Practical Linear Algebra: A GEOMETRY TOOLBOX

Fourth Edition

Chapter 12: Gauss for Linear Systems

Gerald Farin & Dianne Hansford

A K Peters/CRC Press www.farinhansford.com/books/pla

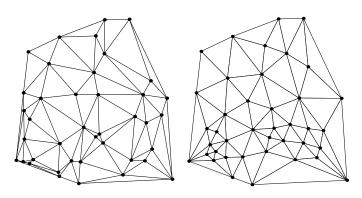
©2021

Outline

- Introduction to Gauss for Linear Systems
- 2 The Problem
- The Solution via Gauss Elimination
- 4 Homogeneous Linear Systems
- Inverse Matrices
- 6 LU Decomposition
- Determinants
- 8 Least Squares
- Application: Fitting Data to a Femoral Head
- **WYSK**

Introduction to Gauss for Linear Systems

Linear systems arise in virtually every area of science and engineering Some as big as 1,000,000 equations in as many unknowns



Triangulation smoothing application

Left: "rough" triangulation Right: smoother triangulation

Linear system: a set of linear equations

$$3u_1 - 2u_2 - 10u_3 + u_4 = 0$$

$$u_1 - u_3 = 4$$

$$u_1 + u_2 - 2u_3 + 3u_4 = 1$$

$$u_2 + 2u_4 = -4$$

Unknowns: u_1, \ldots, u_4

Number of equations = number of unknowns

 4×4 linear system in matrix form:

$$\begin{bmatrix} 3 & -2 & -10 & 1 \\ 1 & 0 & -1 & 0 \\ 1 & 1 & -2 & 3 \\ 0 & 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 1 \\ -4 \end{bmatrix}$$

General $n \times n$ linear system:

$$a_{1,1}u_1 + a_{1,2}u_2 + \ldots + a_{1,n}u_n = b_1$$

 $a_{2,1}u_1 + a_{2,2}u_2 + \ldots + a_{2,n}u_n = b_2$
 \vdots
 $a_{n,1}u_1 + a_{n,2}u_2 + \ldots + a_{n,n}u_n = b_n$

Matrix form:

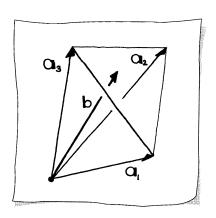
$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ & & \vdots & & \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \mathbf{u} = \mathbf{b} \qquad \Rightarrow \qquad A\mathbf{u} = \mathbf{b}$$

A is called the coefficient matrix

- 4日 > 4個 > 4 種 > 4種 > 種 > り < @

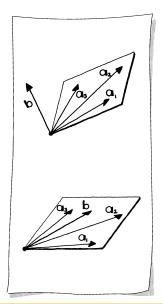
Underlying principles with a geometric interpretation



$$\begin{bmatrix} \textbf{a}_1 & \textbf{a}_2 & \textbf{a}_3 \end{bmatrix} \textbf{u} = \textbf{b}$$

Write \mathbf{b} as a linear combination of \mathbf{a}_i

If \mathbf{a}_i truly 3D (form a tetrahedron) \Rightarrow unique solution



$$\begin{bmatrix} \textbf{a}_1 & \textbf{a}_2 & \textbf{a}_3 \end{bmatrix} \textbf{u} = \textbf{b}$$

If \mathbf{a}_i all lie in a plane then no unique solution

Top: no solution

Bottom: non-unique solution

In general:

If the a_i have a *non-zero n*-dimensional volume

⇒ linear system is *uniquely solvable*

If \mathbf{a}_i span a k-dimensional subspace (k < n)

 \Rightarrow non-unique solutions only exist if **b** is itself in that subspace

A linear system is called consistent if at least one solution exits

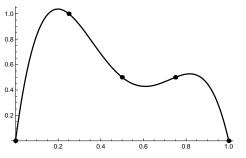
Example: Polynomial Interpolation

Given: observations $p(t_i) = 0, 1, 0.5, 0.5, 0$ at $t_i = 0, 0.25, 0.5, 0.75, 1$

seconds

Find: a polynomial $p(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 + c_4 t^4$

that interpolates data \Rightarrow estimate values between observations



$$\begin{bmatrix} 1 & t_0 & t_0^2 & t_0^3 & t_0^4 \\ 1 & t_1 & t_1^2 & t_1^3 & t_1^4 \\ & \vdots & & \\ 1 & t_4 & t_4^2 & t_4^3 & t_4^4 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_4 \end{bmatrix} = \begin{bmatrix} p(t_0) \\ p(t_1) \\ \vdots \\ p(t_4) \end{bmatrix}$$

