The Essentials of CAGD
 Chapter 11: Working with B-spline Curves

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

(C) 2000

Outline

(1) Introduction to Working with B-spline Curves
(2) Designing with B-spline curves
(3) Least Squares Approximation
4. Shape Equations
(5) Cubic Spline Interpolation
(6) Cubic Spline Interpolation in a Nutshell

Introduction to Working with B-spline Curves

How to use B-spline curves?

B-spline curves popularity due to the many possible ways in which they can be "put to work"

Designing with B-spline curves

Find: a B-spline curve for the
character " v " in some fancy font
Most basic design process:
Move individual control points until desired shape achieved

Manual/interactive method ok for final fine tuning of shape

Initial "guess" can be created faster with methods in this chapter

Introduction to Working with B-spline Curves

Many applications supply a large number of data points
\Rightarrow from scanning devices
Find a cubic B-spline curve approximating their shape

Most popular method:
least squares approximation

Least Squares Approximation

Cubic B-spline curve defined by

- L polynomial segments
- Assume simple domain knots \Rightarrow number of knots $K=L+5$
- Knot sequence u_{0}, \ldots, u_{K-1}

Given P data points
$-\mathbf{p}_{0}, \ldots, \mathbf{p}_{P-1}$

- Each \mathbf{p}_{i} associated with parameter value v_{i}

Find a cubic B-spline curve $\mathbf{x}(u)$ such that the distances $\left\|\mathbf{p}_{i}-\mathbf{x}\left(v_{i}\right)\right\|$ are small

Least Squares Approximation

B-spline curve

$$
\mathbf{x}(u)=\mathbf{d}_{0} N_{0}^{3}(u)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{3}(u)
$$

Given points $\mathbf{p}_{i}=\mathbf{x}\left(v_{i}\right) i=0, \ldots, P-1$ leading to

$$
\mathbf{d}_{0} N_{0}^{3}\left(v_{0}\right)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{3}\left(v_{0}\right)=\mathbf{p}_{0}
$$

$$
\mathbf{d}_{0} N_{0}^{3}\left(v_{P-1}\right)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{3}\left(v_{P-1}\right)=\mathbf{p}_{P-1}
$$

In matrix form:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
N_{0}^{3}\left(v_{0}\right) & \ldots & N_{D-1}^{3}\left(v_{0}\right) \\
& \vdots & \\
& \vdots & \\
N_{0}^{3}\left(v_{P-1}\right) & \ldots & N_{D-1}^{3}\left(v_{P-1}\right)
\end{array}\right]\left[\begin{array}{c}
\mathbf{d}_{0} \\
\vdots \\
\mathbf{d}_{D-1}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{0} \\
\vdots \\
\vdots \\
\mathbf{p}_{P-1}
\end{array}\right]} \\
M \mathbf{D}=\mathbf{P}
\end{gathered}
$$

Least Squares Approximation

Linear system MD = \mathbf{P} is overdetermined

- Number P of data points $>$ number D of curve control points

Solution: multiply both sides by M^{T} :

$$
M^{\mathrm{T}} M \mathbf{D}=M^{\mathrm{T}} \mathbf{P}
$$

Linear system with D equations in D unknowns

- Square and symmetric coefficient matrix $M^{\mathrm{T}} M$
- Solution straightforward since $M^{\mathrm{T}} M$ invertible as long as parameter values v_{j} must be "evenly" distributed in domain knots

Least Squares Approximation

Parameters to define: - How many segments L should the curve have?

- How to choose the knots u_{j}
- How to choose the parameter values v_{i} ?

No universal answers - suggestions:

- Choose the parameters v_{i} according to the chord length
- Select $L \approx P / 10$
- Choose u_{i} such that approximately ten v_{j} fall in each interval domain knot interval $\left[u_{i}, u_{i+1}\right]$

Shape Equations

Possible data point defects:

- noisy - unevenly distributed
\Rightarrow Least squares approximation might fail to produce nice results
Solution: modify method with shape information
- Accept deviation from data for a better-shaped curve
- Formulate conditions for the control polygon's shape
- Assumption: a polygon is nice if it does not wiggle much

Expressed by computing second differences of control points

$$
\Delta^{2} \mathbf{d}_{i}=\mathbf{d}_{i}-2 \mathbf{d}_{i+1}+\mathbf{d}_{i+2}
$$

