The Essentials of CAGD
 Chapter 12: Composite Surfaces

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd
(C) 2000

Outline

(1) Introduction to Composite Surfaces
(2) Composite Bézier Surfaces
(3) B-spline Surfaces

4 B-Spline Surface Approximation
(5) B-Spline Surface Interpolation
(6) Subdivision Surfaces: Doo-Sabin
(7) Subdivision Surfaces: Catmull-Clark

Introduction to Composite Surfaces

Composite surface: surface composed of more than one patch
One Bézier patch rarely flexible enough to model a real life part
More common: many patches stitched together \Rightarrow Composite Bézier surface or B-spline surface

Subdivision surfaces are another popular type of composite surface

- Used by many animation studios
- Figure taken from "A Bug's Life" from Pixar Studios.

Composite Bézier Surfaces

"Left" bicubic Bézier patch:

$$
\mathbf{b}_{i, j} \quad 0 \leq i, j \leq 3 \quad \text { domain: }\left[u_{0}, u_{1}\right] \times\left[v_{0}, v_{1}\right]
$$

"Right" bicubic Bézier patch:

$$
\mathbf{b}_{i, j} \quad 3 \leq i \leq 6 \quad 0 \leq j \leq 3 \quad \text { domain: }\left[u_{1}, u_{2}\right] \times\left[v_{0}, v_{1}\right]
$$

Both share a common control point and domain boundary

Composite Bézier Surfaces

Smoothness between patches
Composite control net contains four rows of control points:

$$
\begin{aligned}
& \mathbf{b}_{0,0}, \ldots, \mathbf{b}_{6,0} \\
& \mathbf{b}_{1,0}, \ldots, \mathbf{b}_{6,1} \\
& \mathbf{b}_{2,0}, \ldots, \mathbf{b}_{6,2} \\
& \mathbf{b}_{3,0}, \ldots, \mathbf{b}_{6,3}
\end{aligned}
$$

Each row interpreted as the piecewise Bézier polygon of a composite cubic curve over the knot sequence u_{0}, u_{1}, u_{2}

Surface is C^{1} if all rows satisfy curve C^{1} conditions

Composite Bézier Surfaces

Knots: $u_{i}: 0,1,3,4$ "horizontal" $\quad v_{j}: 0,1,2,3$
For bicubics:

$$
\begin{gathered}
\mathbf{b}_{3, j}=\frac{\Delta_{1}}{\Delta} \mathbf{b}_{2, j}+\frac{\Delta_{0}}{\Delta} \mathbf{b}_{4, j} \quad j=0,1,2,3 \\
\Delta_{0}=u_{1}-u_{0} \quad \Delta_{1}=u_{2}-u_{1} \quad \Delta=u_{2}-u_{0}
\end{gathered}
$$

\Rightarrow Points $\mathbf{b}_{2, j}, \mathbf{b}_{3, j}, \mathbf{b}_{4, j}$ must be collinear and in the same ratio:

$$
\operatorname{ratio}\left(\mathbf{b}_{2, j}, \mathbf{b}_{3, j}, \mathbf{b}_{4, j}\right)=\frac{\Delta_{0}}{\Delta_{1}}
$$

Composite Bézier Surfaces

C^{1} conditions for composite surfaces are quite simple to handle

Rectangular network of patches

with u - and v-knot sequences
\Rightarrow Inflexibility in shape control
If not all u-isoparametric curves have similar shape, then a common knot sequence for all of them is problematic

Same holds for the v-curves

B-spline Surfaces

B-spline curve:

$$
\mathbf{x}(u)=\mathbf{d}_{0} N_{0}^{n}(u)+\ldots+\mathbf{d}_{D-1} N_{D-1}^{n}(u) \quad \Rightarrow \quad \mathbf{x}(u)=N^{\mathrm{T}} \mathbf{D}
$$

B-spline surface $\mathbf{x}(u, v)$:
$\mathbf{x}(u, v)=\left[\begin{array}{lll}N_{0}^{m}(u) & \ldots & N_{D-1}^{m}(u)\end{array}\right]\left[\begin{array}{ccc}\mathbf{d}_{0,0} & \ldots & \mathbf{d}_{0, E-1} \\ \vdots & & \vdots \\ \mathbf{d}_{D-1,0} & \ldots & \mathbf{d}_{D-1, E-1}\end{array}\right]\left[\begin{array}{c}N_{0}^{n}(v) \\ \vdots \\ N_{E-1}^{n}(v)\end{array}\right]$
Abbreviated to

$$
\mathbf{x}(u, v)=M^{\mathrm{T}} \mathbf{D} N
$$

Over knot sequences

$$
u_{0}, u_{1}, \ldots, u_{R-1} \quad v_{0}, v_{1}, \ldots, v_{S-1}
$$

B-spline Surfaces

Bicubic B-spline surface over knot sequences
$u_{i}=0,1,2,3,4,5$
$v_{j}=0,1,2,3,4$

B-spline surfaces enjoy all the properties of Bézier patches

- Symmetry
- Affine invariance
- Convex hull property
- Etc.

