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Non-uniform Rational B-splines

Much of the previous discussion of
B-spline curves and B-spline surfaces
applies to NURBS

Here: focus on special features of
NURBS

Most of these features are already
exhibited by conics
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Conic sections: the oldest known curve form
Essential to many CAD systems

Conics were the basis for the first “CAD"” system

R. Liming in 1944
— Based the design of airplane fuselages
— calculating with conics as opposed to traditional drafting with conics
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A conic section in E? is the perspective projection of a parabola in E3
Formulation as rational curves:
— Center of the projection: origin 0
(3D coordinate system)
— Projection plane: z=1
(copy of E?)

1) = b=

Family of points fx project onto x

3D point x called

or
of x
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Conic as a

. ZoboBg(t) + z1bq 512(1') + 22b2522(t)
20B3(8) + 21B2(¢) + 2 B2(0)

c(t)

weights zp,z1,20 € R control points by, by, by € E?

3D parabola projected onto the conic ¢
has homogenous control points
b;
[

SURRG
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Homogeneous control points

0 2 4
by=[1| b, = (2] by=|0
1 2 2

Project onto the 2D points

o= w=b) =l

Weights: z; =1, 2, 2

2
X = 8/7 =X
x(0.5) %j = [5 /7] (0.5)
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It is possible to change the weights of a conic without changing its shape

Initial weights: zy, z1, 2

Conic with weights zy, cz;, c?z> ¢ # 0 has the same shape

Conic in . characterized by weights 1, ¢z, 1
Steps:
O Scale all weights sothat zp =1 = 1, 2, 2
QSetc=1/vVz = 1, 7z, 1
This change in weights does change how it is traversed
=

Initial weights 1, 2, 2 Let c =1/v2
= new weights in standard form: 1, 2/\/5, 1
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Conic is in standard form = easy to determine type:
o a hyperbola if z1 > 1
o a parabolaif z; =1
o anellipse if zy <1

Identify these in the figure
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Weights zy, z1, z» all zi > 0 = curve inside control polygon

Special reparametrization:
Setting ¢ = —1 generates weights zy, — z1, 2
= evaluation for t € [0, 1] traces points in the
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Conic section written as a rational function
Straightforward approach: derivatives need the quotient rule

Instead:
Conic c(t) is of the form ¢(t) = p(t)/z(t) (polynomial numerator)

Polynomial curve differentiated using the product rule:

p(t) = 2(t)e(t) + z(t)e(t)

Expression €(t) is desired conic derivative

(1) = %[p(r) ~ 3(t)e(1)]
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Consider two conics
#1 bg,b1,by  wy, w1, wo defined over [ug, u1]
#2 by, b3, by wo, w3, wy defined over [u1, up]

Both segments form a if

w1 w3

———Ab; = ———Ab>
u; — Up u —

Interval lengths appear due to application of the chain rule
— Composite curve defined with respect to global parameter u

Notice absence of the weight w» in the C! equation
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Dy 0 b,

: most widely used conic

Represent it as a rational quadratic Bézier curve:
— Control polygon must form an isosceles triangle (symmetry!)
- Weights 1, z, 1

7] = cos

o = 4(b27 b07 bl)
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represented by piecewise rational quadratics:

Method 1:
— Represent one quarter with the control polygon
— Represent remaining part with the complementary segment

Method 2:
— Use four control polygons = Convex hull property
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Arc of a circle in sin/cos parametrization
= Nice property: traverses circle with unit speed

Arc of a circle in rational quadratic form
= Parameter t does not traverse the circle with unit speed

Need numerical techniques to split arcs into equiangular segments
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4D points and their 3D projections:

i
— y/w| =x

z/w

%
1
S NS X

Degree n Bézier curve in E* projected into w = 1 hyperplane
= Rational Bézier curve of degree n in E3

X(t) _ WoboBg(t) + -+ Wnb,,B,r:(t)
woBS(t) -+ waBI(t)

