# The Essentials of CAGD Chapter 13: NURBS

#### Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

©2000



# Outline

- Introduction to NURBS
- 2 Conics
- Reparametrization and Classification
- 4 Derivatives
- The Circle
- 6 Rational Bézier Curves
- Rational B-spline Curves
- 8 Rational Bézier and B-spline Surfaces
- Surfaces of Revolution

# Introduction to NURBS



#### **NURBS**

Non-uniform Rational B-splines

Much of the previous discussion of B-spline curves and B-spline surfaces applies to NURBS

Here: focus on special features of NURBS

Most of these features are already exhibited by conics

Conic sections: the oldest known curve form

Essential to many CAD systems

Conics were the basis for the first "CAD" system

R. Liming in 1944

- Based the design of airplane fuselages
- calculating with conics as opposed to traditional drafting with conics

A conic section in  $\mathbb{E}^2$  is the perspective projection of a parabola in  $\mathbb{E}^3$ 



Formulation as rational curves:

- Center of the projection: origin 0
   (3D coordinate system)
- Projection plane: z=1 (copy of  $\mathbb{E}^2$ )

$$\underline{\mathbf{x}} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \longrightarrow \begin{bmatrix} x/z \\ y/z \end{bmatrix} = \mathbf{x}$$

Family of points  $f_{\mathbf{x}}$  project onto  $\mathbf{x}$ 

3D point  $\underline{\mathbf{x}}$  called

homogeneous form or homogeneous coordinates of **x** 

Conic as a parametric rational quadratic curve

$$\mathbf{c}(t) = \frac{z_0 \mathbf{b}_0 B_0^2(t) + z_1 \mathbf{b}_1 B_1^2(t) + z_2 \mathbf{b}_2 B_2^2(t)}{z_0 B_0^2(t) + z_1 B_1^2(t) + z_2 B_2^2(t)}$$

weights  $z_0, z_1, z_2 \in \mathbb{R}$ 

control points  $\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2 \in \mathbb{E}^2$ 

3D parabola projected onto the conic **c** has homogenous control points

$$z_0 \begin{bmatrix} \mathbf{b}_0 \\ 1 \end{bmatrix}$$
  $z_1 \begin{bmatrix} \mathbf{b}_1 \\ 1 \end{bmatrix}$   $z_2 \begin{bmatrix} \mathbf{b}_2 \\ 1 \end{bmatrix}$ 



#### Example:

Homogeneous control points

$$\underline{\mathbf{b}}_0 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \quad \underline{\mathbf{b}}_1 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \quad \underline{\mathbf{b}}_2 = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$$

Project onto the 2D points

$$\mathbf{b}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{b}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Weights:  $z_i = 1, 2, 2$ 

$$\underline{\mathbf{x}}(0.5) = \begin{bmatrix} 2\\5/4\\7/4 \end{bmatrix} \rightarrow \begin{bmatrix} 8/7\\5/7 \end{bmatrix} = \mathbf{x}(0.5)$$

# Reparametrization and Classification

It is possible to change the weights of a conic without changing its shape

Initial weights:  $z_0$ ,  $z_1$ ,  $z_2$ 

Conic with weights  $z_0$ ,  $cz_1$ ,  $c^2z_2$   $c \neq 0$  has the same shape

Conic in standard form: characterized by weights 1,  $cz_1$ , 1 Steps:

- Scale all weights so that  $z_0 = 1 \Rightarrow 1, \hat{z}_1, \hat{z}_2$

This change in weights does change how it is traversed ⇒ reparametrization

# Example:

Initial weights 1, 2, 2 Let  $c = 1/\sqrt{2}$ 

 $\Rightarrow$  new weights in standard form: 1,  $2/\sqrt{2}$ , 1

# Reparametrization and Classification



Conic is in standard form  $\Rightarrow$  easy to determine type:

- ullet a hyperbola if  $z_1 > 1$
- lacksquare a parabola if  $z_1=1$
- ullet an ellipse if  $z_1 < 1$

Identify these in the figure

# Reparametrization and Classification



Weights  $z_0, z_1, z_2$  all  $z_i > 0 \Rightarrow$  curve inside control polygon

Special reparametrization:

Setting c=-1 generates weights  $z_0, -z_1, z_2$ 

 $\Rightarrow$  evaluation for  $t \in [0,1]$  traces points in the complementary segment

# **Derivatives**

Conic section written as a rational function Straightforward approach: derivatives need the quotient rule

Instead:

