\right]\left[\mathbf{x}_{u} \mathbf{x}_{v}\right]+\left[\mathbf{n} \mathbf{x}_{u u}\right] \mathbf{x}_{v}^{2}}{F}
$$

Minimal surfaces: mean curvature zero

- Such surfaces resemble the shape of soap bubbles

Absolute curvature

$$
A=\left|\kappa_{\min }\right|+\left|\kappa_{\max }\right|
$$

Measures the curvature of a surface in the most reliable way from an intuitive viewpoint

Surface Curvatures

RMS (root mean square) curvature

$$
R=\sqrt{\kappa_{\min }^{2}+\kappa_{\max }^{2}}=R=\sqrt{4 M^{2}-2 K}
$$

Left: a digitized vessel
Right: RMS curvatures of a B-spline approximation

Reflection Lines

Surface curvatures - Gaussian, Mean, Absolute, RMS
Not necessarily intuitive to designers trying to create "beautiful" shapes
A different surface tool is used more often
Based on the simulation of an automotive design studio

- Car prototype built
- Placed in studio with ceiling filled with parallel fluorescent light bulbs
- Bulb reflections in car's surface
- Give designers crucial feedback on the quality of product
- "Flowing" reflection patterns are good, "wiggly" ones are bad

These light patterns can be simulated before a prototype is built

- Saves money: building prototype is expensive

Reflection Lines

Highlight areas on surface where reflections will occur

> Simple model: For any point \mathbf{x}
> - Compute its normal \mathbf{n}
> - Let \mathbf{L} denote a line light source
> - If α between \mathbf{n} and \mathbf{L} is small normal points to light source \mathbf{L}
> \Rightarrow Region of the surface highlighted

Reflection Lines

Compute α :
Find the point $\hat{\mathbf{x}}$ on \mathbf{L} closest to \mathbf{x}
\mathbf{L} defined by point \mathbf{p} and vector \mathbf{v}

$$
\hat{\mathbf{x}}=\mathbf{p}+\frac{\mathbf{v}[\mathbf{x}-\mathbf{p}]}{\|\mathbf{v}\|^{2}} \mathbf{v}
$$

α given by the angle between \mathbf{n} and $\hat{x}-x$

Isophote: Curve on surface determined by the light line \mathbf{L}

Reflection Lines

Left: B-spline surface has some shape imperfections

- Not too obvious from the shaded image

Middle: Reflection line display reveals them clearly

Smoothing algorithm applied to B-spline surface
\Rightarrow Right: Improved reflection pattern