4 0 > 4 0 > 4 3 > 4 3 > 3 9 9 9

Gauss elimination = forward elimination + back substitution

Review a 2 × 2 example:
$$A\mathbf{u} = \mathbf{b}$$
 $\begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Forward elimination transform system to upper triangular with a shear

$$S_1 A \mathbf{u} = S_1 \mathbf{b}$$
 $S_1 = \begin{bmatrix} 1 & 0 \\ -1/2 & 1 \end{bmatrix}$ \Rightarrow $\begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

Corresponds to elementary row operations

$$\operatorname{row}_1 \leftarrow \operatorname{row}_1 \quad \text{and} \quad \operatorname{row}_2 \leftarrow \operatorname{row}_2 - \frac{1}{2} \operatorname{row}_1$$

Apply back substitution to upper triangular system

$$\begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$u_2 = \frac{1}{4} \times 2 = \frac{1}{2}$$

$$u_1 = \frac{1}{2}(4 - 4u_2) = 1$$

Can interpret this step as a scaling:

$$S_2S_1A\mathbf{u} = S_2S_1\mathbf{b}$$
 $S_2 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix}$ \Rightarrow $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$

Pivoting revisited:

$$\begin{bmatrix} 1 & 6 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Equations reordered so *pivot element* $a_{1,1}$ largest in first column Row exchange can be represented as a *permutation matrix*

$$P_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $P_1 A \mathbf{u} = P_1 \mathbf{b}$

Then – Gauss elimination as before:

$$S_2S_1P_1A\mathbf{u} = S_2S_1P_1\mathbf{b}$$

Example:

$$\begin{bmatrix} 2 & -2 & 0 \\ 4 & 0 & -2 \\ 4 & 2 & -4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 0 \end{bmatrix}$$

$$P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 4 & 0 & -2 \\ 2 & -2 & 0 \\ 4 & 2 & -4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 0 \end{bmatrix}$$

Zero entries in the first column

$$row_{2} \leftarrow row_{2} - \frac{1}{2}row_{1} \qquad row_{3} \leftarrow row_{3} - row_{1}$$

$$shear \quad G_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 4 & 0 & -2 \\ 0 & -2 & 1 \\ 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \\ 2 \end{bmatrix}$$

G₁ called a Gauss matrix

Example continued:

No pivoting necessary: $P_2 = I$

Zero last element in second column:

$$\mathrm{row}_3 \leftarrow \mathrm{row}_3 + \mathrm{row}_2$$

$$G_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} 4 & 0 & -2 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} u_{1} \\ u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \\ 7 \end{bmatrix}$$

Example continued:

Matrix in upper triangular form — ready for back substitution:

$$u_3 = \frac{1}{-1}(7)$$
 $u_2 = \frac{1}{-2}(5 - u_3)$ $u_1 = \frac{1}{4}(-2 + 2u_3)$

(Implicitly incorporates a scaling matrix)

Solution

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -6 \\ -7 \end{bmatrix}$$

Original equations:

$$\begin{bmatrix} 2 & -2 & 0 \\ 4 & 0 & -2 \\ 4 & 2 & -4 \end{bmatrix} \begin{bmatrix} -4 \\ -6 \\ -7 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 0 \end{bmatrix}$$

Summary:

Gauss elimination = forward elimination (pivoting and shears) + back substitution (scaling)

Elementary row operations of Gauss elimination:

- Pivoting results in the exchange of two rows
- Shears result in adding a multiple of one row to another
- Scaling results in multiplying a row by a scalar

