The Essentials of CAGD Chapter 9: Composite Curves

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

Outline

- Introduction to Composite Curves
- 2 Piecewise Bézier Curves
- \bigcirc C^1 and G^1 Continuity
- $\bigcirc C^2$ and $\bigcirc G^2$ Continuity
- 5 Working with Piecewise Bézier Curves
- 6 Point-Normal Interpolation

Introduction to Composite Curves

Bézier curves are a powerful tool

One curve not suitable for modeling complex shape

Composite curves: composed of pieces

Also called piecewise curves or splines

Examine piecewise Bézier curves

- Conditions for smoothness

Piecewise Bézier Curves

knot sequence u_0, u_1, \ldots

Each Bézier curve is defined over an interval $[u_i, u_{i+1}]$

$$\Delta_i = u_{i+1} - u_i$$

spline curve: piecewise curve defined over a knot sequence

Piecewise Bézier Curves

Spline curve $\mathbf{s}(u)$

u: Global parameter within the knot vector

ith Bézier curve **s**;

- Defined over $[u_i, u_{i+1}]$
- Local parameter $t \in [0,1]$

$$t=\frac{u-u_i}{\Delta_i}$$

Junction point: curve segment end points:

$$\mathbf{s}(u_i)=\mathbf{s}_i(0)=\mathbf{s}_{i-1}(1)$$

Piecewise Bézier Curves

Derivative of a spline curve at u when $u \in [u_i, u_{i+1}]$

$$\frac{\mathrm{d}\mathbf{s}(u)}{\mathrm{d}u} = \frac{\mathrm{d}\mathbf{s}_i(t)}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}u} = \frac{1}{\Delta_i} \frac{\mathrm{d}\mathbf{s}_i(t)}{\mathrm{d}t}$$

At junction points of Bézier curves

$$\frac{1}{\Delta_0}\dot{\mathbf{s}}_0(1) = \frac{3}{\Delta_0}\Delta\mathbf{b}_2 \quad \text{and} \quad \frac{1}{\Delta_1}\dot{\mathbf{s}}_1(0) = \frac{3}{\Delta_1}\Delta\mathbf{b}_3$$

Second derivatives follow similarly:

$$\frac{1}{\Delta_0^2}\ddot{\mathbf{s}}_0(1) = \frac{6}{\Delta_0^2}\Delta^2\mathbf{b}_1 \quad \text{and} \quad \frac{1}{\Delta_1^2}\ddot{\mathbf{s}}_1(0) = \frac{6}{\Delta_1^2}\Delta^2\mathbf{b}_3$$

(Note sketch error: not in ratio 3:1)

Conditions for two segments to form a differentiable or C^1 curve over the interval $[u_0, u_2]$:

$$\mathbf{b}_3 = rac{\Delta_1}{\Delta} \mathbf{b}_2 + rac{\Delta_0}{\Delta} \mathbf{b}_4$$

where
$$\Delta = \Delta_0 + \Delta_1 = \mathit{u}_2 - \mathit{u}_0$$

Geometric interpretation:

$$\mathrm{ratio}(\boldsymbol{b}_2,\boldsymbol{b}_3,\boldsymbol{b}_4) = \frac{\Delta_0}{\Delta_1}$$

Example:

 C^1 condition requires

$$\mathbf{b}_3 = \frac{2}{3}\mathbf{b}_2 + \frac{1}{3}\mathbf{b}_4 = \begin{bmatrix} 2\\2 \end{bmatrix}$$

Interpret parameter interval $[u_0, u_2]$ as a time interval

 C^1 motion \Rightarrow point's velocity must change continuously

Point must travel faster over "long" parameter intervals and slower over "short" ones

Shape only concern? Then knot sequence not needed

*G*¹ continuity:

Tangent line varies continuously

– Example: two cubic Bézier curves: $\mathbf{b}_2, \mathbf{b}_3$, and \mathbf{b}_4 collinear

Assume C^1

Compare second derivatives at parameter value u_1

$$-\frac{\Delta_1}{\Delta_0}\mathbf{b}_1 + \frac{\Delta}{\Delta_0}\mathbf{b}_2 = \frac{\Delta}{\Delta_1}\mathbf{b}_4 - \frac{\Delta_0}{\Delta_1}\mathbf{b}_5$$

