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Introduction to NURBS

NURBS
Non-uniform Rational B-splines

Much of the previous discussion of
B-spline curves and B-spline surfaces
applies to NURBS

Here: focus on special features of
NURBS

Most of these features are already
exhibited by conics
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Conics

Conic sections: the oldest known curve form

Essential to many CAD systems

Conics were the basis for the first “CAD” system

R. Liming in 1944
– Based the design of airplane fuselages
– calculating with conics as opposed to traditional drafting with conics
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Conics

A conic section in E
2 is the perspective projection of a parabola in E

3

Formulation as rational curves:
– Center of the projection: origin 0

(3D coordinate system)
– Projection plane: z = 1

(copy of E2)

x =





x

y

z



 −→
[

x/z
y/z

]

= x

Family of points f x project onto x

3D point x called
homogeneous form
or homogeneous coordinates
of x
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Conics

Conic as a parametric rational quadratic curve

c(t) =
z0b0B

2
0 (t) + z1b1B

2
1 (t) + z2b2B

2
2 (t)

z0B
2
0 (t) + z1B

2
1 (t) + z2B

2
2 (t)

weights z0, z1, z2 ∈ R control points b0,b1,b2 ∈ E
2

3D parabola projected onto the conic c

has homogenous control points

z0

[

b0
1

]

z1

[

b1
1

]

z2

[

b2
1

]
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Conics

Example:
Homogeneous control points

b0 =





0
1
1



 b1 =





2
2
2



 b2 =





4
0
2





Project onto the 2D points

b0 =

[

0
1

]

b1 =

[

1
1

]

b2 =

[

2
0

]

Weights: zi = 1, 2, 2

x(0.5) =





2
5/4
7/4



 →
[

8/7
5/7

]

= x(0.5)
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Reparametrization and Classification

It is possible to change the weights of a conic without changing its shape

Initial weights: z0, z1, z2

Conic with weights z0, cz1, c2z2 c 6= 0 has the same shape

Conic in standard form: characterized by weights 1, cz1, 1
Steps:

1 Scale all weights so that z0 = 1 ⇒ 1, ẑ1, ẑ2

2 Set c = 1/
√
ẑ2 ⇒ 1, z̃1, 1

This change in weights does change how it is traversed
⇒ reparametrization

Example:
Initial weights 1, 2, 2 Let c = 1/

√
2

⇒ new weights in standard form: 1, 2/
√
2, 1
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Reparametrization and Classification

Conic is in standard form ⇒ easy to determine type:

a hyperbola if z1 > 1

a parabola if z1 = 1

an ellipse if z1 < 1

Identify these in the figure
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Reparametrization and Classification

Weights z0, z1, z2 all zi > 0 ⇒ curve inside control polygon

Special reparametrization:
Setting c = −1 generates weights z0, − z1, z2
⇒ evaluation for t ∈ [0, 1] traces points in the complementary segment
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Derivatives

Conic section written as a rational function
Straightforward approach: derivatives need the quotient rule

Instead:
Conic c(t) is of the form c(t) = p(t)/z(t) (polynomial numerator)

p(t) = z(t)c(t)

Polynomial curve differentiated using the product rule:

ṗ(t) = ż(t)c(t) + z(t)ċ(t)

Expression ċ(t) is desired conic derivative

ċ(t) =
1

z(t)
[ṗ(t)− ż(t)c(t)]
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Derivatives

Consider two conics
#1 b0,b1,b2 w0,w1,w2 defined over [u0, u1]
#2 b2,b3,b4 w2,w3,w4 defined over [u1, u2]

Both segments form a C 1 curve if

w1

u1 − u0
∆b1 =

w3

u2 − u1
∆b2

Interval lengths appear due to application of the chain rule
– Composite curve defined with respect to global parameter u

Notice absence of the weight w2 in the C 1 equation
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The Circle

αb0

b1

b2

Circular arc: most widely used conic

Represent it as a rational quadratic Bézier curve:
– Control polygon must form an isosceles triangle (symmetry!)
– Weights 1, z1, 1

z1 = cosα

α = ∠(b2,b0,b1)
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The Circle

Whole circle represented by piecewise rational quadratics:

Method 1:
– Represent one quarter with the control polygon
– Represent remaining part with the complementary segment

Method 2:
– Use four control polygons ⇒ Convex hull property
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The Circle

Arc of a circle in sin/cos parametrization
⇒ Nice property: traverses circle with unit speed

Arc of a circle in rational quadratic form
⇒ Parameter t does not traverse the circle with unit speed

Need numerical techniques to split arcs into equiangular segments
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Rational Bézier Curves