Conic  $\mathbf{c}(t)$  is of the form  $\mathbf{c}(t) = \mathbf{p}(t)/z(t)$  (polynomial numerator)

$$\mathbf{p}(t)=z(t)\mathbf{c}(t)$$

Polynomial curve differentiated using the product rule:

$$\dot{\mathbf{p}}(t) = \dot{z}(t)\mathbf{c}(t) + z(t)\dot{\mathbf{c}}(t)$$

Expression  $\dot{\mathbf{c}}(t)$  is desired conic derivative

$$\dot{\mathbf{c}}(t) = \frac{1}{z(t)} [\dot{\mathbf{p}}(t) - \dot{z}(t)\mathbf{c}(t)]$$

# **Derivatives**

Consider two conics

#1 
$$\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2$$
  $w_0, w_1, w_2$  defined over  $[u_0, u_1]$  #2  $\mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$   $w_2, w_3, w_4$  defined over  $[u_1, u_2]$ 

Both segments form a  $C^1$  curve if

$$\frac{w_1}{u_1 - u_0} \Delta \mathbf{b}_1 = \frac{w_3}{u_2 - u_1} \Delta \mathbf{b}_2$$

Interval lengths appear due to application of the chain rule - Composite curve defined with respect to global parameter u

Notice absence of the weight  $w_2$  in the  $C^1$  equation

◆ロト ◆部ト ◆草ト ◆草ト · 草 ・ 夕久 ②

# The Circle



Circular arc: most widely used conic

Represent it as a rational quadratic Bézier curve:

- Control polygon must form an isosceles triangle (symmetry!)
- Weights 1,  $z_1$ , 1

$$z_1 = \cos \alpha$$

$$\alpha = \angle(\mathbf{b}_2, \mathbf{b}_0, \mathbf{b}_1)$$

# The Circle



Whole circle represented by piecewise rational quadratics:

# Method 1:

- Represent one quarter with the control polygon
- Represent remaining part with the complementary segment

#### Method 2:

Use four control polygons ⇒ Convex hull property

Farin & Hansford The Essentials of CAGD 14 / 28

# The Circle

Arc of a circle in sin/cos parametrization

⇒ Nice property: traverses circle with *unit speed* 

Arc of a circle in rational quadratic form

 $\Rightarrow$  Parameter t does not traverse the circle with unit speed

Need numerical techniques to split arcs into equiangular segments

4D points and their 3D projections:

$$\underline{\mathbf{x}} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \longrightarrow \begin{bmatrix} x/w \\ y/w \\ z/w \end{bmatrix} = \mathbf{x}$$

Degree n Bézier curve in  $\mathbb{E}^4$  projected into w=1 hyperplane  $\Rightarrow$  Rational Bézier curve of degree n in  $\mathbb{E}^3$ 

$$\mathbf{x}(t) = \frac{w_0 \mathbf{b}_0 B_0^n(t) + \dots + w_n \mathbf{b}_n B_n^n(t)}{w_0 B_0^n(t) + \dots + w_n B_n^n(t)} \qquad \mathbf{x}(t), \quad \mathbf{b}_i \in \mathbb{E}^3$$

Homogeneous form of the curve:

$$\underline{\mathbf{x}}(t) = \underline{\mathbf{b}}_0 B_0^n(t) + \cdots + \underline{\mathbf{b}}_n B_n^n(t)$$

#### **Evaluation:**

de Casteljau algorithm to homogeneous form and project result into 3D

# Example:

Control points:

$$\begin{bmatrix} -1 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Weights: 1, 2, 1, 1

Homogeneous control points

$$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

Applying the de Casteljau algorithm

$$\underline{\mathbf{x}}(0.5) = \begin{bmatrix} 0.0\\0.375\\1.375 \end{bmatrix} \qquad \text{then} \qquad \mathbf{x}(0.5) = \begin{bmatrix} 0.0\\0.2727 \end{bmatrix}$$

If all weights are one  $\Rightarrow$  standard nonrational Bézier curve

- Denominator is identically equal to one

If some  $w_i$  are negative: singularities may occur

 $\Rightarrow$  Only deal with nonnegative  $w_i$ 

If all  $w_i$  are nonnegative, we have the convex hull property

Rational Bézier curves enjoy all the properties that their nonrational counterparts possess

