The Essentials of CAGD Chapter 13: NURBS

Gerald Farin \& Dianne Hansford

CRC Press, Taylor \& Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd

(C) 2000

Outline

(1) Introduction to NURBS
(2) Conics
(3) Reparametrization and Classification

4 Derivatives
(5) The Circle
(6) Rational Bézier Curves
(7) Rational B-spline Curves
(8) Rational Bézier and B-spline Surfaces
(9) Surfaces of Revolution

Introduction to NURBS

NURBS

Non-uniform Rational B-splines
Much of the previous discussion of B-spline curves and B-spline surfaces applies to NURBS

Here: focus on special features of NURBS

Most of these features are already exhibited by conics

Conics

Conic sections: the oldest known curve form
Essential to many CAD systems
Conics were the basis for the first "CAD" system
R. Liming in 1944

- Based the design of airplane fuselages
- calculating with conics as opposed to traditional drafting with conics

Conics

A conic section in \mathbb{E}^{2} is the perspective projection of a parabola in \mathbb{E}^{3}
Formulation as rational curves:

- Center of the projection: origin $\mathbf{0}$ (3D coordinate system)
- Projection plane: $z=1$ (copy of \mathbb{E}^{2})

$$
\underline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \longrightarrow\left[\begin{array}{l}
x / z \\
y / z
\end{array}\right]=\mathbf{x}
$$

Family of points $f \underline{\underline{x}}$ project onto \mathbf{x}
3D point x called
homogeneous form
or homogeneous coordinates of \mathbf{x}

Conics

Conic as a parametric rational quadratic curve

$$
\mathbf{c}(t)=\frac{z_{0} \mathbf{b}_{0} B_{0}^{2}(t)+z_{1} \mathbf{b}_{1} B_{1}^{2}(t)+z_{2} \mathbf{b}_{2} B_{2}^{2}(t)}{z_{0} B_{0}^{2}(t)+z_{1} B_{1}^{2}(t)+z_{2} B_{2}^{2}(t)}
$$

weights $z_{0}, z_{1}, z_{2} \in \mathbb{R} \quad$ control points $\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2} \in \mathbb{E}^{2}$
3D parabola projected onto the conic c has homogenous control points

$$
z_{0}\left[\begin{array}{c}
\mathbf{b}_{0} \\
1
\end{array}\right] \quad z_{1}\left[\begin{array}{c}
\mathbf{b}_{1} \\
1
\end{array}\right] \quad z_{2}\left[\begin{array}{c}
\mathbf{b}_{2} \\
1
\end{array}\right]
$$

Conics

Example:

Homogeneous control points

$$
\underline{\mathbf{b}}_{0}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad \underline{\mathbf{b}}_{1}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] \quad \underline{\mathbf{b}}_{2}=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]
$$

Project onto the 2D points

$$
\mathbf{b}_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{b}_{2}=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

Weights: $z_{i}=1,2,2$

$$
\underline{\mathbf{x}}(0.5)=\left[\begin{array}{c}
2 \\
5 / 4 \\
7 / 4
\end{array}\right] \rightarrow\left[\begin{array}{c}
8 / 7 \\
5 / 7
\end{array}\right]=\mathbf{x}(0.5)
$$

Reparametrization and Classification

It is possible to change the weights of a conic without changing its shape
Initial weights: z_{0}, z_{1}, z_{2}
Conic with weights $z_{0}, c z_{1}, \quad c^{2} z_{2} \quad c \neq 0$ has the same shape
Conic in standard form: characterized by weights $1, \quad c z_{1}, 1$ Steps:
(1) Scale all weights so that $z_{0}=1 \Rightarrow 1, \hat{z}_{1}, \hat{z}_{2}$
(2) Set $c=1 / \sqrt{\hat{z}_{2}} \Rightarrow 1, \quad \tilde{z}_{1}, \quad 1$

This change in weights does change how it is traversed
\Rightarrow reparametrization
Example:
Initial weights $1,2,2 \quad$ Let $c=1 / \sqrt{2}$
\Rightarrow new weights in standard form: $1,2 / \sqrt{2}, 1$

Reparametrization and Classification

Conic is in standard form \Rightarrow easy to determine type:

- a hyperbola if $z_{1}>1$
- a parabola if $z_{1}=1$
- an ellipse if $z_{1}<1$

Identify these in the figure

Reparametrization and Classification

Weights $z_{0}, \quad z_{1}, \quad z_{2} \quad$ all $z_{i}>0 \Rightarrow$ curve inside control polygon
Special reparametrization:
Setting $c=-1$ generates weights $z_{0},-z_{1}, \quad z_{2}$
\Rightarrow evaluation for $t \in[0,1]$ traces points in the complementary segment

