The Essentials of CAGD Chapter 9: Composite Curves

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd
(C) 2000

Outline

(1) Introduction to Composite Curves
(2) Piecewise Bézier Curves
(3) C^{1} and G^{1} Continuity
(4) C^{2} and G^{2} Continuity
(5) Working with Piecewise Bézier Curves

6 Point-Normal Interpolation

Introduction to Composite Curves

Bézier curves are a powerful tool
One curve not suitable for modeling complex shape

Composite curves:
composed of pieces
Also called
piecewise curves or splines
Examine piecewise Bézier curves

- Conditions for smoothness

Piecewise Bézier Curves

knot sequence u_{0}, u_{1}, \ldots
Each Bézier curve is defined over an interval $\left[u_{i}, u_{i+1}\right.$]
$\Delta_{i}=u_{i+1}-u_{i}$
spline curve: piecewise curve defined over a knot sequence

Piecewise Bézier Curves

Spline curve $\mathbf{s}(u)$
u : Global parameter within the knot vector
$i^{\text {th }}$ Bézier curve \mathbf{s}_{i}

- Defined over $\left[u_{i}, u_{i+1}\right]$
- Local parameter $t \in[0,1]$

$$
t=\frac{u-u_{i}}{\Delta_{i}}
$$

Junction point: curve segment end points:

$$
\mathbf{s}\left(u_{i}\right)=\mathbf{s}_{i}(0)=\mathbf{s}_{i-1}(1)
$$

Piecewise Bézier Curves

Derivative of a spline curve at u when $u \in\left[u_{i}, u_{i+1}\right]$

$$
\frac{\mathrm{d} \mathbf{s}(u)}{\mathrm{d} u}=\frac{\mathrm{d} \mathbf{s}_{i}(t)}{\mathrm{d} t} \frac{\mathrm{~d} t}{\mathrm{~d} u}=\frac{1}{\Delta_{i}} \frac{\mathrm{~d} \mathbf{s}_{i}(t)}{\mathrm{d} t}
$$

At junction points of Bézier curves

$$
\frac{1}{\Delta_{0}} \dot{\mathbf{s}}_{0}(1)=\frac{3}{\Delta_{0}} \Delta \mathbf{b}_{2} \quad \text { and } \quad \frac{1}{\Delta_{1}} \dot{\mathbf{s}}_{1}(0)=\frac{3}{\Delta_{1}} \Delta \mathbf{b}_{3}
$$

Second derivatives follow similarly:

$$
\frac{1}{\Delta_{0}^{2}} \ddot{\mathbf{s}}_{0}(1)=\frac{6}{\Delta_{0}^{2}} \Delta^{2} \mathbf{b}_{1} \quad \text { and } \quad \frac{1}{\Delta_{1}^{2}} \ddot{\mathbf{s}}_{1}(0)=\frac{6}{\Delta_{1}^{2}} \Delta^{2} \mathbf{b}_{3}
$$

C^{1} and G^{1} Continuity

Conditions for two segments to form a differentiable or C^{1} curve over the interval $\left[u_{0}, u_{2}\right.$]:

$$
\mathbf{b}_{3}=\frac{\Delta_{1}}{\Delta} \mathbf{b}_{2}+\frac{\Delta_{0}}{\Delta} \mathbf{b}_{4}
$$

where $\Delta=\Delta_{0}+\Delta_{1}=u_{2}-u_{0}$
Geometric interpretation:

$$
\operatorname{ratio}\left(\mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right)=\frac{\Delta_{0}}{\Delta_{1}}
$$

(Note sketch error: not in ratio 3:1)

C^{1} and G^{1} Continuity

Example:

C^{1} condition requires

$$
\mathbf{b}_{3}=\frac{2}{3} \mathbf{b}_{2}+\frac{1}{3} \mathbf{b}_{4}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Interpret parameter interval $\left[u_{0}, u_{2}\right]$ as a time interval
C^{1} motion \Rightarrow point's velocity must change continuously
Point must travel faster over "long" parameter intervals and slower over "short" ones

Shape only concern? Then knot sequence not needed
G^{1} continuity:
Tangent line varies continuously

- Example: two cubic Bézier curves: $\mathbf{b}_{2}, \mathbf{b}_{3}$, and \mathbf{b}_{4} collinear

C^{2} and G^{2} Continuity

Assume C^{1}

Compare second derivatives at parameter value u_{1}

$$
-\frac{\Delta_{1}}{\Delta_{0}} \mathbf{b}_{1}+\frac{\Delta}{\Delta_{0}} \mathbf{b}_{2}=\frac{\Delta}{\Delta_{1}} \mathbf{b}_{4}-\frac{\Delta_{0}}{\Delta_{1}} \mathbf{b}_{5}
$$