One difference:
Boundary polygons/boundary curves correspondence

- Only with full multiplicity of end knots
- Analogous to endpoint interpolation property of B-spline curves

B-spline Surfaces

Local control:
If one control point is moved
Only up to $(m+1)(n+1)$ patches in vicinity affected

Two control nets differ by only one control point

- Marked in gray for either net
- Surface differences appear through Moiré patterns
"waves" not part of either surface

B-spline Surfaces

Isoparametric curve: curve on surface formed by fixing one parameter

- For example: $u=\bar{u}$

Represent isocurve as B-spline curve

$$
\mathbf{C}=M^{\mathrm{T}} \mathbf{D}=\left[\mathbf{c}_{0}, \ldots, \mathbf{c}_{E-1}\right]
$$

Factor $\mathbf{x}(u, v)=M^{\mathrm{T}} \mathbf{D} N$ as

$$
\mathbf{x}(\bar{u}, v)=\mathbf{C} N \quad \Rightarrow \quad \text { B-spline curve with variable } v
$$

- As v varies, $\mathbf{x}(\bar{u}, v)$ traces out the desired isocurve

Try forming isocurve $\mathbf{x}(u, \bar{v})$
An isocurve control polygon may be treated as any other curve

B-spline Surfaces

Top: bicubic B-spline surface Middle: B-spline control polygon Bottom: piecewise Bézier control net

B-spline Surfaces

Another example:
B-spline control net the same as previous figure
Different knot sequence in the u-direction
Knot sequences: $u_{i}: 0,3,4 \quad v_{j}: 0,1,2,3$

B-Spline Surface Approximation

Given: Data points $\mathbf{p}_{k} ; k=0, \ldots, K-1$
Find: a B-spline surface that approximates the data
Need more information to solve problem:
B-spline surface specifications
u - and v-knot sequences
u - and v-degrees
Each data point \mathbf{p}_{k} associated with a pair of parameters $\left(u_{k}, v_{k}\right)$

- Parameters expected to be in domain of B-spline surface

B-spline surface (written with linearized ordering of terms)

$$
\mathbf{x}(u, v)=\left[N_{0}^{m}(u) N_{0}^{n}(v), \ldots, N_{D-1}^{m}(u) N_{E-1}^{n}(v)\right]\left[\begin{array}{c}
\mathbf{d}_{0,0} \\
\vdots \\
\mathbf{d}_{D-1, E-1}
\end{array}\right]
$$

B-Spline Surface Approximation

For the $k^{\text {th }}$ data point: $\mathbf{p}_{k}=\mathbf{x}\left(u_{k}, v_{k}\right)$

$$
\mathbf{x}\left(u_{k}, v_{k}\right)=\left[N_{0}^{m}\left(u_{k}\right) N_{0}^{n}\left(v_{k}\right), \ldots, N_{D-1}^{m}\left(u_{k}\right) N_{E-1}^{n}\left(v_{k}\right)\right]\left[\begin{array}{c}
\mathbf{d}_{0,0} \\
\vdots \\
\mathbf{d}_{D-1, E-1}
\end{array}\right]
$$

Combining all K of these equations

$$
\begin{gathered}
{\left[\begin{array}{c}
\mathbf{p}_{0} \\
\vdots \\
\vdots \\
\vdots \\
\mathbf{p}_{K-1}
\end{array}\right]=\left[\begin{array}{ccc}
N_{0}^{m}\left(u_{0}\right) N_{0}^{n}\left(v_{0}\right) & \ldots & N_{D-1}^{m}\left(u_{0}\right) N_{E-1}^{n}\left(v_{0}\right) \\
\vdots & \\
& \vdots & \\
\vdots & \\
N_{0}^{m}\left(u_{K-1}\right) N_{0}^{n}\left(v_{K-1}\right) & \ldots & N_{D-1}^{m}\left(u_{K-1}\right) N_{E-1}^{n}\left(v_{K-1}\right)
\end{array}\right]\left[\begin{array}{c}
\mathbf{d}_{0,0} \\
\vdots \\
\mathbf{d}_{D-1, E-1}
\end{array}\right]} \\
\mathbf{P}=M \mathbf{M}
\end{gathered}
$$