4D points and their 3D projections:

x =









x

y

z

w









−→





x/w
y/w
z/w



 = x

Degree n Bézier curve in E
4 projected into w = 1 hyperplane

⇒ Rational Bézier curve of degree n in E
3

x(t) =
w0b0B

n
0 (t) + · · ·+ wnbnB

n
n (t)

w0B
n
0 (t) + · · ·+ wnBn

n (t)
x(t), bi ∈ E

3

Homogeneous form of the curve:

x(t) = b0B
n
0 (t) + · · ·+ bnB

n
n (t)

Evaluation:
de Casteljau algorithm to homogeneous form and project result into 3D
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Rational Bézier Curves
Example:

Control points:
[

−1
0

]

,

[

0
1

]

,

[

0
−1

]

,

[

1
0

]

Weights: 1, 2, 1, 1

Homogeneous control points





−1
0
1



 ,





0
2
2



 ,





0
−1
1



 ,





1
0
1





Applying the de Casteljau algorithm

x(0.5) =





0.0
0.375
1.375



 then x(0.5) =

[

0.0
0.2727

]
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Rational Bézier Curves

If all weights are one ⇒ standard nonrational Bézier curve
– Denominator is identically equal to one

If some wi are negative: singularities may occur
⇒ Only deal with nonnegative wi

If all wi are nonnegative, we have the convex hull property

Rational Bézier curves enjoy all the properties that their nonrational
counterparts possess
– Example: affine invariance
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Rational Bézier Curves
Influence of the weights

Top curve corresponds to w2 = 10
Bottom curve corresponds to w2 = 0.1
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Rational Bézier Curves

Rational Bézier curves are projectively invariant

Projective map: 4× 4 matrix A

x̄ = Ax

Map will change the weights of a curve

– Example: Projective map of rational quadratic conics can map an ellipse
to a hyperbola
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Rational Bézier Curves

Curvature at t = 0:

κ(0) = 2
n − 1

n

w0w2

w1

area[b0,b1,b2]

‖b1 − b0‖3

Torsion at t = 0:

τ(0) =
3

2

n − 2

n

w0w3

w1w2

volume[b0,b1,b2,b3]

area[b0,b1,b2]2
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Rational B-spline Curves

NonUniform Rational B-spline curveS NURBS
– CAD/CAM industry standard

x(u) =
w0d0N

n
0 (u) + . . .+ wD−1dD−1N

n
D−1(u)

w0N
n
0 (u) + . . .+ wD−1N

n
D−1(u)

All properties from the rational Bézier form carry over
– Example: convex hull property (for nonnegative weights)
– Example: affine and projective invariance

Designing with NURBS curves:
– Added freedom of changing weights
– Change of only one weight affects curve only locally
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Rational Bézier and B-spline Surfaces

Generalize Bézier and B-spline surfaces to rational
– Similar to curve case

Rational Bézier or B-spline surface is projection of
a 4D tensor product Bézier or B-spline surface

Rational Bézier patch:

x(u, v) =
MTBwN

MTWN

– Matrix Bw has elements wi ,jbi ,j
– Matrix W has elements wi ,j (weights)

Influence the shape of the surface
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Rational Bézier and B-spline Surfaces

Rational B-spline surface:

s(u, v) =
MTDwN

MTWN

Matrices M and N contain the B-spline basis functions in u and v

Figure: weights of gray control points set to 3
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Surfaces of Revolution

Rational B-spline surfaces
allow exact representation of surfaces of revolution

Surface of revolution:
rotate a curve (generatrix)
around an axis

Generatrix:

g(v) =





r(v)
0

z(v)





Planar curve in (x , z)-plane

Axis of revolution here: z−axis
(comes out of the center of
half-torus)
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Surfaces of Revolution

Surface of revolution

x(u, v) =





r(v) cos u
r(v) sin u
z(v)





For fixed v :
isoparametric line v = const traces out a circle of radius r(v)
– called a meridian

Control points of the generatrix

ci =





xi
0
zi



 and weights wi
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Surfaces of Revolution

Surface of revolution broken down into four symmetric pieces

– Rational quadratic in the
parameter u
– Each piece one quadrant of
(x , y)−plane

Over the first quadrant:
surface with three columns of control
points and associated weights





xi
0
zi



 ,





xi
xi
zi



 ,





0
xi
zi





Weights wi ,
√

2
2 wi ,wi

Remaining three surface segments
obtained by reflecting this one
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Surfaces of Revolution
Example: one-sixteenth of a torus

– created by revolving a quarter circle around the z−axis
– quarter circle defined in the (x , z)-plane and centered at [2 0 0]T]
Bézier points defining generatrix





2
0
1









3
0
1









3
0
0



 weights 1,
√
2/2, 1

Control points for a rational biquadratic patch




2
0
1









3
0
1









3
0
0









2
2
1









3
3
1









3
3
0









0
2
1









0
3
1









0
3
0





with weights







1
√

2
2 1

√

2
2

1
2

√

2
2

1
√

2
2 1






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