Less wiggle \Rightarrow smaller sum:

$$
S=\left\|\Delta^{2} \mathbf{d}_{0}\right\|+\ldots+\left\|\Delta^{2} \mathbf{d}_{D-3}\right\|
$$

Shape Equations

Example

Top polygon: $S=6$
$\Delta^{2} \mathbf{d}_{0}=\left[\begin{array}{c}0 \\ -2\end{array}\right] \quad \Delta^{2} \mathbf{d}_{1}=\left[\begin{array}{l}0 \\ 2\end{array}\right] \quad \Delta^{2} \mathbf{d}_{2}=\left[\begin{array}{c}0 \\ -2\end{array}\right]$
Bottom polygon: $S=2$

$$
\begin{aligned}
& \Delta^{2} \mathbf{d}_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Delta^{2} \mathbf{d}_{1}=\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \quad \Delta^{2} \mathbf{d}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow \text { Bottom polygon is smoother }
\end{aligned}
$$

Shape Equations

Least squares approximation: Add shape equations to the overdetermined system

$$
\mathbf{d}_{0}-2 \mathbf{d}_{1}+\mathbf{d}_{2}=\mathbf{0}
$$

$$
\mathbf{d}_{D-3}-2 \mathbf{d}_{D-2}+\mathbf{d}_{D-1}=\mathbf{0}
$$

Overdetermined linear system becomes even more overdetermined

Top: without shape equations
Bottom: with shape equations

Cubic Spline Interpolation

Interpolation: \# given data equals \# unknown control points
Given P data points

$$
\mathbf{p}_{0}, \ldots, \mathbf{p}_{P-1}
$$

Interpolate with a cubic B-spline curve $\mathbf{x}(u)$

End knots of multiplicity three:
$u_{0}=u_{1}=u_{2}$
u_{3}, \ldots, u_{K-4}
$u_{K-3}=u_{K-2}=u_{K-1}$
Junction points paired with \mathbf{p}_{i}

$$
\mathbf{x}\left(u_{2}\right)=\mathbf{p}_{0}, \ldots
$$

$\Rightarrow P-1$ curve segments
$\Rightarrow K=P+4$ knots
$\Rightarrow D=P+2$ control points

Cubic Spline Interpolation

Example

Given $P=5$ data points
Need $K=5+4=9$ knots
$0,0,0,1,2,3,4,4,4$
$\Rightarrow D=7$ control points

$$
\mathbf{d}_{0}, \ldots, \mathbf{d}_{6}
$$

Cubic Spline Interpolation

Two more data items are needed than the curve has junction points Solution: add two more data items at the ends of the curve

$$
\begin{array}{ll}
\mathbf{t}_{s}=\dot{\mathbf{x}}\left(u_{2}\right) & \text { start tangent } \\
\mathbf{t}_{e}=\dot{\mathbf{x}}\left(u_{K-3}\right) & \text { end tangent }
\end{array}
$$

These are called end conditions
Knots u_{2} and u_{K-3} are the first and last domain knots
Bessel tangents method: extract tangents from interpolating parabola through first and last three data points

- See The Essentials of CAGD for equation details

Cubic Spline Interpolation

Interpolation conditions:

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{x}\left(u_{2}\right) \\
\mathbf{t}_{s} & =\dot{\mathbf{x}}\left(u_{2}\right) \\
\mathbf{p}_{1} & =\mathbf{x}\left(u_{3}\right) \\
\vdots & \\
\mathbf{t}_{e} & =\dot{\mathbf{x}}\left(u_{K-3}\right) \\
\mathbf{p}_{P-1} & =\mathbf{x}\left(u_{K-3}\right)
\end{aligned}
$$

Triple end knots result in

$$
\mathbf{d}_{0}=\mathbf{p}_{0} \quad \text { and } \quad \quad \mathbf{d}_{D-1}=\mathbf{p}_{P-1}
$$

For unknowns $\mathbf{d}_{1}, \ldots, \mathbf{d}_{D-2}$
Simplified interpolation conditions:

$$
\begin{aligned}
\mathbf{t}_{s} & =\dot{\mathbf{x}}\left(u_{2}\right) \\
\mathbf{p}_{1} & =\mathbf{x}\left(u_{3}\right) \\
\vdots & \\
\mathbf{p}_{P-2} & =\mathbf{x}\left(u_{K-4}\right) \\
\mathbf{t}_{e} & =\dot{\mathbf{x}}\left(u_{K-3}\right)
\end{aligned}
$$