Least squares solution found by solving $M^{\mathrm{T}} \mathbf{P}=M^{\mathrm{T}} M \mathbf{D}$
\Rightarrow System of normal equations

B-Spline Surface Approximation

Least squares solution

- may have unsatisfactory shape in some cases
- may not be solvable if "holes" exist in data distribution

Shape equations are a tool to overcome these problems
Motivation:
In a "nice" mesh, each control mesh quadrilateral is a parallelogram

$$
\mathbf{d}_{i, j}+\mathbf{d}_{i+1, j+1}-\mathbf{d}_{i+1, j}-\mathbf{d}_{i, j+1}=\mathbf{0}
$$

Add each of the equations to the overdetermined system
Solve system using normal equations

B-Spline Surface Approximation

Example: least squares B-spline surface fit to a shoe last

B-Spline Surface Interpolation

Bicubic B-spline surfaces interpolation problem

Given: a $P \times Q$ rectangular array of data points $\mathbf{p}_{i, j}$
Find: an interpolating bicubic B-spline surface
Corners of the patch go through the given data points
Surface knot sequences

$$
u_{i} \text { for } 0 \leq i<R \quad \text { and } \quad v_{i} \text { for } 0 \leq i<S
$$

where $R=P+4$ and $S=Q+4$
Surface control net

$$
\mathbf{d}_{i, j} \quad 0 \leq i<D, \quad 0 \leq j<E
$$

must have $D=P+2$ and $E=Q+2$ control points

B-Spline Surface Interpolation

Solution: reduce it to a series of curve interpolation problems
Interpret the given $P \times Q$ array of data points as a set of P rows of points
To each row with Q points, fit a B-spline curve
$\Rightarrow Q+2$ control points in each row
Produces a $P \times(Q+2)$ net of control points $\mathbf{c}_{i, j}$
$\mathbf{c}_{i, j}$ treated in a column-by-column fashion:
To each of these $(Q+2)$ columns, fit a B-spline curve through P points
\Rightarrow results in $P+2$ control points in each column
Final result: $(P+2) \times(Q+2)$ control net $\mathbf{d}_{i, j}$
\Rightarrow Surface interpolating the given $P \times Q$ array of data points
This curve-based approach saves computing time:
Solve tridiagonal linear systems

- One matrix for all row problems and one matrix for all column problems

B-Spline Surface Interpolation

Example:

Given: a 2×3 array of data points

$$
\left[\begin{array}{lll}
\mathbf{p}_{0,0} & \mathbf{p}_{0,1} & \mathbf{p}_{0,2} \\
\mathbf{p}_{1,0} & \mathbf{p}_{1,1} & \mathbf{p}_{1,2}
\end{array}\right]
$$

To each row, fit a B-spline curve \Rightarrow resulting in two control polygons

$$
\left[\begin{array}{lllll}
\mathbf{c}_{0,0} & \mathbf{c}_{0,1} & \mathbf{c}_{0,2} & \mathbf{c}_{0,3} & \mathbf{c}_{0,4} \\
\mathbf{c}_{1,0} & \mathbf{c}_{1,1} & \mathbf{c}_{1,2} & \mathbf{c}_{1,3} & \mathbf{c}_{1,4}
\end{array}\right]
$$

Treat each of five columns as a set of curve data points

$$
\left[\begin{array}{lllll}
\mathbf{d}_{0,0} & \mathbf{d}_{0,1} & \mathbf{d}_{0,2} & \mathbf{d}_{0,3} & \mathbf{d}_{0,4} \\
\mathbf{d}_{1,0} & \mathbf{d}_{1,1} & \mathbf{d}_{1,2} & \mathbf{d}_{1,3} & \mathbf{d}_{1,4} \\
\mathbf{d}_{2,0} & \mathbf{d}_{2,1} & \mathbf{d}_{2,2} & \mathbf{d}_{2,3} & \mathbf{d}_{2,4} \\
\mathbf{d}_{3,0} & \mathbf{d}_{3,1} & \mathbf{d}_{3,2} & \mathbf{d}_{3,3} & \mathbf{d}_{3,4}
\end{array}\right]
$$

