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Introduction to Gauss for Linear Systems

Linear systems arise in virtually every area of science and engineering
Some as big as 1,000,000 equations in as many unknowns

Triangulation smoothing application
Left: “rough” triangulation Right: smoother triangulation



The Problem

. a set of linear equations

3up —2up — 10uz +ugy =0
U1—U3:4
i +up—2u3+3u =1

u» +2U4 =—4

Unknowns: ui, ..., Uy
Number of equations = number of unknowns
4 x 4 linear system in matrix form:

-2 -10 1] [w
0 -1 0 u»
1 -2 3 u3
1 0 2 Uy

O = W
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General n x n linear system:

ay1uy +aiplo + ...+ aypuy = by

ar1uy + apolio + ...+ axpup = bo

Matrix form:

an1Uy + anouz + ...+ applp = bn

a1 a2 ... aia| (un by
a1 a» an| |U2 by
dn1 dn2 - an,n

[al az

Un

b,
a,,]u:b = Au=b
A is called the coefficient matrix
«O> «4F>r «=Zr «=)» o>
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The Problem

Underlying principles with a geometric interpretation

[al ar a3] u=>b

Write b as a linear combination of a;

If a; truly 3D (form a tetrahedron)
=
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S

[al ar a3] u=->b

If a; all lie in a plane
then no unique solution

Top: no solution
Bottom: non-unique solution
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The Problem

In general:

If the a; have a non-zero n-dimensional volume
= linear system is uniquely solvable

If a; span a k-dimensional subspace (k < n)
= non-unique solutions only exist if b is itself in that subspace

A linear system is called if at least one solution exits
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The Problem

Example: Polynomial Interpolation

Given: observations p(t;) =0,1,0.5,0.5,0 at t; = 0,0.25,0.5,0.75, 1
seconds

Find: a polynomial p(t) = cp + c1t + cat? + c3t3 + cut?

that interpolates data = estimate values between observations

1 to 3 8 t3] [ p(to)
1o 8§ tff |al |p(t)
1ty t7 8 ti] | p(ts)
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The Solution via Gauss Elimination

i . _ 2 4 up
Review a 2 x 2 example: Au=b [1 6} [Uz}

-

Forward elimination transform system to upper triangular with a shear
2 4] [w] [4
0 4 u» o _2

rowq < row; and rows < rows — §row1

1 0
sa-sh 5[ L,

Corresponds to elementary row operations
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The Solution via Gauss Elimination

Apply back substitution to upper triangular system
2 4 uq o 4
0 4 u» o 2

Can interpret this step as a scaling:

<
N
Il
NI = D=
X
N
Il
N[~

<
S
Il

1/2 0
SgSlAu = S2S]_b 52 = |: é 1/4:|
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The Solution via Gauss Elimination

Pivoting revisited:

1 6| |u]| |4 2 4| |u| |4

2 4] (] |4 1 6| |wm| |4
Equations reordered so pivot element a; 1 largest in first column
Row exchange can be represented as a permutation matrix

P1 = [O 1:| PlAu = Plb

Then — Gauss elimination as before:

5251P1Au = 5251 Plb
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The Solution via Gauss Elimination

Example:
2 —2 07 [wn 4]
4 0 2| |wm|=[-2
_4- 2 —4 _U3 0_
0 1 0] 4 0 2] [ -2
Pp=1{1 0O = 2 =2 0 wm| =14
0 0 1] 4 2 4] |u3 0

Zero entries in the first column

TOW) <— IrOwWp — 51"0W1 TOW3 <— I'Ow3 — I'OW1
1 00 4 0 2| |y -2
shear Gy =|-1/2 1 0 = |0 -2 1 |l =15
-1 01 0 2 =2 |us 2

Gy called a
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Example continued:

No pivoting necessary: P, =/

Zero last element in second column:

TOW3 $— I'OwW3 + rowy
1 00 4 0 =2| |wnn —2
G,=10 10 = 0 -2 1 w|l =15
011 0 0 —1f |us