Derivatives

Conic section written as a rational function
Straightforward approach: derivatives need the quotient rule
Instead:
Conic $\mathbf{c}(t)$ is of the form $\mathbf{c}(t)=\mathbf{p}(t) / z(t) \quad$ (polynomial numerator)

$$
\mathbf{p}(t)=z(t) \mathbf{c}(t)
$$

Polynomial curve differentiated using the product rule:

$$
\dot{\mathbf{p}}(t)=\dot{z}(t) \mathbf{c}(t)+z(t) \dot{\mathbf{c}}(t)
$$

Expression $\dot{\mathbf{c}}(t)$ is desired conic derivative

$$
\dot{\mathbf{c}}(t)=\frac{1}{z(t)}[\dot{\mathbf{p}}(t)-\dot{z}(t) \mathbf{c}(t)]
$$

Derivatives

Consider two conics

$\# 1$	$\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}$	w_{0}, w_{1}, w_{2}	defined over $\left[u_{0}, u_{1}\right]$ $\# 2$
$\mathbf{b}_{2}, \mathbf{b}_{3}, \mathbf{b}_{4}$	w_{2}, w_{3}, w_{4}	defined over $\left[u_{1}, u_{2}\right]$	

Both segments form a C^{1} curve if

$$
\frac{w_{1}}{u_{1}-u_{0}} \Delta \mathbf{b}_{1}=\frac{w_{3}}{u_{2}-u_{1}} \Delta \mathbf{b}_{2}
$$

Interval lengths appear due to application of the chain rule - Composite curve defined with respect to global parameter u

Notice absence of the weight w_{2} in the C^{1} equation

The Circle

Circular arc: most widely used conic
Represent it as a rational quadratic Bézier curve:

- Control polygon must form an isosceles triangle (symmetry!)
- Weights $1, \quad z_{1}, 1$

$$
\begin{gathered}
z_{1}=\cos \alpha \\
\alpha=\angle\left(\mathbf{b}_{2}, \mathbf{b}_{0}, \mathbf{b}_{1}\right)
\end{gathered}
$$

The Circle

Whole circle represented by piecewise rational quadratics:

Method 1:

- Represent one quarter with the control polygon
- Represent remaining part with the complementary segment

Method 2:

- Use four control polygons \Rightarrow Convex hull property

The Circle

Arc of a circle in sin/cos parametrization \Rightarrow Nice property: traverses circle with unit speed

Arc of a circle in rational quadratic form
\Rightarrow Parameter t does not traverse the circle with unit speed
Need numerical techniques to split arcs into equiangular segments

Rational Bézier Curves

4D points and their 3D projections:

$$
\underline{\mathbf{x}}=\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \quad \longrightarrow\left[\begin{array}{l}
x / w \\
y / w \\
z / w
\end{array}\right]=\mathbf{x}
$$

Degree n Bézier curve in \mathbb{E}^{4} projected into $w=1$ hyperplane \Rightarrow Rational Bézier curve of degree n in \mathbb{E}^{3}

$$
\mathbf{x}(t)=\frac{w_{0} \mathbf{b}_{0} B_{0}^{n}(t)+\cdots+w_{n} \mathbf{b}_{n} B_{n}^{n}(t)}{w_{0} B_{0}^{n}(t)+\cdots+w_{n} B_{n}^{n}(t)} \quad \mathbf{x}(t), \quad \mathbf{b}_{i} \in \mathbb{E}^{3}
$$

Homogeneous form of the curve:

$$
\underline{\mathbf{x}}(t)=\underline{\mathbf{b}}_{0} B_{0}^{n}(t)+\cdots+\underline{\mathbf{b}}_{n} B_{n}^{n}(t)
$$

Evaluation:

de Casteljau algorithm to homogeneous form and project result into 3D

Rational Bézier Curves

Example:

Control points:

$$
\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Weights: $1,2,1,1$
Homogeneous control points

$$
\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Applying the de Casteljau algorithm

$$
\underline{\mathbf{x}}(0.5)=\left[\begin{array}{c}
0.0 \\
0.375 \\
1.375
\end{array}\right] \quad \text { then } \quad \mathbf{x}(0.5)=\left[\begin{array}{c}
0.0 \\
0.2727
\end{array}\right]
$$

Rational Bézier Curves

If all weights are one \Rightarrow standard nonrational Bézier curve

- Denominator is identically equal to one

If some w_{i} are negative: singularities may occur
\Rightarrow Only deal with nonnegative w_{i}
If all w_{i} are nonnegative, we have the convex hull property
Rational Bézier curves enjoy all the properties that their nonrational counterparts possess

- Example: affine invariance

Rational Bézier Curves

Influence of the weights

Top curve corresponds to $w_{2}=10$ Bottom curve corresponds to $w_{2}=0.1$

Rational Bézier Curves

Rational Bézier curves are projectively invariant
Projective map: 4×4 matrix A

$$
\underline{\overline{\mathbf{x}}}=A \underline{\mathbf{x}}
$$

Map will change the weights of a curve

- Example: Projective map of rational quadratic conics can map an ellipse to a hyperbola