$\mathbf{d}_{i, j}$ form the interpolating surface control mesh

Subdivision Surfaces: Doo-Sabin

de Casteljau algorithm and de Boor algorithm

Two examples of subdivision schemes
Refine a polygon \Rightarrow polygon locally approximates a smooth curve
Both algorithms are actually repeated instances of knot insertion

Subdivision Surfaces: Doo-Sabin

Chaikin's algorithm:

Input: a polygon (squares)
$\mathbf{d}_{0}, \mathbf{d}_{1}, \ldots, \mathbf{d}_{n}$
Output: a refined polygon approximating a smooth curve

One step produces

$$
\begin{aligned}
& \mathbf{d}_{0}^{1}=\mathbf{d}_{0} \\
& \mathbf{d}_{2 i-1}^{1}=\frac{3}{4} \mathbf{d}_{i}+\frac{1}{4} \mathbf{d}_{i-1} \\
& \mathbf{d}_{2 i}^{1}=\frac{3}{4} \mathbf{d}_{i}+\frac{1}{4} \mathbf{d}_{i+1} \\
& \mathbf{d}_{2 n-1}^{1}=\mathbf{d}_{n} \\
& \text { for } i=1, \ldots, n-1
\end{aligned}
$$

Subdivision Surfaces: Doo-Sabin

Chaikin's algorithm is a special application of knot insertion

Input polygon consists of de Boor points \mathbf{d}_{i} of a quadratic B-spline

Knot sequence: uniform
One step of algorithm equivalent to inserting a knot at the midpoint of each domain knot interval

Subdivision Surfaces: Doo-Sabin

Carry curve concept to surfaces

Chaikin's algorithm generalized to the Doo-Sabin algorithm

- Converges to biquadratic B-splines
- Defined over uniform knots

Doo-Sabin algorithm can be applied to polygonal meshes of arbitrary topology

- Polygons do not have to be be four-sided

Subdivision Surfaces: Doo-Sabin

One step of Doo-Sabin

(3) For each face, form new vertices
a. Centroid
b. Edge midpoints
c. New vertex as average of face vertex, centroid, and two edge midpoints
(2) Form new faces from new vertices
a. F-faces
b. E-faces
c. V-faces

Repeat until the polygonal mesh is desired smoothness

Subdivision Surfaces: Doo-Sabin

Four quadrilaterals - vertices form a 3×3 rectangular net:
\Rightarrow control net of a biquadratic B -spline patch over uniform knot sequences
Neighboring rectangular patches are C^{1}

- Non-four-sided faces \Rightarrow surface less smooth (in general)

Non-four-sided faces appear if

- In input mesh
- The input mesh has $n \neq 4$ faces around a vertex

First step of Doo-Sabin creates a face with n vertices
Extraordinary vertex: non-four-sided face shrinks to a point

Subdivision Surfaces: Catmull-Clark

Catmull-Clark algorithm: Generalization of cubic curve subdivision scheme

- Produce bicubic B-splines
- Generalized to work on polygonal meshes of arbitrary topology

Subdivision Surfaces: Catmull-Clark

One step:
(-) Form face points \mathbf{f} : average face vertices
(2) Form edge points \mathbf{e} :
average edge vertices and two face points

- Form vertex points \mathbf{v} :
n faces around a vertex
- Form faces of the new mesh: (f,e, v,e)
$\mathbf{v}=\left[\frac{(n-3)}{n}\right]($ old $\mathbf{v})+\left[\frac{1}{n}\right]$ (ave $\left.\mathbf{f}\right)+\left[\frac{2}{n}\right]$ (ave of midpoints of edges)

Subdivision Surfaces: Catmull-Clark

Nine quadrilaterals -4×4 rectangular net
\Rightarrow Control net of a bicubic B-spline surface over uniform knot sequences
Neighboring rectangular surfaces are C^{2}
First step of Catmull-Clark produces all four-sided faces
Extraordinary vertices: place where continuity diminished n faces will share a vertex if

- an input face was n-sided
- input mesh had n-faces around a vertex

This non-rectangular element will shrink with more steps

Subdivision Surfaces: Catmull-Clark

Graphics and animation industries have embraced subdivision surfaces
Appeal of subdivision surfaces:
Simple polygonal net easily becomes a smooth surface

- Same general shape

Flexible topology - Handles non-four-sided patches

- Example: sphere difficult to deal with only rectangular patches