The Solution via Gauss Elimination

Example continued:
Matrix in upper triangular form — ready for back substitution:

1 1 1
uz = _—1(7) Uy = _—2(5 — U3) u = Z(_2 + 2U3)

(Implicitly incorporates a scaling matrix)

Solution
up —4
u| = —6
us —7
Original equations:
2 -2 0 —4 4
4 0 =2 |-6|=1]-2
4 2 4| |-7 0
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The Solution via Gauss Elimination

Summary:

Gauss elimination =
forward elimination (pivoting and shears)
+ back substitution (scaling)

of Gauss elimination:

@ Pivoting results in the exchange of two rows
@ Shears result in adding a multiple of one row to another

@ Scaling results in multiplying a row by a scalar

Farin & Hansford Practical Linear Algebra 16 /59



Algorithm: Gauss Elimination with Pivoting

Given: n x n coefficient matrix A and n x 1 vector b

Au=D>b

Find: unknowns vy, ..., u, of n x 1 vector u

«O> «4F>r «=Zr «=)» = o>



The Solution via Gauss Elimination

Initialize the n x n matrix G = [/
Forj=1,...,n—1 (j counts columns)

Pivoting step:
Find element in largest absolute value in column j
from a;; to a,j; this is element a, ;
If r > j, exchange equations r and j
If a;; = 0, the system is not solvable

Forward elimination step for column j:

Fori=j+1,...,n (elements below diagonal of column j)
Construct the multiplier gi j = a; j/a; j
ajj = 0
For k=j+1,...,n (each element in row i after column j)
di.k = aik — 8i,jdjk
bj = b; — gi,jb;

All elements below diagonal set to zero = matrix is upper triangular

Farin & Hansford Practical Linear Algebra
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The Solution via Gauss Elimination

Back substitution:

un = bn/an,n
Forj=n-1,...,1
_ 1 , .. . .
uj = 5=(bj — ajjr1Uj41 — ... — 3j,nUp)

JsJ

Programming environment: convenient to form augmented matrix
A augmented with the vector b

a1 a2 a3z b
21 &2 a3 b
a1 a3 a3 b3

Then the k steps run to n+1
— no need for the extra line for the b; element

Farin & Hansford Practical Linear Algebra 19 /59



The Solution via Gauss Elimination

Forward elimination steps written in matrix form:
To produce zeroes under a; ; use

1

G = 1
—gj+1j 1

—&hn,j 1

Elements —g; ; of G; are
G; is called a
G=G,_1P,_1-...-Gy-P>-Gy-P; then GAu= Gb

If no pivoting is required: possible to store g;; in the zero elements of A
For efficiency: do not to (explicitly) multiply A and b by G
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The Solution via Gauss Elimination

Scaling to achieve row echelon form

2 2 0] [ 6 1 1 0 uy 3
0 -1 1 wl =1 = 0 1 -1 |l =1-1
0 0 2 u3 6 0 O 1 u3 3

If matrix is rank deficient (rank < n)
= rows with all zeroes should be the last rows

More efficient to do the scaling as part of back substitution
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The Solution via Gauss Elimination

Gauss elimination requires O(n®) operations
= an estimated number of n3 operations

Algorithm is suitable for a system with thousands of equations
Not suitable for a system with millions of equations

When the system is very large
often times many matrix elements are zero —

lterative methods are a better approach (discussed in next chapter)
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Homogeneous Linear Systems

Au=0

Trivial solution is always an option — but of little interest
How do we use Gauss elimination to find a nontrivial solution if it exists?