Algorithm: Gauss Elimination with Pivoting

Given: $n \times n$ coefficient matrix A and $n \times 1$ vector \mathbf{b}

 $A\mathbf{u} = \mathbf{b}$

Find: unknowns u_1, \ldots, u_n of $n \times 1$ vector **u**

```
Initialize the n \times n matrix G = I
For j = 1, ..., n-1 (j counts columns)
      Pivoting step:
      Find element in largest absolute value in column i
      from a_{i,i} to a_{n,i}; this is element a_{r,i}
             If r > i, exchange equations r and i
      If a_{i,j} = 0, the system is not solvable
      Forward elimination step for column j:
      For i = j + 1, \dots, n (elements below diagonal of column j)
             Construct the multiplier g_{i,j} = a_{i,j}/a_{i,j}
             a_{i,i} = 0
             For k = j + 1, ..., n (each element in row i after column j)
                    a_{i,k} = a_{i,k} - g_{i,i}a_{i,k}
             b_i = b_i - g_{ij}b_i
```

All elements below diagonal set to zero ⇒ matrix is *upper triangular*

Back substitution:

$$u_n = b_n/a_{n,n}$$

For $j = n - 1, \dots, 1$
 $u_j = \frac{1}{a_{j,j}}(b_j - a_{j,j+1}u_{j+1} - \dots - a_{j,n}u_n)$

Programming environment: convenient to form *augmented matrix* A augmented with the vector \mathbf{b}

$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & b_1 \\ a_{2,1} & a_{2,2} & a_{2,3} & b_2 \\ a_{3,1} & a_{3,2} & a_{3,3} & b_3 \end{bmatrix}$$

Then the k steps run to n+1— no need for the extra line for the b_i element

Forward elimination steps written in matrix form: To produce zeroes under $a_{i,j}$ use

Elements $-g_{i,j}$ of G_j are multipliers G_j is called a Gauss matrix

$$G = G_{n-1}P_{n-1} \cdot \ldots \cdot G_2 \cdot P_2 \cdot G_1 \cdot P_1$$
 then $GA\mathbf{u} = G\mathbf{b}$

If no pivoting is required: possible to store $g_{i,j}$ in the zero elements of A For efficiency: do not to (explicitly) multiply A and \mathbf{b} by G

Farin & Hansford Practical Linear Algebra 20 / 59

Scaling to achieve row echelon form

$$\begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$$

If matrix is rank deficient (rank < n)

 \Rightarrow rows with all zeroes should be the last rows

More efficient to do the scaling as part of back substitution

Gauss elimination requires $O(n^3)$ operations \Rightarrow an estimated number of n^3 operations

Algorithm is suitable for a system with thousands of equations Not suitable for a system with millions of equations

When the system is very large often times many matrix elements are zero — sparse linear system lterative methods are a better approach (discussed in next chapter)

$$Au = 0$$

Trivial solution is always an option — but of little interest

How do we use Gauss elimination to find a nontrivial solution if it exists?

Nontrivial solution $\mathbf{u} \Rightarrow c\mathbf{u}$ are solutions as well

The answer: slightly modify the back substitution step

Example: rank one matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

For each *zero row* of the transformed system set the corresponding u_i — the free variables — to one:

$$\mathbf{u} = \begin{bmatrix} -5\\1\\1 \end{bmatrix}$$

All vectors cu are solutions

Previous example: 3×3 rank one matrix

- Two dimensional null space
- Number of free variables = dimension of the null space

Systematically construct two vectors $\mathbf{u}_1, \mathbf{u}_2$ that span the null space

— Set one of the free variables to one and the other to zero

$$\mathbf{u}_1 = egin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{u}_2 = egin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$

All linear combinations of elements of null space are also in null space Example: $\textbf{u}=1\textbf{u}_1+1\textbf{u}_2$

Column pivoting

Example: homogeneous system from an eigenvector problem

$$\begin{bmatrix} 0 & 6 & 3 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Leads to $0u_3 = 0$ and $2u_3 = 0$ — instead apply column exchanges:

$$\begin{bmatrix} 6 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \\ u_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Set the free variable: $u_1 = 1$ — then back substitution

Solution: all vectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Inverse of a square matrix A "undoes" A's action

Farin & Hansford

How to compute the inverse of an $n \times n$ matrix A?

