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Introduction to Composite Surfaces

Composite surface: surface composed of more than one patch

One Bézier patch rarely flexible enough to model a real life part

More common: many patches stitched together
⇒ Composite Bézier surface or B-spline surface

Subdivision surfaces are another popular type of composite surface
– Used by many animation studios
– Figure taken from “A Bug’s Life” from Pixar Studios.

Farin & Hansford The Essentials of CAGD 3 / 30



Composite Bézier Surfaces

“Left” bicubic Bézier patch:

bi ,j 0 ≤ i , j ≤ 3 domain: [u0, u1]× [v0, v1]

”Right” bicubic Bézier patch:

bi ,j 3 ≤ i ≤ 6 0 ≤ j ≤ 3 domain: [u1, u2]× [v0, v1]

Both share a common control point and domain boundary
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Composite Bézier Surfaces

Smoothness between patches

Composite control net contains four rows of control points:

b0,0, . . . ,b6,0
b1,0, . . . ,b6,1
b2,0, . . . ,b6,2
b3,0, . . . ,b6,3

Each row interpreted as
the piecewise Bézier polygon of a composite cubic curve
over the knot sequence u0, u1, u2

Surface is C 1 if all rows satisfy curve C 1 conditions
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Composite Bézier Surfaces

Knots: ui : 0, 1, 3, 4 “horizontal” vj : 0, 1, 2, 3

For bicubics:

b3,j =
∆1

∆
b2,j +

∆0

∆
b4,j j = 0, 1, 2, 3

∆0 = u1 − u0 ∆1 = u2 − u1 ∆ = u2 − u0

⇒ Points b2,j ,b3,j ,b4,j must be collinear and in the same ratio:

ratio(b2,j ,b3,j ,b4,j) =
∆0

∆1
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Composite Bézier Surfaces

C 1 conditions for composite surfaces are quite simple to handle

Rectangular network of patches
with u- and v -knot sequences
⇒ Inflexibility in shape control

If not all u−isoparametric curves have similar shape, then a common knot
sequence for all of them is problematic

Same holds for the v -curves
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B-spline Surfaces

B-spline curve:

x(u) = d0N
n
0 (u) + . . .+ dD−1N

n
D−1(u) ⇒ x(u) = NTD

B-spline surface x(u, v):

x(u, v) =
[

Nm
0 (u) . . . Nm

D−1(u)
]







d0,0 . . . d0,E−1
...

...
dD−1,0 . . . dD−1,E−1













Nn
0 (v)
...

Nn
E−1(v)







Abbreviated to
x(u, v) = MTDN

Over knot sequences

u0, u1, . . . , uR−1 v0, v1, . . . , vS−1
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B-spline Surfaces

Bicubic B-spline surface
over knot sequences
ui = 0, 1, 2, 3, 4, 5
vj = 0, 1, 2, 3, 4

B-spline surfaces enjoy all the
properties of Bézier patches
– Symmetry
– Affine invariance
– Convex hull property
– Etc.

One difference:
Boundary polygons/boundary curves
correspondence
– Only with full multiplicity of end
knots
– Analogous to endpoint
interpolation property of B-spline
curves
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B-spline Surfaces
Local control:
If one control point is moved
Only up to (m + 1)(n + 1) patches in vicinity affected

Two control nets differ by only one control point
– Marked in gray for either net
– Surface differences appear through Moiré patterns

“waves” not part of either surface

Farin & Hansford The Essentials of CAGD 10 / 30



B-spline Surfaces

Isoparametric curve: curve on surface formed by fixing one parameter
– For example: u = ū

Represent isocurve as B-spline curve

C = MTD = [c0, . . . , cE−1]

Factor x(u, v) = MTDN as

x(ū, v) = CN ⇒ B-spline curve with variable v

– As v varies, x(ū, v) traces out the desired isocurve

Try forming isocurve x(u, v̄)

An isocurve control polygon may be treated as any other curve
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B-spline Surfaces