Nontrivial solution u = cu are solutions as well

The answer: slightly modify the back substitution step
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Homogeneous Linear Systems

Example: rank one matrix

1 2 3 0 1 2 3 0
1 2 3jlu=|0 = 0 0 Ofu=|0
1 2 3 0 0 0O 0
For each zero row of the transformed system
set the corresponding u; — the — to one:
-5
u= 1|1
1

All vectors cu are solutions

Farin & Hansford Practical Linear Algebra 24 /59



Homogeneous Linear Systems

Previous example: 3 x 3 rank one matrix
— Two dimensional null space
— Number of free variables = dimension of the null space

Systematically construct two vectors uq, uy that span the null space
— Set one of the free variables to one and the other to zero
-3 -2
uy=1,0 and up,=1]1
1 0

All linear combinations of elements of null space are also in null space
Example: u = 1u; 4+ 1uy

Farin & Hansford Practical Linear Algebra
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Homogeneous Linear Systems

Example: homogeneous system from an eigenvector problem

0 6 3 0
0 0 2[u=|0
0 00O 0
Leads to Ouz = 0 and 2u3 = 0 — instead apply column exchanges:
6 3 0f |w 0
0 2 0f |us|] =10
0 0 Of |y 0

Set the free variable: u; = 1 — then back substitution

Solution: all vectors ¢

O O =

Farin & Hansford Practical Linear Algebra 26 /59



Inverse of a square matrix A “undoes” A’s action

AATL =
1 0 -1
3 1 -3
1 2 -2
—4 2 —-1]1 0 0
-3 1 0]0 1 0O
-5 2 —-1/0 0 1

«AO> «F>r « =) « =
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Inverse Matrices

How to compute the inverse of an n x n matrix A?

Vectors a; and e; are n x 1
Vector e;: zero entries except ith component equals 1

A[El En]:[el e,,]

n linear systems:
A51:e1, ey Aén:e,,

Solve with with Gauss elimination:

— Apply forward elimination to A and to each of the e;

— Back substitution to solve for each a; = A1

— More economical to use LU decomposition — next section

Farin & Hansford Practical Linear Algebra
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Inverse Matrices

Inverse matrices are primarily a theoretical concept

Inverse suggests to solve Av = b viav = A"'b
Don't do that! — very expensive

Gauss elimination or LU decomposition is much cheaper:
— Explicitly forming inverse:

o forward elimination

@ n back substitution algorithms

@ matrix-vector multiplication
— Gauss elimination:

@ forward elimination

@ 1 back substitution algorithm

Farin & Hansford Practical Linear Algebra 29 /59



Inverse Matrices

Inverse exists if matrix is n x n and rank n — full rank
= Action of A does not reduce dimensionality
= All columns are linearly independent

Is A invertible?

Perform Gauss elimination

— A upper triangular with all nonzero diagonal elements = invertible
— Otherwise: A is

Matrix rank review:

— Matrix does not reduce dimensionality = rank n or full rank
— Matrix reduces dimensionality by k = rank n — k

— n X n identity matrix has rank n

— Zero matrix has rank 0

Farin & Hansford Practical Linear Algebra 30 /59



Apply forward elimination to achieve row echelon form:

1 3 -3 0
0 3 3 1
M, = 00 0 o0 rank 2
0o 0 0 0]
[1 3 -3 0]
0 3 3 1
My = 0 0 -1 0 rank 3
0 0 0 0
1 3 -3 0]
0 3 3 1
Ms = 0 0 -1 0 rank 4
o 0 0 2]
<o «F « = «E>» E A



Compute the inverse of the n x n Gauss matrix G;
1

1
g+ 1 g+ 1
_g.n,j gr;,j
G; is a shear = GJ-_1 “undoes” G;

Suppose k # 0 and kA is an invertible matrix: (kA)™1 = $A~!
A and B are invertible then AB is invertible

«O> «4F>r «=Zr «=)» = o>



LU Decomposition
Forward elimination (no pivoting) in terms of Gauss matrices:

Gr1-...-G-A=U
A=Gt....G LU

matrix with elements g; ;:

