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2 Composite Bézier Surfaces

3 B-spline Surfaces

4 B-Spline Surface Approximation

5 B-Spline Surface Interpolation

6 Subdivision Surfaces: Doo-Sabin

7 Subdivision Surfaces: Catmull-Clark

Farin & Hansford The Essentials of CAGD 2 / 30



Introduction to Composite Surfaces

Composite surface: surface composed of more than one patch

One Bézier patch rarely flexible enough to model a real life part

More common: many patches stitched together
⇒ Composite Bézier surface or B-spline surface

Subdivision surfaces are another popular type of composite surface
– Used by many animation studios
– Figure taken from “A Bug’s Life” from Pixar Studios.
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Composite Bézier Surfaces

“Left” bicubic Bézier patch:

bi ,j 0 ≤ i , j ≤ 3 domain: [u0, u1]× [v0, v1]

”Right” bicubic Bézier patch:

bi ,j 3 ≤ i ≤ 6 0 ≤ j ≤ 3 domain: [u1, u2]× [v0, v1]

Both share a common control point and domain boundary
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Composite Bézier Surfaces

Smoothness between patches

Composite control net contains four rows of control points:

b0,0, . . . ,b6,0
b1,0, . . . ,b6,1
b2,0, . . . ,b6,2
b3,0, . . . ,b6,3

Each row interpreted as
the piecewise Bézier polygon of a composite cubic curve
over the knot sequence u0, u1, u2

Surface is C 1 if all rows satisfy curve C 1 conditions
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Composite Bézier Surfaces

Knots: ui : 0, 1, 3, 4 “horizontal” vj : 0, 1, 2, 3

For bicubics:

b3,j =
∆1

∆
b2,j +

∆0

∆
b4,j j = 0, 1, 2, 3

∆0 = u1 − u0 ∆1 = u2 − u1 ∆ = u2 − u0

⇒ Points b2,j ,b3,j ,b4,j must be collinear and in the same ratio:

ratio(b2,j ,b3,j ,b4,j) =
∆0

∆1
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Composite Bézier Surfaces

C 1 conditions for composite surfaces are quite simple to handle

Rectangular network of patches
with u- and v -knot sequences
⇒ Inflexibility in shape control

If not all u−isoparametric curves have similar shape, then a common knot
sequence for all of them is problematic

Same holds for the v -curves
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B-spline Surfaces

B-spline curve:

x(u) = d0N
n
0 (u) + . . .+ dD−1N

n
D−1(u) ⇒ x(u) = NTD

B-spline surface x(u, v):

x(u, v) =
[

Nm
0 (u) . . . Nm

D−1(u)
]







d0,0 . . . d0,E−1
...

...
dD−1,0 . . . dD−1,E−1













Nn
0 (v)
...

Nn
E−1(v)







Abbreviated to
x(u, v) = MTDN

Over knot sequences

u0, u1, . . . , uR−1 v0, v1, . . . , vS−1
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B-spline Surfaces

Bicubic B-spline surface
over knot sequences
ui = 0, 1, 2, 3, 4, 5
vj = 0, 1, 2, 3, 4

B-spline surfaces enjoy all the
properties of Bézier patches
– Symmetry
– Affine invariance
– Convex hull property
– Etc.

One difference:
Boundary polygons/boundary curves
correspondence
– Only with full multiplicity of end
knots
– Analogous to endpoint
interpolation property of B-spline
curves
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B-spline Surfaces
Local control:
If one control point is moved
Only up to (m + 1)(n + 1) patches in vicinity affected

Two control nets differ by only one control point
– Marked in gray for either net
– Surface differences appear through Moiré patterns

“waves” not part of either surface
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B-spline Surfaces

Isoparametric curve: curve on surface formed by fixing one parameter
– For example: u = ū

Represent isocurve as B-spline curve

C = MTD = [c0, . . . , cE−1]

Factor x(u, v) = MTDN as

x(ū, v) = CN ⇒ B-spline curve with variable v

– As v varies, x(ū, v) traces out the desired isocurve

Try forming isocurve x(u, v̄)