Geometric interpretation:

$$
\begin{aligned}
& \mathbf{d}_{-}=-\frac{\Delta_{1}}{\Delta_{0}} \mathbf{b}_{1}+\frac{\Delta}{\Delta_{0}} \mathbf{b}_{2} \\
& \mathbf{d}_{+}=\frac{\Delta}{\Delta_{1}} \mathbf{b}_{4}-\frac{\Delta_{0}}{\Delta_{1}} \mathbf{b}_{5}
\end{aligned}
$$

C^{2} condition: $\mathbf{d}_{-}=\mathbf{d}_{+} \equiv \mathbf{d}$

C^{2} and G^{2} Continuity

C^{2} curves:

$$
\begin{aligned}
& \mathbf{b}_{2}=\frac{\Delta_{1}}{\Delta} \mathbf{b}_{1}+\frac{\Delta_{0}}{\Delta} \mathbf{d} \\
& \mathbf{b}_{4}=\frac{\Delta_{1}}{\Delta} \mathbf{d}+\frac{\Delta_{0}}{\Delta} \mathbf{b}_{5}
\end{aligned}
$$

$$
\operatorname{ratio}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{d}\right)=\operatorname{ratio}\left(\mathbf{d}, \mathbf{b}_{4}, \mathbf{b}_{5}\right)=\frac{\Delta_{0}}{\Delta_{1}}
$$

C^{2} and G^{2} Continuity

G^{2} continuity \Rightarrow curvature continuity

$$
\rho^{2}=\rho_{0} \rho_{1}
$$

where

$$
\begin{aligned}
\rho_{0} & =\operatorname{ratio}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{c}\right) \\
\rho_{1} & =\operatorname{ratio}\left(\mathbf{c}, \mathbf{b}_{4}, \mathbf{b}_{5}\right) \\
\rho & =\operatorname{ratio}\left(\mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}\right)
\end{aligned}
$$

C^{2} and G^{2} Continuity

A curve that is G^{2} but not C^{2}

$$
\begin{gathered}
\rho_{0}=\frac{1}{3} \quad \rho_{1}=\frac{3}{4} \quad \rho=\frac{1}{2} \\
\left(\frac{1}{2}\right)^{2}=\frac{1}{3} \times \frac{3}{4}
\end{gathered}
$$

Working with Piecewise Bézier Curves

Left: Points and tangent lines
Right: Piecewise Bézier polygon

Given:

- Points that correspond to significant changes in geometry
- Tangent lines at points where the character is smooth

Find: Piecewise Bézier representation

- One tangent line \Rightarrow Use G^{1} smoothness conditions for Bézier curves

Working with Piecewise Bézier Curves

(1) Order the points as \mathbf{p}_{i}
(2) Convert tangent lines to unit vectors \mathbf{v}_{i}

- For one cubic segment set

$$
\mathbf{b}_{3 i}=\mathbf{p}_{i} \quad \text { and } \quad \mathbf{b}_{3 i+3}=\mathbf{p}_{i+1}
$$

- Interior control points

$$
\begin{aligned}
& \mathbf{b}_{3 i+1}=\mathbf{b}_{3 i}+0.4\left\|\mathbf{b}_{3 i+3}-\mathbf{b}_{3 i}\right\| \mathbf{v}_{i} \\
& \mathbf{b}_{3 i+2}=\mathbf{b}_{3 i+3}-0.4\left\|\mathbf{b}_{3 i+3}-\mathbf{b}_{3 i}\right\| \mathbf{v}_{i+1}
\end{aligned}
$$

Characters or fonts often stored as piecewise Bézier curves

- Allows for easy rescaling
- Pixel maps of fonts can result in aliasing effects
- Each letter in this book is created by evaluating a piecewise Bézier curve

Point-Normal Interpolation

Given:

- A pair of 3D points $\mathbf{p}_{0}, \mathbf{p}_{1}$
- Normal vectors $\mathbf{n}_{0}, \mathbf{n}_{1}$ at each \mathbf{p}_{i}

Find:

- Cubic connecting \mathbf{p}_{0} and \mathbf{p}_{1}
- Curve is tangent to the planes defined normal vectors
\Rightarrow Curve's tangents lie planes

Point-Normal Interpolation

In Bézier form:
$\mathbf{b}_{0}=\mathbf{p}_{0}$ and $\mathbf{b}_{3}=\mathbf{p}_{1}$
Infinitely many solutions for \mathbf{b}_{1} and \mathbf{b}_{2}
One solution:
(1) Project \mathbf{b}_{3} into the plane defined by \mathbf{b}_{0} and \mathbf{n}_{0} This defines a tangent line at \mathbf{b}_{0}
(2) Place \mathbf{b}_{1} anywhere on this tangent

Could use method in previous section
(0) \mathbf{b}_{2} obtained analogously

Application: robotics

- Path of a robot arm described as a piecewise curve
- Point-normal pairs extracted from a surface
- Desired curve intended to lie on the surface