1
L=gGt- Gl = g%’l !
gr;,l o gan—1 1
A=LU = A
Also called the of A

Every invertible matrix has such a decomposition

— pivoting might be necessary
Farin & Hansford Practical Linear Algebra 33 /59



A = LU for 3 x 3 matrix:

U1 U1 U13
0 wp w3
0 0 us3

1 0 0 a11 412 413
hi 1 0] ay ap a3
Bi hp 1| a1 a32 a33

«O> «4F>r «=Zr «=)»
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Given: a;; Find: /;; and u;
Elements of A below diagonal:

ajj = I,-,lul’j 4+ ...+ I;J_1Uj_1J + /,'JU_,'J;
Elements of A on or above diagonal:

J<i
ajj = v+ ...+ lhicwui—aj+ lijuig; j =i
S

1
lij=—/aij— i, —
Uj.j

lij—1uj-1);
uij=ajj— liiuj —

j<i
v licwuioagy j 2>

40> «Fr « > < > o>
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LU Decomposition

If A has a decomposition A = LU then system can be written
LUu=b
Solving linear system is a two-step procedure:

Ly=b where y = Uu
Uu=y

The two systems are triangular and easy to solve:
— Forward substitution applied to L
— Back substitution applied to U

Farin & Hansford Practical Linear Algebra 36 /59



LU Decomposition

Given: Coefficient matrix A and right-hand side b of Au=Db
Find: The unknowns u1,...,u, of u
Algorithm:

Initialize L as the identity matrix and U as the zero matrix
Calculate the nonzero elements of L and U:

For k=1,...,n
Uk = akk — et e — oo — I k—1Uk—1,k
Fori=k+1,...,n
lik = uk.k(ai,k — v, — o — i k—1Uk—1k)

Forj=k+1,...,n

Ukj = akj — Ikt — o — Ik k—1Uk—1

Using forward substitution solve Ly = b.
Using back substitution solve Uu=y

The uy , term must not be zero = requires pivoting or matrix is singular

L being filled column by column and U being filled row_-by row

Farin & Hansford Practical Linear Algebra
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LU Decomposition

2 2 4 1
Example: A=1-1 2 =3ju=|1
1 2 2 1
First step: decompose A
k=1: P
= =2 s 241=3
by =axi/u1=—-1/2 22 21’2 2102 1
h as,1/U1,21 1/2 32= 232 = haue] = 5[2-1] =1/
b12 =412 = U3 =azs3 — /2,1U1,3 =-34+2=-1
nz=a3z=4
k=3: us3 =a33 — kU3 —hBou3=2-2+1/3=1/3

Farin & Hansford Practical Linear Algebra 38 /59



Check decomposition:

2 2 4

0 3 -1

0o 0 1/3

1 0 0 2 2 4

~1/2 1 0|-1 2 -3

12 13 1| 1 2 2
«O» «Fr «E>» «E>» E DA



Next: solve Ly = b with forward substitution
— solving for y1, then y», and then y3

DA
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LU Decomposition

Suppose A is nonsingular, but in need of pivoting
— Permutation matrix P used to exchange row(s)
— System becomes PAu = Pb and find PA= LU

Major benefit of the LU decomposition: speed

Solving multiple linear systems with the same coefficient matrix
— Construct decomposition
— Perform the forward and backward substitutions for each right-hand side

Example: finding the inverse of a matrix

Farin & Hansford Practical Linear Algebra 41 /59



Determinants

Chapter 8 3D Geometry: scalar triple product to measure volume in 3D
— Provided a geometric derivation of 3 x 3 determinants
Now:

Matrix A transformed to upper triangular U via forward elimination
— Sequence of shears and row exchanges

— Shears do not change volumes

— Row exchange changes the sign of the determinant

= column vectors of U span same volume as A

det A= (—1)(ur1 X ... X tpp)
where k is the number of row exchanges

One of the best (and most stable) methods for computing the determinant

Farin & Hansford Practical Linear Algebra 42 /59



Determinants

Example from the Gauss Elimination Section — one row exchange (k = 1):