Vectors $\overline{\mathbf{a}}_i$ and \mathbf{e}_i are $n \times 1$

Vector \mathbf{e}_i : zero entries except *i*th component equals 1

$$A\begin{bmatrix} \overline{\mathbf{a}}_1 & \dots & \overline{\mathbf{a}}_n \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \dots & \mathbf{e}_n \end{bmatrix}$$

n linear systems:

$$A\overline{\mathbf{a}}_1 = \mathbf{e}_1, \ldots, A\overline{\mathbf{a}}_n = \mathbf{e}_n$$

Solve with with Gauss elimination:

- Apply forward elimination to A and to each of the \mathbf{e}_i
- Back substitution to solve for each $\overline{\bf a}_i \Rightarrow A^{-1}$
- More economical to use LU decomposition next section

Inverse matrices are primarily a theoretical concept

Inverse suggests to solve $A\mathbf{v} = \mathbf{b}$ via $\mathbf{v} = A^{-1}\mathbf{b}$ Don't do that! – very expensive

Gauss elimination or *LU* decomposition is much cheaper:

- Explicitly forming inverse:
 - forward elimination
 - *n* back substitution algorithms
 - matrix-vector multiplication
- Gauss elimination:
 - forward elimination
 - 1 back substitution algorithm

Inverse exists if matrix is $n \times n$ and rank n — full rank

- \Rightarrow Action of A does not reduce dimensionality
- ⇒ All columns are linearly independent

Is A invertible?

Perform Gauss elimination

- A upper triangular with all nonzero diagonal elements \Rightarrow invertible
- Otherwise: A is singular

Matrix rank review:

- Matrix does not reduce dimensionality \Rightarrow rank n or full rank
- Matrix reduces dimensionality by $k \Rightarrow \text{rank } n k$
- $n \times n$ identity matrix has rank n
- Zero matrix has rank 0

Apply forward elimination to achieve row echelon form:

$$M_1 = \begin{bmatrix} 1 & 3 & -3 & 0 \\ 0 & 3 & 3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \text{rank 2}$$

$$M_2 = \begin{bmatrix} 1 & 3 & -3 & 0 \\ 0 & 3 & 3 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \text{rank 3}$$

$$M_3 = \begin{bmatrix} 1 & 3 & -3 & 0 \\ 0 & 3 & 3 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \qquad \text{rank 4}$$

Compute the inverse of the $n \times n$ Gauss matrix G_j

 G_j is a shear $\Rightarrow G_j^{-1}$ "undoes" G_j

Suppose $k \neq 0$ and kA is an invertible matrix: $(kA)^{-1} = \frac{1}{k}A^{-1}$ A and B are invertible then AB is invertible

(4日) (部) (注) (注) (注) (2) (2)

Forward elimination (no pivoting) in terms of Gauss matrices:

$$G_{n-1} \cdot \ldots \cdot G_1 \cdot A = U$$

 $A = G_1^{-1} \cdot \ldots \cdot G_{n-1}^{-1} U$

Lower triangular matrix with elements $g_{i,j}$:

$$L = G_1^{-1} \cdot \ldots \cdot G_{n-1}^{-1} = \begin{bmatrix} 1 & & & & \\ g_{2,1} & 1 & & & \\ \vdots & \ddots & \ddots & & \\ g_{n,1} & \cdots & g_{n,n-1} & 1 \end{bmatrix}$$

$$A = LU$$
 \Rightarrow LU decomposition of A

Also called the triangular factorization of A

Every invertible matrix has such a decomposition

— pivoting might be necessary

4 D > 4 A > 4 B > 4 B > B 904

A = LU for 3×3 matrix:

			$u_{1,1}$	$u_{1,2}$	$u_{1,3}$
			0	$u_{2,2}$	$u_{2,3}$
			0	0	<i>u</i> _{3,3}
1	0	0	a _{1,1}	a _{1,2}	a _{1,3}
$I_{2,1}$	1	0	a _{2,1}	$a_{1,2} \\ a_{2,2}$	a _{2,3}
$I_{3,1}$	$I_{3,2}$	1	a _{3,1}	a _{3,2}	a _{3,3}

Given: $a_{i,j}$ **Find:** $l_{i,j}$ and $u_{i,j}$

Elements of A below diagonal:

$$a_{i,j} = l_{i,1}u_{1,j} + \ldots + l_{i,j-1}u_{j-1,j} + l_{i,j}u_{j,j}; \quad j < i$$