An isocurve control polygon may be treated as any other curve
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B-spline Surfaces

Top: bicubic B-spline surface
Middle: B-spline control polygon
Bottom: piecewise Bézier control net

B-spline surface consists of a
collection of individual polynomial
patches

Each may be written in Bézier form

Obtain patch control nets:

1 Convert each row of control
points into piecewise Bézier
form

2 Convert each column of result
into piecewise Bézier form
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B-spline Surfaces

Another example:

B-spline control net the same as previous figure

Different knot sequence in the u−direction

Knot sequences: ui : 0, 3, 4 vj : 0, 1, 2, 3
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B-Spline Surface Approximation

Given: Data points pk ; k = 0, . . . ,K − 1

Find: a B-spline surface that approximates the data

Need more information to solve problem:

B-spline surface specifications
u- and v -knot sequences
u- and v -degrees

Each data point pk associated with a pair of parameters (uk , vk)
– Parameters expected to be in domain of B-spline surface

B-spline surface (written with linearized ordering of terms)

x(u, v) =
[

Nm
0 (u)Nn

0 (v), . . . ,N
m
D−1(u)N

n
E−1(v)

]







d0,0
...

dD−1,E−1






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B-Spline Surface Approximation
For the kth data point: pk = x(uk , vk)

x(uk , vk) =
[

Nm
0 (uk )N

n
0 (vk ), . . . ,N

m
D−1(uk)N

n
E−1(vk)

]







d0,0

...
dD−1,E−1







Combining all K of these equations



















p0

...

...

...
pK−1



















=



















Nm
0 (u0)N

n
0 (v0) . . . Nm

D−1(u0)N
n
E−1(v0)

...

...

...
Nm

0 (uK−1)N
n
0 (vK−1) . . . Nm

D−1(uK−1)N
n
E−1(vK−1)

























d0,0

...
dD−1,E−1







P = MD

Least squares solution found by solving MTP = MTMD

⇒ System of normal equations
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B-Spline Surface Approximation

Least squares solution
– may have unsatisfactory shape in some cases
– may not be solvable if “holes” exist in data distribution

Shape equations are a tool to overcome these problems

Motivation:
In a “nice” mesh, each control mesh quadrilateral is a parallelogram

di ,j + di+1,j+1 − di+1,j − di ,j+1 = 0

Add each of the equations to the overdetermined system

Solve system using normal equations
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B-Spline Surface Approximation

Example: least squares B-spline surface fit to a shoe last
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B-Spline Surface Interpolation

Bicubic B-spline surfaces interpolation problem

Given: a P × Q rectangular array of data points pi ,j

Find: an interpolating bicubic B-spline surface
Corners of the patch go through the given data points

Surface knot sequences

ui for 0 ≤ i < R and vi for 0 ≤ i < S

where R = P + 4 and S = Q + 4

Surface control net

di ,j 0 ≤ i < D, 0 ≤ j < E

must have D = P + 2 and E = Q + 2 control points
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B-Spline Surface Interpolation

Solution: reduce it to a series of curve interpolation problems

Interpret the given P × Q array of data points as a set of P rows of points
To each row with Q points, fit a B-spline curve
⇒ Q + 2 control points in each row

Produces a P × (Q + 2) net of control points ci ,j

ci ,j treated in a column-by-column fashion:
To each of these (Q + 2) columns, fit a B-spline curve through P points
⇒ results in P + 2 control points in each column

Final result: (P + 2)× (Q + 2) control net di ,j
⇒Surface interpolating the given P × Q array of data points

This curve-based approach saves computing time:
Solve tridiagonal linear systems
– One matrix for all row problems and one matrix for all column problems
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B-Spline Surface Interpolation
Example:
Given: a 2× 3 array of data points

[

p0,0 p0,1 p0,2

p1,0 p1,1 p1,2

]