Geometric interpretation:

$$egin{aligned} \mathbf{d}_{-} &= -rac{\Delta_1}{\Delta_0}\mathbf{b}_1 + rac{\Delta}{\Delta_0}\mathbf{b}_2 \ \mathbf{d}_{+} &= rac{\Delta}{\Delta_1}\mathbf{b}_4 - rac{\Delta_0}{\Delta_1}\mathbf{b}_5 \end{aligned}$$

$$C^2$$
 condition: $\mathbf{d}_- = \mathbf{d}_+ \equiv \mathbf{d}$

 C^2 curves:

$$egin{aligned} \mathbf{b}_2 &= rac{\Delta_1}{\Delta} \mathbf{b}_1 + rac{\Delta_0}{\Delta} \mathbf{d} \ \mathbf{b}_4 &= rac{\Delta_1}{\Delta} \mathbf{d} + rac{\Delta_0}{\Delta} \mathbf{b}_5 \end{aligned}$$

$$\operatorname{ratio}(\mathbf{b}_1,\mathbf{b}_2,\mathbf{d}) = \operatorname{ratio}(\mathbf{d},\mathbf{b}_4,\mathbf{b}_5) = \frac{\Delta_0}{\Delta_1}$$

 G^2 continuity \Rightarrow curvature continuity

$$\rho^2 = \rho_0 \rho_1$$

where

$$\rho_0 = \operatorname{ratio}(\mathbf{b}_1, \mathbf{b}_2, \mathbf{c})
\rho_1 = \operatorname{ratio}(\mathbf{c}, \mathbf{b}_4, \mathbf{b}_5)
\rho = \operatorname{ratio}(\mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4)$$

A curve that is G^2 but not C^2

$$\rho_0 = \frac{1}{3} \quad \rho_1 = \frac{3}{4} \quad \rho = \frac{1}{2}$$
$$(\frac{1}{2})^2 = \frac{1}{3} \times \frac{3}{4}$$

Working with Piecewise Bézier Curves

Left: Points and tangent lines Right: Piecewise Bézier polygon

Given:

- Points that correspond to significant changes in geometry
- Tangent lines at points where the character is smooth

Find: Piecewise Bézier representation

– One tangent line \Rightarrow Use G^1 smoothness conditions for Bézier curves

Farin & Hansford The Essentials of CAGD 14/17

Working with Piecewise Bézier Curves

- Order the points as \mathbf{p}_i
- Convert tangent lines to unit vectors v_i
- For one cubic segment set

$$\mathbf{b}_{3i} = \mathbf{p}_i \quad \text{and} \quad \mathbf{b}_{3i+3} = \mathbf{p}_{i+1}$$

Interior control points

$$\mathbf{b}_{3i+1} = \mathbf{b}_{3i} + 0.4 \|\mathbf{b}_{3i+3} - \mathbf{b}_{3i}\|\mathbf{v}_{i}$$

$$\mathbf{b}_{3i+2} = \mathbf{b}_{3i+3} - 0.4 \|\mathbf{b}_{3i+3} - \mathbf{b}_{3i}\|\mathbf{v}_{i+1}$$

Characters or fonts often stored as piecewise Bézier curves

- Allows for easy rescaling
- Pixel maps of fonts can result in aliasing effects
- Each letter in this book is created by evaluating a piecewise Bézier curve

Point-Normal Interpolation

Given:

- A pair of 3D points $\mathbf{p}_0, \mathbf{p}_1$
- Normal vectors $\mathbf{n}_0, \mathbf{n}_1$ at each \mathbf{p}_i

Find:

- Cubic connecting \mathbf{p}_0 and \mathbf{p}_1
- Curve is tangent to the planes defined normal vectors
- \Rightarrow Curve's tangents lie planes

Point-Normal Interpolation

In Bézier form:

 $\mathbf{b}_0 = \mathbf{p}_0$ and $\mathbf{b}_3 = \mathbf{p}_1$ Infinitely many solutions for \mathbf{b}_1 and \mathbf{b}_2

One solution:

- Place b₁ anywhere on this tangent Could use method in previous section
- **b**₂ obtained analogously

Application: robotics

- Path of a robot arm described as a piecewise curve
- Point-normal pairs extracted from a surface
- Desired curve intended to lie on the surface