Elements of A on or above diagonal:

$$a_{i,j} = l_{i,1}u_{1,j} + \ldots + l_{i,i-1}u_{i-1,j} + l_{i,i}u_{i,j}; \quad j \ge i$$

 \Longrightarrow

$$l_{i,j} = \frac{1}{u_{j,j}} (a_{i,j} - l_{i,1}u_{1,j} - \dots - l_{i,j-1}u_{j-1,j}); \quad j < i$$

$$u_{i,j} = a_{i,j} - l_{i,1}u_{1,j} - \dots - l_{i,i-1}u_{i-1,j}; \quad j \ge i$$

If A has a decomposition A = LU then system can be written

$$LU\mathbf{u} = \mathbf{b}$$

Solving linear system is a two-step procedure:

$$L\mathbf{y} = \mathbf{b}$$
 where $\mathbf{y} = U\mathbf{u}$
 $U\mathbf{u} = \mathbf{y}$

The two systems are triangular and easy to solve:

- Forward substitution applied to L
- Back substitution applied to U

Given: Coefficient matrix A and right-hand side **b** of $A\mathbf{u} = \mathbf{b}$

Find: The unknowns u_1, \ldots, u_n of **u**

Algorithm:

Initialize L as the identity matrix and U as the zero matrix Calculate the nonzero elements of L and U:

For
$$k = 1, ..., n$$

$$u_{k,k} = a_{k,k} - l_{k,1}u_{1,k} - ... - l_{k,k-1}u_{k-1,k}$$
For $i = k + 1, ..., n$

$$l_{i,k} = \frac{1}{u_{k,k}}(a_{i,k} - l_{i,1}u_{1,k} - ... - l_{i,k-1}u_{k-1,k})$$
For $j = k + 1, ..., n$

$$u_{k,j} = a_{k,j} - l_{k,1}u_{1,j} - ... - l_{k,k-1}u_{k-1,j}$$

Using forward substitution solve Ly = b. Using back substitution solve Uu = y

The $u_{k,k}$ term must not be zero \Rightarrow requires pivoting or matrix is singular L being filled column by column and U being filled row by row

Example:
$$A = \begin{bmatrix} 2 & 2 & 4 \\ -1 & 2 & -3 \\ 1 & 2 & 2 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

First step: decompose *A*

$$\begin{array}{lll} k=1: & & & & & & \\ u_{1,1}=a_{1,1}=2 & & & & & \\ l_{2,1}=a_{2,1}/u_{1,1}=-1/2 & & & & \\ l_{3,1}=a_{3,1}/u_{1,1}=1/2 & & & \\ u_{1,2}=a_{1,2}=2 & & & \\ u_{1,3}=a_{1,3}=4 & & & \\ \end{array} \qquad \begin{array}{ll} k=2: & & & \\ u_{2,2}=a_{2,2}-l_{2,1}u_{1,2}=2+1=3 \\ & & & \\ l_{3,2}=\frac{1}{u_{2,2}}[a_{3,2}-l_{3,1}u_{1,2}]=\frac{1}{3}[2-1]=1/3 \\ & & & \\ u_{2,3}=a_{2,3}-l_{2,1}u_{1,3}=-3+2=-1 \end{array}$$

$$k = 3$$
: $u_{3,3} = a_{3,3} - l_{3,1}u_{1,3} - l_{3,2}u_{2,3} = 2 - 2 + 1/3 = 1/3$

Check decomposition:

			2	2	4
			0	3	-1
			0	0	1/3
1	0	0	2	2	4
-1/2	1	0	-1	2	- 3
1/2	1/3	1	1	2	2

Next: solve $L\mathbf{y} = \mathbf{b}$ with forward substitution — solving for y_1 , then y_2 , and then y_3

$$\mathbf{y} = \begin{bmatrix} 1\\3/2\\0 \end{bmatrix}$$

Last step: solve $U\mathbf{u} = \mathbf{y}$ with back substitution

$$\mathbf{u} = \begin{bmatrix} 0 \\ 1/2 \\ 0 \end{bmatrix}$$

Simple to check that solution correct: \mathbf{a}_2 is a multiple of \mathbf{b}

Farin & Hansford

Suppose A is nonsingular, but in need of pivoting

- Permutation matrix P used to exchange row(s)
- System becomes $PA\mathbf{u} = P\mathbf{b}$ and find PA = LU