Rational Bézier Curves

Curvature at $t=0$:

$$
\kappa(0)=2 \frac{n-1}{n} \frac{w_{0} w_{2}}{w_{1}} \frac{\operatorname{area}\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}\right]}{\left\|\mathbf{b}_{1}-\mathbf{b}_{0}\right\|^{3}}
$$

Torsion at $t=0$:

$$
\tau(0)=\frac{3}{2} \frac{n-2}{n} \frac{w_{0} w_{3}}{w_{1} w_{2}} \frac{\text { volume }\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right]}{\operatorname{area}\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \mathbf{b}_{2}\right]^{2}}
$$

Rational B-spline Curves

NonUniform Rational B-spline curveS

NURBS

- CAD/CAM industry standard

$$
\mathbf{x}(u)=\frac{w_{0} \mathbf{d}_{0} N_{0}^{n}(u)+\ldots+w_{D-1} \mathbf{d}_{D-1} N_{D-1}^{n}(u)}{w_{0} N_{0}^{n}(u)+\ldots+w_{D-1} N_{D-1}^{n}(u)}
$$

All properties from the rational Bézier form carry over

- Example: convex hull property (for nonnegative weights)
- Example: affine and projective invariance

Designing with NURBS curves:

- Added freedom of changing weights
- Change of only one weight affects curve only locally

Rational Bézier and B-spline Surfaces

Generalize Bézier and B-spline surfaces to rational

- Similar to curve case

Rational Bézier or B-spline surface is projection of a 4D tensor product Bézier or B-spline surface

Rational Bézier patch:

$$
\mathbf{x}(u, v)=\frac{M^{\mathrm{T}} \mathbf{B}_{w} N}{M^{\mathrm{T}} W N}
$$

- Matrix \mathbf{B}_{w} has elements $w_{i, j} \mathbf{b}_{i, j}$
- Matrix W has elements $w_{i, j}$ (weights) Influence the shape of the surface

Rational Bézier and B-spline Surfaces

Rational B-spline surface:

$$
\mathbf{s}(u, v)=\frac{M^{\mathrm{T}} \mathbf{D}_{w} N}{M^{\mathrm{T}} W N}
$$

Matrices M and N contain the B-spline basis functions in u and v
Figure: weights of gray control points set to 3

Surfaces of Revolution

Rational B-spline surfaces allow exact representation of surfaces of revolution

Surface of revolution:
rotate a curve (generatrix) around an axis

Generatrix:

$$
\mathbf{g}(v)=\left[\begin{array}{c}
r(v) \\
0 \\
z(v)
\end{array}\right]
$$

Planar curve in (x, z)-plane Axis of revolution here: z-axis (comes out of the center of half-torus)

Surfaces of Revolution

Surface of revolution

$$
\mathbf{x}(u, v)=\left[\begin{array}{c}
r(v) \cos u \\
r(v) \sin u \\
z(v)
\end{array}\right]
$$

For fixed v :
isoparametric line $v=$ const traces out a circle of radius $r(v)$

- called a meridian

Control points of the generatrix

$$
\mathbf{c}_{i}=\left[\begin{array}{c}
x_{i} \\
0 \\
z_{i}
\end{array}\right] \quad \text { and weights } w_{i}
$$

Surfaces of Revolution

Surface of revolution broken down into four symmetric pieces

- Rational quadratic in the parameter u
- Each piece one quadrant of (x, y)-plane

Over the first quadrant: surface with three columns of control points and associated weights

$$
\left[\begin{array}{c}
x_{i} \\
0 \\
z_{i}
\end{array}\right], \quad\left[\begin{array}{l}
x_{i} \\
x_{i} \\
z_{i}
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
x_{i} \\
z_{i}
\end{array}\right]
$$

Weights $w_{i}, \frac{\sqrt{2}}{2} w_{i}, w_{i}$
Remaining three surface segments obtained by reflecting this one

Surfaces of Revolution

Example: one-sixteenth of a torus

- created by revolving a quarter circle around the z-axis
- quarter circle defined in the (x, z)-plane and centered at $\left.\left[\begin{array}{lll}2 & 0 & 0\end{array}\right]^{\mathrm{T}}\right]$ Bézier points defining generatrix

$$
\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \quad \text { weights } 1, \quad \sqrt{2} / 2,1
$$

Control points for a rational biquadratic patch

$$
\left[\begin{array}{l}
2 \\
0 \\
1 \\
2 \\
2 \\
2 \\
1 \\
\hdashline 0 \\
2 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\left[\begin{array}{l}
3 \\
3 \\
3 \\
1 \\
-0 \\
3 \\
1
\end{array}\right]\left[\begin{array}{l}
\\
0 \\
3 \\
3 \\
0 \\
0 \\
3 \\
0
\end{array}\right] \quad \text { with weights }\left[\begin{array}{ccc}
1 & \frac{\sqrt{2}}{2} & 1 \\
\frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2} \\
1 & \frac{\sqrt{2}}{2} & 1
\end{array}\right]
$$