2 2 0f |wn 6 2 2 O [ 6
A=11 1 2| [w| =19 - U=1|0 -1 1 | =11
2 1 1§ |us 7 0 0 2 u3 6

Method 1: Cofactor expansion

1 2 1 2
detA—2'1 1‘—2‘2 1‘_4
Method 2: Product of diagonal elements of U

det A= (—1)2x-1x2]=4

Farin & Hansford Practical Linear Algebra 43 /59



Determinants

Cofactor expansion for n x n matrices

Choose any column or row of the matrix — for example entries aj ;
det A = ai C171 + a1 C1,2 + ...+ 317,,C17n
where each cofactor is defined as
Cij=(~1)" My,

M; ; are called the

— Each is determinant with i*" row and j* column removed
— Each is an (n — 1) x (n — 1) determinant

— Each computed by yet another cofactor expansion
Process repeated until reduced to 2 x 2 determinants
Technique also known as

Farin & Hansford Practical Linear Algebra 44 /59



Determinants

Example:
2 2 0 4
0 -1 1 3
A= 0o 0 2 0
0 0 0 5

Choose the first column to form the cofactors
— Minimize number of non-zero cofactors

detA=2 2.0

=2(-1) '0 5' = 2(—1)(10) = —20

o O =

1
2
0

1O W

Since matrix is in upper triangular form — could also compute as

det A= (-1)°(2x —1x2x5)=-20

Farin & Hansford Practical Linear Algebra 45 /59



Determinants

Cofactor expansion is more a theoretical tool than a computational one
— Important theoretical role in the analysis of linear systems
— Advanced theorems involving cofactor expansion and the inverse

Computationally: Gauss elimination and the calculation of det U is

superior

Revisit Cramer’s rule — solution to n x n Au = b:
— Necessary that det A # 0

det A det A, det A,
= U, = e up, =
detA 2 detA " detA

n
where A; is matrix obtained by replacing entries in the i*" column by b

Cramer's rule is an important theoretical tool
— Only use it for 2 x 2 or 3 x 3 linear systems

Farin & Hansford Practical Linear Algebra
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Determinants

Example of Cramer’s rule:

2 2 0| |u

A= 111 2| |w

2 1 1] |u3

6 2 0 2 6 0

9 1 2 1 9 2

711 2 71

mw=————- W=—————"

2 20 2 20

112 11 2

2 11 2 11
4 8

U1_Z_ U2_Z_2

6

=19

7
2 2
11
2 1

u:

T2 2
11
2 1
12

U3:—:3

4

Identical to solution found with Gauss elimination

Farin & Hansford
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Determinants

Determinant of a positive definite matrix is always positive
= matrix is always nonsingular

Upper-left submatrices of an n x n matrix A are

a1 4aip2 o
Ar=lan] A= Lzl 3272] o A=A

(Different from A; in Cramer's rule)
If A is positive definite then the determinants of all A; are positive

Rules for working with determinants: see Chapter 9 Linear Maps in 3D
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Least Squares

Presented with large amounts of data

— Need method to create a simpler view or synopsis of the data

— Example: graph of AIG’'s monthly average stock price over twelve years
A lot of activity in the price, but a clear declining trend

1500 - §
¢

3
10001
}

500 -

oL

2(;00 ‘ ‘ ‘ ‘ 20‘05 ‘ ‘ ‘ ‘ 20‘10 ‘
Mathematical tool to capture this:
— "“Best fit" line or best approximating line
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Least Squares

Linear least squares approximation also useful when analyzing experimental
data

— Data can be "noisy”

@ data capture method encounters error

@ observation method lapse

@ round-off from computations that generated the data
— Might want to

@ make summary statements about data

@ estimate values where data missing

@ predict future values

Farin & Hansford Practical Linear Algebra 50 /59



Least Squares

Example: Experimental data of temperature (Celsius) over time (seconds)
time 0 10 20 30 40 50 60
temperature 30 25 40 40 30 5 25

temperature

a0l
30¢

20|

L L P L P I - I - I - Il tlme
10 20 30 40 50 60
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Least Squares