Major benefit of the LU decomposition: speed

Solving multiple linear systems with the same coefficient matrix

- Construct decomposition
- Perform the forward and backward substitutions for each right-hand side

Example: finding the inverse of a matrix

Chapter 8 3D Geometry: scalar triple product to measure volume in 3D

— Provided a geometric derivation of 3×3 determinants

Now: $n \times n$ determinants

Matrix A transformed to upper triangular U via forward elimination

- Sequence of shears and row exchanges
- Shears do not change volumes
- Row exchange changes the sign of the determinant
- \Rightarrow column vectors of U span same volume as A

$$\det A = (-1)^k (u_{1,1} \times \ldots \times u_{n,n})$$

where k is the number of row exchanges

One of the best (and most stable) methods for computing the determinant

Example from the Gauss Elimination Section – one row exchange (k = 1):

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 7 \end{bmatrix} \quad \rightarrow \quad U = \begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \\ 6 \end{bmatrix}$$

Method 1: Cofactor expansion

$$\det A = 2 \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 4$$

Method 2: Product of diagonal elements of U

$$\det A = (-1)^1 [2 \times -1 \times 2] = 4$$

Farin & Hansford

Cofactor expansion for $n \times n$ matrices

Choose any column or row of the matrix – for example entries $a_{1,j}$

$$\det A = a_{1,1}C_{1,1} + a_{1,2}C_{1,2} + \ldots + a_{1,n}C_{1,n}$$

where each cofactor is defined as

$$C_{i,j} = (-1)^{i+j} M_{i,j}$$

 $M_{i,j}$ are called the minors

- Each is determinant with $i^{\rm th}$ row and $j^{\rm th}$ column removed
- Each is an $(n-1) \times (n-1)$ determinant
- Each computed by yet another cofactor expansion

Process repeated until reduced to $2\times 2\ determinants$

Technique also known as expansion by minors

Example:

$$A = \begin{bmatrix} 2 & 2 & 0 & 4 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Choose the first column to form the cofactors

— Minimize number of non-zero cofactors

$$\det A = 2 \begin{vmatrix} -1 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{vmatrix} = 2(-1) \begin{vmatrix} 2 & 0 \\ 0 & 5 \end{vmatrix} = 2(-1)(10) = -20$$

Since matrix is in upper triangular form — could also compute as

$$\det A = (-1)^0 (2 \times -1 \times 2 \times 5) = -20$$

◆ロト ◆昼 ト ◆ 差 ト → 差 ・ 夕 Q ②

Cofactor expansion is more a theoretical tool than a computational one

- Important theoretical role in the analysis of linear systems
- Advanced theorems involving cofactor expansion and the inverse

Computationally: Gauss elimination and the calculation of $\det U$ is superior

Revisit *Cramer's rule* – solution to $n \times n A \mathbf{u} = \mathbf{b}$:

— Necessary that $\det A \neq 0$

$$u_1 = \frac{\det A_1}{\det A}$$
 $u_2 = \frac{\det A_2}{\det A}$... $u_n = \frac{\det A_n}{\det A}$

where A_i is matrix obtained by replacing entries in the $i^{\rm th}$ column by ${\bf b}$ Cramer's rule is an important theoretical tool

— Only use it for 2×2 or 3×3 linear systems

Example of Cramer's rule:

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \\ 7 \end{bmatrix}$$

$$u_1 = \frac{\begin{vmatrix} 6 & 2 & 0 \\ 9 & 1 & 2 \\ 7 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{vmatrix}} \quad u_2 = \frac{\begin{vmatrix} 2 & 6 & 0 \\ 1 & 9 & 2 \\ 2 & 7 & 1 \end{vmatrix}}{\begin{vmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{vmatrix}} \quad u_3 = \frac{\begin{vmatrix} 2 & 2 & 6 \\ 1 & 1 & 9 \\ 2 & 1 & 7 \end{vmatrix}}{\begin{vmatrix} 2 & 2 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{vmatrix}}$$

$$u_1 = \frac{4}{4} = 1 \qquad u_2 = \frac{8}{4} = 2 \qquad u_3 = \frac{12}{4} = 3$$