Example: affine invariance

Influence of the weights



Top curve corresponds to  $w_2 = 10$ Bottom curve corresponds to  $w_2 = 0.1$ 

Rational Bézier curves are projectively invariant

Projective map:  $4 \times 4$  matrix A

$$\underline{\bar{\mathbf{x}}} = A\underline{\mathbf{x}}$$

Map will change the weights of a curve

 Example: Projective map of rational quadratic conics can map an ellipse to a hyperbola

Curvature at t = 0:

$$\kappa(0) = 2 \frac{n-1}{n} \frac{w_0 w_2}{w_1} \frac{\text{area}[\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2]}{\|\mathbf{b}_1 - \mathbf{b}_0\|^3}$$

Torsion at t = 0:

$$\tau(0) = \frac{3}{2} \frac{n-2}{n} \frac{w_0 w_3}{w_1 w_2} \frac{\text{volume}[\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3]}{\text{area}[\mathbf{b}_0, \mathbf{b}_1, \mathbf{b}_2]^2}$$

# Rational B-spline Curves

# NonUniform Rational B-spline curveS NURBS

– CAD/CAM industry standard

$$\mathbf{x}(u) = \frac{w_0 \mathbf{d}_0 N_0^n(u) + \ldots + w_{D-1} \mathbf{d}_{D-1} N_{D-1}^n(u)}{w_0 N_0^n(u) + \ldots + w_{D-1} N_{D-1}^n(u)}$$

All properties from the rational Bézier form carry over

- Example: convex hull property (for nonnegative weights)
- Example: affine and projective invariance

# Designing with NURBS curves:

- Added freedom of changing weights
- Change of only one weight affects curve only locally

# Rational Bézier and B-spline Surfaces

Generalize Bézier and B-spline surfaces to rational – Similar to curve case

Rational Bézier or B-spline surface is projection of a 4D tensor product Bézier or B-spline surface

# Rational Bézier patch:

$$\mathbf{x}(u,v) = \frac{M^{\mathrm{T}}\mathbf{B}_{w}N}{M^{\mathrm{T}}WN}$$

- Matrix  $\mathbf{B}_w$  has elements  $w_{i,j}\mathbf{b}_{i,j}$
- Matrix W has elements  $w_{i,j}$  (weights) Influence the shape of the surface

# Rational Bézier and B-spline Surfaces



# Rational B-spline surface:

$$\mathbf{s}(u,v) = \frac{M^{\mathrm{T}}\mathbf{D}_{w}N}{M^{\mathrm{T}}WN}$$

Matrices M and N contain the B-spline basis functions in u and v

Figure: weights of gray control points set to 3

Farin & Hansford The Essentials of CAGD 24 / 28

# Rational B-spline surfaces allow exact representation of surfaces of revolution



Surface of revolution: rotate a curve (generatrix) around an axis

Generatrix:

$$\mathbf{g}(v) = \begin{bmatrix} r(v) \\ 0 \\ z(v) \end{bmatrix}$$

Planar curve in (x, z)-plane

Axis of revolution here: z—axis (comes out of the center of half-torus)

#### Surface of revolution

$$\mathbf{x}(u,v) = \begin{bmatrix} r(v)\cos u \\ r(v)\sin u \\ z(v) \end{bmatrix}$$

For fixed v:

isoparametric line v = const traces out a circle of radius r(v)

called a meridian

Control points of the generatrix

$$\mathbf{c}_i = \begin{bmatrix} x_i \\ 0 \\ z_i \end{bmatrix}$$
 and weights  $w_i$ 

Surface of revolution broken down into four symmetric pieces



- Rational quadratic in the parameter u
- Each piece one quadrant of (x, y)-plane

Over the first quadrant: surface with three columns of control points and associated weights

$$\begin{bmatrix} x_i \\ 0 \\ z_i \end{bmatrix}, \quad \begin{bmatrix} x_i \\ x_i \\ z_i \end{bmatrix}, \quad \begin{bmatrix} 0 \\ x_i \\ z_i \end{bmatrix}$$

Weights  $w_i, \frac{\sqrt{2}}{2}w_i, w_i$ 

Remaining three surface segments obtained by reflecting this one

# Example: one-sixteenth of a torus

- created by revolving a quarter circle around the z-axis
- quarter circle defined in the (x, z)-plane and centered at  $\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}^T$ Bézier points defining generatrix

$$\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \qquad \text{weights } 1, \quad \sqrt{2}/2, \quad 1$$

Control points for a rational biquadratic patch

with weights 
$$\begin{bmatrix} 1 & \frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\ 1 & \frac{\sqrt{2}}{2} & 1 \end{bmatrix}$$