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Introduction to Working with B-spline Curves

How to use B-spline curves?

B-spline curves popularity due to the
many possible ways in which they
can be “put to work”
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Designing with B-spline curves

Find: a B-spline curve for the
character “v” in some fancy font

Most basic design process:
Move individual control points until
desired shape achieved

Manual/interactive method ok for
final fine tuning of shape

Initial “guess” can be created faster
with methods in this chapter
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Introduction to Working with B-spline Curves

Many applications supply a large
number of data points
⇒ from scanning devices

Find a cubic B-spline curve
approximating their shape

Most popular method:
least squares approximation
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Least Squares Approximation

Cubic B-spline curve defined by
– L polynomial segments
– Assume simple domain knots ⇒ number of knots K = L+ 5
– Knot sequence u0, . . . , uK−1

Given P data points
– p0, . . . ,pP−1

– Each pi associated with parameter value vi

Find a cubic B-spline curve x(u)
such that the distances ‖pi − x(vi )‖ are small
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Least Squares Approximation
B-spline curve

x(u) = d0N
3
0 (u) + . . .+ dD−1N

3
D−1(u)

Given points pi = x(vi ) i = 0, . . . ,P − 1 leading to

d0N
3
0 (v0) + . . .+ dD−1N

3
D−1(v0) = p0

...

d0N
3
0 (vP−1) + . . .+ dD−1N

3
D−1(vP−1) = pP−1

In matrix form:
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Least Squares Approximation

Linear system MD = P is overdetermined
– Number P of data points > number D of curve control points

Solution: multiply both sides by MT:

MTMD = MTP

Linear system with D equations in D unknowns
– Square and symmetric coefficient matrix MTM

– Solution straightforward since MTM invertible
as long as parameter values vj must be “evenly” distributed in domain

knots
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Least Squares Approximation

Parameters to define: – How many segments L should the curve have?
– How to choose the knots uj
– How to choose the parameter values vi?

No universal answers – suggestions:

Choose the parameters vi according to the chord length

Select L ≈ P/10

Choose ui such that approximately ten vj fall in each interval domain
knot interval [ui , ui+1]
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Shape Equations

Possible data point defects:
– noisy – unevenly distributed

⇒ Least squares approximation might fail to produce nice results

Solution: modify method with shape information
– Accept deviation from data for a better-shaped curve
– Formulate conditions for the control polygon’s shape
– Assumption: a polygon is nice if it does not wiggle much

Expressed by computing second differences of control points

∆2di = di − 2di+1 + di+2

Less wiggle ⇒ smaller sum:

S = ‖∆2d0‖+ . . . + ‖∆2dD−3‖
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Shape Equations

Example

Top polygon: S = 6
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Bottom polygon: S = 2

∆
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∆
2
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⇒ Bottom polygon is smoother
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Shape Equations

Least squares approximation:
Add shape equations to the
overdetermined system

d0 − 2d1 + d2 = 0

...

dD−3 − 2dD−2 + dD−1 = 0

Overdetermined linear system
becomes even more overdetermined

Top: without shape equations
Bottom: with shape equations
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Cubic Spline Interpolation

Interpolation: # given data equals # unknown control points

Given P data points
p0, . . . ,pP−1

Interpolate with a
cubic B-spline curve x(u)

End knots of multiplicity three:
u0 = u1 = u2
u3, . . . , uK−4

uK−3 = uK−2 = uK−1

Junction points paired with pi
x(u2) = p0, . . .

⇒ P − 1 curve segments
⇒ K = P + 4 knots
⇒ D = P + 2 control points
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Cubic Spline Interpolation

Example

Given P = 5 data points

Need K = 5 + 4 = 9 knots

0, 0, 0, 1, 2, 3, 4, 4, 4

⇒ D = 7 control points

d0, . . . ,d6
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Cubic Spline Interpolation

Two more data items are needed than the curve has junction points

Solution: add two more data items at the ends of the curve

ts = ẋ(u2) start tangent

te = ẋ(uK−3) end tangent

These are called end conditions

Knots u2 and uK−3 are the first and last domain knots

Bessel tangents method: extract tangents from interpolating parabola
through first and last three data points
– See The Essentials of CAGD for equation details
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Cubic Spline Interpolation

Interpolation conditions:

p0 = x(u2)

ts = ẋ(u2)

p1 = x(u3)

...

te = ẋ(uK−3)

pP−1 = x(uK−3)

Triple end knots result in

d0 = p0 and dD−1 = pP−1

⇒ eliminates two unknowns
⇒ eliminates two equations

Simplified interpolation conditions:

ts = ẋ(u2)

p1 = x(u3)

...

pP−2 = x(uK−4)

te = ẋ(uK−3)

For unknowns d1, . . . ,dD−2
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Cubic Spline Interpolation

Example
Revisit previous example

p0 = x(0)

ts = ẋ(0)

p1 = x(1)

p2 = x(2)

p3 = x(3)

te = ẋ(4)

p4 = x(4)

Assigning d0 = p0 and d6 = p4
System becomes

ts = ẋ(0)

p1 = x(1)

p2 = x(2)

p3 = x(3)

te = ẋ(4)

⇒ five equations for the unknowns
d1, . . . ,d5
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Cubic Spline Interpolation

Each data point yields an equation of the form

pi = d0N
3
0 (u2+i ) + . . .+ dD−1N

3
D−1(u2+i )

Due to the local support property of B-spline curves

pi = diN
3
i (u2+i ) + di+1N

3
i+1(u2+i ) + di+2N

3
i+2(u2+i )

⇒ tridiagonal structure

End conditions: first and last equation in the system
– For tridiagonal structure, must involve only the first and last unknowns

For the special case of equally spaced interior knots

6pi = di + 4di+1 + di+2

for each equation involving a data point
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Cubic Spline Interpolation

Example
– Equally spaced knots
– End tangent equations: ts = 3(d1 − d0) and te = 3(d6 − d5)
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Cubic Spline Interpolation in a Nutshell

Input:
– Data points p0, . . . ,pP−1

– A cubic B-spline knot sequence

u0 = u1 = u2, u3, . . . , uK−4, uK−3 = uK−2 = uK−1

K = P + 4 ⇒ P − 1 curve segments

Find: cubic B-spline interpolant
– Control points d0, . . . ,dD−1 where D = P + 2
– Each data point pi is associated with parameter u2+i

Compute:

Set d0 = p0 and dD−1 = pP−1

Create tangents ts and te using Bessel tangent equations

Set up the tridiagonal linear system of equations

Solve the (D − 2)× (D − 2) linear system for d1, . . . ,dD−2
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