Identical to solution found with Gauss elimination

47 / 59

Farin & Hansford Practical Linear Algebra

Determinant of a positive definite matrix is always positive \Rightarrow matrix is always nonsingular

Upper-left submatrices of an $n \times n$ matrix A are

$$A_1 = \begin{bmatrix} a_{1,1} \end{bmatrix}$$
 $A_2 = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}$... $A_n = A$

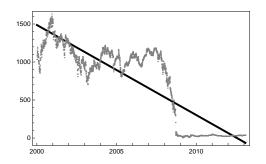
(Different from A_i in Cramer's rule)

If A is positive definite then the determinants of all A_i are positive

Rules for working with determinants: see Chapter 9 Linear Maps in 3D

Presented with large amounts of data

- Need method to create a simpler view or synopsis of the data
- Example: graph of AIG's monthly average stock price over twelve years A lot of activity in the price, but a clear declining trend



Mathematical tool to capture this: linear least squares approximation

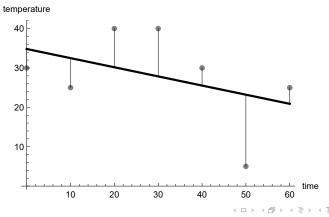
— "Best fit" line or best approximating line

Linear least squares approximation also useful when analyzing experimental data

- Data can be "noisy"
 - data capture method encounters error
 - observation method lapse
 - round-off from computations that generated the data
- Might want to
 - make summary statements about data
 - estimate values where data missing
 - predict future values

Example: Experimental data of temperature (Celsius) over time (seconds)

 $\begin{bmatrix} time \\ temperature \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 30 \end{bmatrix} \quad \begin{bmatrix} 10 \\ 25 \end{bmatrix} \quad \begin{bmatrix} 20 \\ 40 \end{bmatrix} \quad \begin{bmatrix} 30 \\ 40 \end{bmatrix} \quad \begin{bmatrix} 40 \\ 30 \end{bmatrix} \quad \begin{bmatrix} 50 \\ 5 \end{bmatrix} \quad \begin{bmatrix} 60 \\ 25 \end{bmatrix}$



Want to establish a simple linear relationship between the variables

$$\mathsf{temperature} = \mathit{u}_1 \times \mathsf{time} + \mathit{u}_2$$

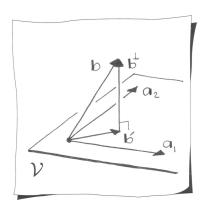
Write down relationships between knowns and unknowns:

$$\begin{bmatrix} 0 & 1 \\ 10 & 1 \\ 20 & 1 \\ 30 & 1 \\ 40 & 1 \\ 50 & 1 \\ 60 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 30 \\ 25 \\ 40 \\ 40 \\ 30 \\ 5 \\ 25 \end{bmatrix}$$
 $A\mathbf{u} = \mathbf{b}$

Overdetermined system of 7 equations in 2 unknowns

- In general: will not have solutions; it is inconsistent Unlikely that ${\bf b}$ lives in subspace ${\mathcal V}$ formed by columns of A
- ⇒ Find an approximate solution

Derivation of the least squares solution



Let \mathbf{b}' be a vector in \mathcal{V} (subspace formed by columns of A)

$$A\mathbf{u} = \mathbf{b}'$$

System is solvable (consistent)
— still overdetermined
 (7 equations in 2 unknowns)

$$\mathbf{b} = \mathbf{b}' + \mathbf{b}^\perp$$

 \mathbf{b}' is closest to \mathbf{b} and in \mathcal{V}

 \mathbf{b}^{\perp} is orthogonal to $\mathcal V$

$$\mathbf{a}_1^{\mathrm{T}}\mathbf{b}^{\perp} = 0$$
 and $\mathbf{a}_2^{\mathrm{T}}\mathbf{b}^{\perp} = 0$ \Rightarrow $A^{\mathrm{T}}\mathbf{b}^{\perp} = \mathbf{0}$
$$\mathbf{b}^{\perp} = \mathbf{b} - \mathbf{b}' \quad \text{then } A^{\mathrm{T}}(\mathbf{b} - \mathbf{b}') = \mathbf{0}$$