Top: bicubic B-spline surface
Middle: B-spline control polygon
Bottom: piecewise Bézier control net

B-spline surface consists of a
collection of individual polynomial
patches

Each may be written in Bézier form

Obtain patch control nets:

1 Convert each row of control
points into piecewise Bézier
form

2 Convert each column of result
into piecewise Bézier form
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B-spline Surfaces

Another example:

B-spline control net the same as previous figure

Different knot sequence in the u−direction

Knot sequences: ui : 0, 3, 4 vj : 0, 1, 2, 3
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B-Spline Surface Approximation

Given: Data points pk ; k = 0, . . . ,K − 1

Find: a B-spline surface that approximates the data

Need more information to solve problem:

B-spline surface specifications
u- and v -knot sequences
u- and v -degrees

Each data point pk associated with a pair of parameters (uk , vk)
– Parameters expected to be in domain of B-spline surface

B-spline surface (written with linearized ordering of terms)

x(u, v) =
[

Nm
0 (u)Nn

0 (v), . . . ,N
m
D−1(u)N

n
E−1(v)

]







d0,0
...

dD−1,E−1
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B-Spline Surface Approximation
For the kth data point: pk = x(uk , vk)

x(uk , vk) =
[

Nm
0 (uk )N

n
0 (vk ), . . . ,N

m
D−1(uk)N

n
E−1(vk)

]







d0,0

...
dD−1,E−1







Combining all K of these equations



















p0

...

...

...
pK−1



















=



















Nm
0 (u0)N

n
0 (v0) . . . Nm

D−1(u0)N
n
E−1(v0)

...

...

...
Nm

0 (uK−1)N
n
0 (vK−1) . . . Nm

D−1(uK−1)N
n
E−1(vK−1)

























d0,0

...
dD−1,E−1







P = MD

Least squares solution found by solving MTP = MTMD

⇒ System of normal equations
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B-Spline Surface Approximation

Least squares solution
– may have unsatisfactory shape in some cases
– may not be solvable if “holes” exist in data distribution

Shape equations are a tool to overcome these problems

Motivation:
In a “nice” mesh, each control mesh quadrilateral is a parallelogram

di ,j + di+1,j+1 − di+1,j − di ,j+1 = 0

Add each of the equations to the overdetermined system

Solve system using normal equations
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B-Spline Surface Approximation

Example: least squares B-spline surface fit to a shoe last
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B-Spline Surface Interpolation

Bicubic B-spline surfaces interpolation problem

Given: a P × Q rectangular array of data points pi ,j

Find: an interpolating bicubic B-spline surface
Corners of the patch go through the given data points

Surface knot sequences

ui for 0 ≤ i < R and vi for 0 ≤ i < S

where R = P + 4 and S = Q + 4

Surface control net

di ,j 0 ≤ i < D, 0 ≤ j < E

must have D = P + 2 and E = Q + 2 control points

Farin & Hansford The Essentials of CAGD 18 / 30



B-Spline Surface Interpolation

Solution: reduce it to a series of curve interpolation problems

Interpret the given P × Q array of data points as a set of P rows of points
To each row with Q points, fit a B-spline curve
⇒ Q + 2 control points in each row

Produces a P × (Q + 2) net of control points ci ,j

ci ,j treated in a column-by-column fashion:
To each of these (Q + 2) columns, fit a B-spline curve through P points
⇒ results in P + 2 control points in each column

Final result: (P + 2)× (Q + 2) control net di ,j
⇒Surface interpolating the given P × Q array of data points

This curve-based approach saves computing time:
Solve tridiagonal linear systems
– One matrix for all row problems and one matrix for all column problems
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B-Spline Surface Interpolation
Example:
Given: a 2× 3 array of data points

[

p0,0 p0,1 p0,2

p1,0 p1,1 p1,2

]

To each row, fit a B-spline curve ⇒ resulting in two control polygons
[

c0,0 c0,1 c0,2 c0,3 c0,4
c1,0 c1,1 c1,2 c1,3 c1,4

]