Homogeneous form of the curve:

x(t), b; ¢ E3

x(t) = boBg(t) + -+ + b,B;(t)

Evaluation:
de Casteljau algorithm to homogeneous form and project result into 3D
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Control points:

Weights: 1,2,1,1

Homogeneous control points

~1 0 0 1
ol, |2, [-1], |o
1 2 1 1

Applying the de Casteljau algorithm

0.0

x(0.5) = |0.375 then x(0.5) = [0 8'7027}
1.375 '
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If all weights are one = standard nonrational Bézier curve
— Denominator is identically equal to one

If some w; are negative: singularities may occur
= Only deal with nonnegative w;

If all w; are nonnegative, we have the convex hull property

Rational Bézier curves enjoy all the properties that their nonrational
counterparts possess
— Example: affine invariance
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Influence of the weights

Top curve corresponds to wp, = 10
Bottom curve corresponds to wy, = 0.1
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Rational Bézier curves are

Projective map: 4 x 4 matrix A

|X1

Map will change the weights of a curve

— Example: Projective map of rational quadratic conics can map an ellipse
to a hyperbola
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Curvature at t = 0:

n — 1 wow;, area[bg, by, by]

k(0) =2
( ) n w1 ”bl —bo”3

Torsion at t = 0:

i én -2 wows Volume[bo, bl, b2, b3]

0
7(0) 2 n wiw, area[bg, by, by]?
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— CAD/CAM industry standard

WodoNg(u) + ...+ WD—ldD—lNB_l(U)
wolNg(u) + ... +wp_1 N} (u)

x(u) =

All properties from the rational Bézier form carry over
— Example: convex hull property (for nonnegative weights)
— Example: affine and projective invariance

Designing with NURBS curves:

— Added freedom of changing weights
— Change of only one weight affects curve only locally
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Generalize Bézier and B-spline surfaces to rational
— Similar to curve case

Rational Bézier or B-spline surface is projection of
a 4D tensor product Bézier or B-spline surface

x(u.v) = M BuN
’ MTWN
— Matrix By, has elements w; jb; ;

— Matrix W has elements w; j (weights)

Influence the shape of the surface
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MTD,, N
MTWN
Matrices M and N contain the B-spline basis functions in u and v

s(u,v) =

Figure: weights of gray control points set to 3
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Rational B-spline surfaces
allow exact representation of surfaces of revolution

rotate a curve ( )
around an axis
Generatrix:

‘“\\ r(v)
i "il’lq g(v)=1] 0
Lyl
225,04,

24 .
a8 Planar curve in (x, z)-plane

Axis of revolution here: z—axis
(comes out of the center of
half-torus)
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r(v)cosu
x(u,v) = | r(v)sinu
z(v)
For fixed v:
isoparametric line v = const traces out a circle of radius r(v)
— called a meridian

Control points of the generatrix
Xi

ci= 10 and weights w;
Zj
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Surface of revolution broken down into four symmetric pieces
— Rational quadratic in the
parameter u

— Each piece one quadrant of
(x,y)—plane

W
W
Bl

= Over the first quadrant:

e SN\ :

//le"f:":“:‘= ii:’?““\ surface with three columns of control

Jssndligo i\ points and associated weights
‘ ‘,’.llnigfw.‘g‘a’ AT
iy v
s W 0 IEE
\‘\‘ // 0 ’ Xil Xi

Zj Zj Zj

Weights w;, @W,-, w;

Remaining three surface segments
obtained by reflecting this one
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. one-sixteenth of a torus

— created by revolving a quarter circle around the z—axis

— quarter circle defined in the (x, z)-plane and centered at [2 0 0]T]

Bézier points defining generatrix

21 13] |3
0f |0]| |0 weights 1, \/5/2,
1] (1] |0
Control points for a rational biquadratic patch
2] 3] [3]
0 |0] (O
1] (1f |0
21 [3] [3] 1 2
2| 13| |3 with weights |2 1
1111 [9] 1 %
0 |0] (O
20 131 13
1] (1f |0

1

- of
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