$$A^{\mathrm{T}}(\mathbf{b} - A\mathbf{u}) = \mathbf{0}$$

$$A^{\mathrm{T}}\mathbf{b} - A^{\mathrm{T}}A\mathbf{u} = \mathbf{0}$$

Rearranging results in the normal equations

$$A^{\mathrm{T}}A\mathbf{u} = A^{\mathrm{T}}\mathbf{b}$$

Linear system with a square, symmetric matrix $A^{T}A$ Solution to the new system minimizes the *error*

$$\|A\mathbf{u} - \mathbf{b}\|^2 \Rightarrow least squares solution$$

Recall: \mathbf{b}' is closest to \mathbf{b} in $\mathcal{V} \Rightarrow$ minimizes $\|\mathbf{b}' - \mathbf{b}\|_{\mathbf{c}} = \mathbf{b}$

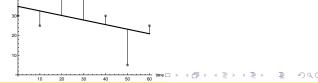
54 / 59

Continue Example — Form the normal equations

$$\begin{bmatrix} 0 & 1 \\ 10 & 1 \\ 20 & 1 \\ 30 & 1 \\ 40 & 1 \\ 50 & 1 \\ 60 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 30 \\ 25 \\ 40 \\ 40 \\ 30 \\ 5 \\ 25 \end{bmatrix} \rightarrow \begin{bmatrix} 9100 & 210 \\ 210 & 7 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 5200 \\ 195 \end{bmatrix}$$

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} -0.23 \\ 34.8 \end{bmatrix}$$

 $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} -0.23 \\ 34.8 \end{bmatrix}$ line $x_2 = -0.23x_1 + 34.8$



Farin & Hansford

Real-world problem:

Data capture method fails due to some environmental condition Want to remove data points if they seem outside the norm

- Such data called outliers
- Point six in Figure looks to be an outlier
- Least squares line provides a means for finding outliers

Least squares approximation can be used for data compression

Numerical problems can creep into the normal equations

- Particularly so when the $n \gg m$ in $n \times m$ matrix A
- Other methods to find least squares solution
 - Chapter 13: the Householder method
 - Chapter 16: SVD

Application: Fitting Data to a Femoral Head

Hip bone replacement:

- Remove an existing femoral head and replace it by a transplant
- Consists of new head and shaft for attaching to existing femur
- Data points collected from existing femoral head with MRI or PET
- Spherical fit is obtained
- Transplant is manufactured

Application: Fitting Data from a Femoral Head

Given: a set of 3D vectors $\mathbf{v}_1, \dots, \mathbf{v}_L$

— approximately of equal length: ρ_1, \ldots, ρ_I

Find: a sphere (centered at the origin) with radius r closely fitting the \mathbf{v}_i

If all \mathbf{v}_i on the desired sphere $r = \rho_1, \dots, r = \rho_L$ In matrix form:

$$\begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} r \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \vdots \\ \rho_L \end{bmatrix}$$

A very overdetermined linear system — L equations in only 1 unknown rMultiply both sides by [1 ... 1] gives

$$Lr = \rho_1 + \ldots + \rho_L \qquad \Rightarrow \qquad r = \frac{\rho_1 + \ldots + \rho_L}{L}$$

Least squares solution is simply the average of the given radii

4□ > 4□ > 4□ > 4□ > 4□ > 900

WYSK

- \bullet $n \times n$ linear system
- coefficient matrix
- consistent system
- subspace
- solvable system
- unsolvable system
- Gauss elimination
- upper triangular matrix
- forward elimination
- back substitution
- elementary row operation
- permutation matrix

- row echelon form
- pivoting
- Gauss matrix
- multiplier
- augmented matrix
- singular matrix
- matrix rank
- full rank
- rank deficient
- homogeneous linear system
- inverse matrix
- LU decomposition
- factorization

- forward substitution
- lower triangular matrix
- determinant
- cofactor expansion
- expansion by minors
- Cramer's rule
- overdetermined system
- least squares solution
- normal equations