Treat each of five columns as a set of curve data points








d0,0 d0,1 d0,2 d0,3 d0,4

d1,0 d1,1 d1,2 d1,3 d1,4

d2,0 d2,1 d2,2 d2,3 d2,4

d3,0 d3,1 d3,2 d3,3 d3,4









di ,j form the interpolating surface control mesh
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Subdivision Surfaces: Doo-Sabin

de Casteljau algorithm and de Boor algorithm

Two examples of subdivision schemes
Refine a polygon ⇒ polygon locally approximates a smooth curve

Both algorithms are actually repeated instances of knot insertion
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Subdivision Surfaces: Doo-Sabin

Chaikin’s algorithm:

Input: a polygon (squares)
d0,d1, . . . ,dn

Output: a refined polygon
approximating a smooth curve

One step produces

d10 = d0

d12i−1 =
3

4
di +

1

4
di−1

d12i =
3

4
di +

1

4
di+1

d12n−1 = dn

for i = 1, . . . , n − 1
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Subdivision Surfaces: Doo-Sabin

Chaikin’s algorithm is a special
application of knot insertion

Input polygon consists of de Boor
points di of a quadratic B-spline

Knot sequence: uniform

One step of algorithm equivalent to
inserting a knot at the midpoint of
each domain knot interval

Farin & Hansford The Essentials of CAGD 23 / 30



Subdivision Surfaces: Doo-Sabin

Carry curve concept to surfaces

Chaikin’s algorithm generalized to
the Doo-Sabin algorithm
– Converges to biquadratic B-splines
– Defined over uniform knots

Doo-Sabin algorithm can be applied
to polygonal meshes of arbitrary
topology
– Polygons do not have to be be
four-sided
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Subdivision Surfaces: Doo-Sabin

One step of Doo-Sabin

1 For each face, form new vertices

a. Centroid
b. Edge midpoints
c. New vertex as average of face

vertex, centroid, and two edge
midpoints

2 Form new faces from new vertices

a. F-faces
b. E-faces
c. V-faces

Repeat until the polygonal mesh is

desired smoothness
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Subdivision Surfaces: Doo-Sabin

Four quadrilaterals – vertices form a 3× 3 rectangular net:
⇒ control net of a biquadratic B-spline patch over uniform knot sequences

Neighboring rectangular patches are C 1

– Non-four-sided faces ⇒ surface less smooth (in general)

Non-four-sided faces appear if
– In input mesh
– The input mesh has n 6= 4 faces around a vertex

First step of Doo-Sabin creates a face with n vertices
Extraordinary vertex: non-four-sided face shrinks to a point
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Subdivision Surfaces: Catmull-Clark

Catmull-Clark algorithm: Generalization of cubic curve subdivision scheme
– Produce bicubic B-splines
– Generalized to work on polygonal meshes of arbitrary topology
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Subdivision Surfaces: Catmull-Clark

One step:

1 Form face points f:
average face vertices

2 Form edge points e:
average edge vertices and two
face points

3 Form vertex points v:
n faces around a vertex

4 Form faces of the new mesh:
(f, e, v, e)

v = [
(n − 3)

n
](old v) + [

1

n
](ave f) + [

2

n
](ave of midpoints of edges)
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Subdivision Surfaces: Catmull-Clark

Nine quadrilaterals – 4× 4 rectangular net
⇒ Control net of a bicubic B-spline surface over uniform knot sequences

Neighboring rectangular surfaces are C 2

First step of Catmull-Clark produces all four-sided faces

Extraordinary vertices: place where continuity diminished
n faces will share a vertex if
– an input face was n-sided
– input mesh had n-faces around a vertex
This non-rectangular element will shrink with more steps
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Subdivision Surfaces: Catmull-Clark

Graphics and animation industries have embraced subdivision surfaces

Appeal of subdivision surfaces:

Simple polygonal net easily becomes a smooth surface
– Same general shape

Flexible topology – Handles non-four-sided patches
– Example: sphere difficult to deal with only rectangular patches
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