Want to establish a simple linear relationship between the variables

temperature = vy X time + u»

Write down relationships between knowns and unknowns:

[0
10
20
30
40
50

60

[T Gy N G T T W AT G N G T

u
u2

307
25
40
40
30

5

[25]

Au=Db

of 7 equations in 2 unknowns

— In general: will not have solutions; it is inconsistent
Unlikely that b lives in subspace V formed by columns of A

= Find an

Farin & Hansford
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Derivation of the least squares solution

Let b’ be a vector in V

(subspace formed by columns of A)

Au=1Db’

System is solvable (consistent)
— still overdetermined

(7 equations in 2 unknowns)

b=b'+b"

b’ is closest to b and in V
«Or «Fr < > < DA
~ Farin&Hansford  Practical Linear Algebra ~ 53/50
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Least Squares

b is orthogonal to V

aib’ =0 and aiblt =0 = ATbt =0

bt =b—b’" then AT(b—-b')=0
AT(b — Au) =0
ATb — ATAu=0
Rearranging results in the
ATAu = A"b

Linear system with a square, symmetric matrix ATA
Solution to the new system minimizes the error

| Au — b||? = least squares solution

Recall: b’ is closest to b in V = minimizes ||b’ — b||

Farin & Hansford Practical Linear Algebra
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Least Squares

Continue Example — Form the normal equations

[0 17 (307
10 1 25
§8 i ur| 18 o 9100 210| |uz| _ (5200
u» o 210 7 un - 195
40 1 30
5 1 5
160 1] 125 |
Least squares solution Zl] = [_3?1283} line xo = —0.23x; + 34.8
L 2 :

10 20 30 40 50 60
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Least Squares

Real-world problem:

Data capture method fails due to some environmental condition
Want to remove data points if they seem outside the norm

— Such data called

— Point six in Figure looks to be an outlier

— Least squares line provides a means for finding outliers

Least squares approximation can be used for data compression

Numerical problems can creep into the normal equations
— Particularly so when the n>> m in n X m matrix A
— Other methods to find least squares solution

Chapter 13: the Householder method

Chapter 16: SVD

Farin & Hansford Practical Linear Algebra
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Application: Fitting Data to a Femoral Head

Hip bone replacement:
— Remove an existing femoral head and replace it by a transplant

— Consists of new head and shaft for attaching to existing femur

— Data points collected from existing femoral head with MRI or PET
— Spherical fit is obtained

— Transplant is manufactured

Farin & Hansford Practical Linear Algebra 57 /59



Application: Fitting Data from a Femoral Head

Given: a set of 3D vectors vi,...,v;
— approximately of equal length: p1,...,p1
Find: a sphere (centered at the origin) with radius r closely fitting the v;

If all v; on the desired sphere r = p1,...,r =p;
In matrix form:

1 P1

=1

1 pL
A very overdetermined linear system — L equations in only 1 unknown r
Multiply both sides by [1 ... 1] gives

+...+
Lr=p1+...+pL = r:plinL

Least squares solution is simply the average of the given radii

Farin & Hansford Practical Linear Algebra 58 /59



WYSK

n x n linear system
coefficient matrix
consistent system
subspace

solvable system
unsolvable system
Gauss elimination

upper triangular
matrix

forward elimination

@ back substitution

elementary row
operation

permutation matrix

Farin & Hansford

row echelon form
pivoting

Gauss matrix
multiplier
augmented matrix
singular matrix
matrix rank

full rank

rank deficient

homogeneous linear
system

inverse matrix

@ LU decomposition

factorization

Practical Linear Algebra

forward substitution

lower triangular
matrix

@ determinant

@ cofactor expansion

expansion by
minors

Cramer's rule

overdetermined
system

least squares
solution

normal equations
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