To each row, fit a B-spline curve ⇒ resulting in two control polygons
[

c0,0 c0,1 c0,2 c0,3 c0,4
c1,0 c1,1 c1,2 c1,3 c1,4

]

Treat each of five columns as a set of curve data points








d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

d3,0 d3,1 d3,2 d3,3 d3,4









di ,j form the interpolating surface control mesh
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Subdivision Surfaces: Doo-Sabin

de Casteljau algorithm and de Boor algorithm

Two examples of subdivision schemes
Refine a polygon ⇒ polygon locally approximates a smooth curve

Both algorithms are actually repeated instances of knot insertion
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Subdivision Surfaces: Doo-Sabin

Chaikin’s algorithm:

Input: a polygon (squares)
d0,d1, . . . ,dn

Output: a refined polygon
approximating a smooth curve

One step produces

d10 = d0

d12i−1 =
3

4
di +

1

4
di−1

d12i =
3

4
di +

1

4
di+1

d12n−1 = dn

for i = 1, . . . , n − 1
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Subdivision Surfaces: Doo-Sabin

Chaikin’s algorithm is a special
application of knot insertion

Input polygon consists of de Boor
points di of a quadratic B-spline

Knot sequence: uniform

One step of algorithm equivalent to
inserting a knot at the midpoint of
each domain knot interval
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Subdivision Surfaces: Doo-Sabin

Carry curve concept to surfaces

Chaikin’s algorithm generalized to
the Doo-Sabin algorithm
– Converges to biquadratic B-splines
– Defined over uniform knots

Doo-Sabin algorithm can be applied
to polygonal meshes of arbitrary
topology
– Polygons do not have to be be
four-sided
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Subdivision Surfaces: Doo-Sabin

One step of Doo-Sabin

1 For each face, form new vertices

a. Centroid
b. Edge midpoints
c. New vertex as average of face

vertex, centroid, and two edge
midpoints

2 Form new faces from new vertices

a. F-faces
b. E-faces
c. V-faces

Repeat until the polygonal mesh is

desired smoothness
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Subdivision Surfaces: Doo-Sabin

Four quadrilaterals – vertices form a 3× 3 rectangular net:
⇒ control net of a biquadratic B-spline patch over uniform knot sequences

Neighboring rectangular patches are C 1

– Non-four-sided faces ⇒ surface less smooth (in general)

Non-four-sided faces appear if
– In input mesh
– The input mesh has n 6= 4 faces around a vertex

First step of Doo-Sabin creates a face with n vertices
Extraordinary vertex: non-four-sided face shrinks to a point
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Subdivision Surfaces: Catmull-Clark

Catmull-Clark algorithm: Generalization of cubic curve subdivision scheme
– Produce bicubic B-splines
– Generalized to work on polygonal meshes of arbitrary topology
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Subdivision Surfaces: Catmull-Clark

One step:

1 Form face points f:
average face vertices

2 Form edge points e:
average edge vertices and two
face points

3 Form vertex points v:
n faces around a vertex

4 Form faces of the new mesh:
(f, e, v, e)

v = [
(n − 3)

n
](old v) + [

1

n
](ave f) + [

2

n
](ave of midpoints of edges)
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Subdivision Surfaces: Catmull-Clark

Nine quadrilaterals – 4× 4 rectangular net
⇒ Control net of a bicubic B-spline surface over uniform knot sequences

Neighboring rectangular surfaces are C 2

First step of Catmull-Clark produces all four-sided faces

Extraordinary vertices: place where continuity diminished
n faces will share a vertex if
– an input face was n-sided
– input mesh had n-faces around a vertex
This non-rectangular element will shrink with more steps

Farin & Hansford The Essentials of CAGD 29 / 30



Subdivision Surfaces: Catmull-Clark

Graphics and animation industries have embraced subdivision surfaces

Appeal of subdivision surfaces:

Simple polygonal net easily becomes a smooth surface
– Same general shape

Flexible topology – Handles non-four-sided patches
– Example: sphere difficult to deal with only rectangular patches
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