\Rightarrow eliminates two unknowns
\Rightarrow eliminates two equations

Cubic Spline Interpolation

Example

Revisit previous example

Assigning $\mathbf{d}_{0}=\mathbf{p}_{0}$ and $\mathbf{d}_{6}=\mathbf{p}_{4}$ System becomes

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{x}(0) \\
\mathbf{t}_{s} & =\dot{\mathbf{x}}(0) \\
\mathbf{p}_{1} & =\mathbf{x}(1) \\
\mathbf{p}_{2} & =\mathbf{x}(2) \\
\mathbf{p}_{3} & =\mathbf{x}(3) \\
\mathbf{t}_{e} & =\dot{\mathbf{x}}(4) \\
\mathbf{p}_{4} & =\mathbf{x}(4)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{t}_{s} & =\dot{\mathbf{x}}(0) \\
\mathbf{p}_{1} & =\mathbf{x}(1) \\
\mathbf{p}_{2} & =\mathbf{x}(2) \\
\mathbf{p}_{3} & =\mathbf{x}(3) \\
\mathbf{t}_{e} & =\dot{\mathbf{x}}(4)
\end{aligned}
$$

\Rightarrow five equations for the unknowns
d_{1}, \ldots, d_{5}

Cubic Spline Interpolation

Each data point yields an equation of the form

$$
\mathbf{p}_{i}=\mathbf{d}_{0} N_{0}^{3}\left(u_{2+i}\right)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{3}\left(u_{2+i}\right)
$$

Due to the local support property of B-spline curves

$$
\mathbf{p}_{i}=\mathbf{d}_{i} N_{i}^{3}\left(u_{2+i}\right)+\mathbf{d}_{i+1} N_{i+1}^{3}\left(u_{2+i}\right)+\mathbf{d}_{i+2} N_{i+2}^{3}\left(u_{2+i}\right)
$$

\Rightarrow tridiagonal structure
End conditions: first and last equation in the system

- For tridiagonal structure, must involve only the first and last unknowns

For the special case of equally spaced interior knots

$$
6 \mathbf{p}_{i}=\mathbf{d}_{i}+4 \mathbf{d}_{i+1}+\mathbf{d}_{i+2}
$$

for each equation involving a data point

Cubic Spline Interpolation

Example

- Equally spaced knots
- End tangent equations: $\mathbf{t}_{s}=3\left(\mathbf{d}_{1}-\mathbf{d}_{0}\right)$ and $\mathbf{t}_{e}=3\left(\mathbf{d}_{6}-\mathbf{d}_{5}\right)$

$$
\left[\begin{array}{cccccc}
1 & & & & & \\
3 / 2 & 7 / 2 & 1 & & & \\
& 1 & 4 & 1 & & \\
& & & 1 & 7 / 2 & 3 / 2 \\
& & & & & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{d}_{1} \\
\mathbf{d}_{2} \\
\mathbf{d}_{3} \\
\mathbf{d}_{4} \\
\mathbf{d}_{5}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{d}_{0}+\frac{1}{3} \mathbf{t}_{5} \\
6 \mathbf{p}_{1} \\
6 \mathbf{p}_{2} \\
6 \mathbf{p}_{3} \\
\mathbf{d}_{6}-\frac{1}{3} \mathbf{t}_{e}
\end{array}\right]
$$

Cubic Spline Interpolation in a Nutshell

Input:

- Data points $\mathbf{p}_{0}, \ldots, \mathbf{p}_{P-1}$
- A cubic B-spline knot sequence

$$
u_{0}=u_{1}=u_{2}, \quad u_{3}, \ldots, u_{K-4}, \quad u_{K-3}=u_{K-2}=u_{K-1}
$$

$K=P+4 \quad \Rightarrow \quad P-1$ curve segments
Find: cubic B-spline interpolant

- Control points $\mathbf{d}_{0}, \ldots, \mathbf{d}_{D-1}$ where $D=P+2$
- Each data point \mathbf{p}_{i} is associated with parameter u_{2+i}

Compute:

- Set $\mathbf{d}_{0}=\mathbf{p}_{0}$ and $\mathbf{d}_{D-1}=\mathbf{p}_{P-1}$
- Create tangents \mathbf{t}_{s} and \mathbf{t}_{e} using Bessel tangent equations
- Set up the tridiagonal linear system of equations
- Solve the $(D-2) \times(D-2)$ linear system for $\mathbf{d}_{1}, \ldots, \mathbf{d}_{D-2}$

