
Practical Linear Algebra: A Geometry Toolbox
Fourth Edition

Chapter 13: Alternative System Solvers

Gerald Farin & Dianne Hansford

A K Peters/CRC Press
www.farinhansford.com/books/pla

c©2021

Farin & Hansford Practical Linear Algebra 1 / 51

Outline

1 Introduction to Alternative System Solvers

2 The Householder Method

3 Vector Norms

4 Matrix Norms

5 The Condition Number

6 Vector Sequences

7 Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

8 Application: Mesh Smoothing

9 WYSK

Farin & Hansford Practical Linear Algebra 2 / 51

Introduction to Alternative System Solvers

A sparse matrix: few nonzero entries (marked)
Gauss elimination methods

work well for
— Moderately-sized linear systems

(up to a few thousand equations)
— Systems absent of numerical
problems

Ill-conditioned problems:
— More efficiently attacked using
the Householder method

Huge systems (≤ 1 million equations)
— More successfully solved with
iterative methods

Farin & Hansford Practical Linear Algebra 3 / 51

The Householder Method

Problem: solve the linear system Au = b
n × n matrix A comprised of n column vectors – each with n elements

[a1 . . . an]u = b

Gauss elimination: apply shears Gi to achieve upper triangular form

Gn−1 . . .G1Au = Gn−1 . . .G1b

Solve for u with back substitution
Each Gi transforms i th column vector Gi−1 . . .G1ai
to a vector with zeroes below the diagonal element ai ,i

Gauss elimination is not the most robust method
More numerically stable method: replace shears with reflections

This is the Householder method

Farin & Hansford Practical Linear Algebra 4 / 51

The Householder Method

The Householder method:

Series of reflections Hi applied

Hn−1 . . .H1Au = Hn−1 . . .H1b

Each Hi transforms column vector Hi−1 . . .H1ai
to a vector with zeroes below the diagonal element

Hi called a Householder transformation

Farin & Hansford Practical Linear Algebra 5 / 51

The Householder Method

Example: 2× 2 matrix

A =

[

1 −2
1 0

]

First transformation: H1A

Reflect a1 onto the e1 axis
to the vector a′1 = ||a1||e1

[

1
1

]

→
[√

2
0

]

Reflect about the line L1
Construct a normal n1 to this line:

n1 =
a1 − ||a1||e1

||a1 − ||a1||e1||
Farin & Hansford Practical Linear Algebra 6 / 51

The Householder Method

Implicit equation of the line L1

nT1 x = 0

nT1 a1 is distance of the point o+ a1 to L1
Reflection equivalent to moving twice nT1 a1 in normal direction:

a′1 = a1 − (2nT1 a1)n1 (2nT1 a1 is a scalar)

Reflection in matrix form:

a′1 = a1 − 2n1(n
T

1 a1)

=
[

I − 2n1n
T

1

]

a1 (2n1n
T

1 is a dyadic matrix)

Householder transformation:

H1 = I − 2n1n
T

1

(Precisely the reflection constructed in Chapter 11)
Farin & Hansford Practical Linear Algebra 7 / 51

The Householder Method

Example:

A =

[

1 −2
1 0

]

a1 =

[

1
1

]

→ ||a1||e1 =
[√

2
0

]

Construct Householder matrix H1:

n1 =

[

−0.382
0.923

]

H1 = I − 2

[

0.146 −0.353
−0.353 0.853

]

=

[

0.707 0.707
0.707 −0.707

]

Transformed matrix is formed from the column vectors

H1a1 =

[√
2
0

]

and H1a2 =

[

−
√
2

−
√
2

]

Farin & Hansford Practical Linear Algebra 8 / 51

The Householder Method

2× 2 example illustrates underlying geometry of a reflection matrix
General Householder transformation Hi construction more complicated

A =









a1,1 a1,2 a1,3 a1,4
0 a2,2 a2,3 a2,4
0 0 a3,3 a3,4
0 0 a4,3 a4,4









Construct H3 to zero the element a4,3 and preserve upper triangular
structure

Let ā3 =









0
0

a3,3
a4,3









H3ā3 = γe3 =









0
0
γ
0









where γ = ±‖ā3‖

— H3a3 will only modify elements a3,3 and a4,3
— Length of a3 preserved

Farin & Hansford Practical Linear Algebra 9 / 51

The Householder Method

Develop idea for n × n matrices:
Start with

āi =





















0
...
0
ai ,i
...

an,i





















Want Householder matrix Hi for transformation

Hi āi = γei =

















0
...
γ
...
0

















where γ = ±‖āi‖

Farin & Hansford Practical Linear Algebra 10 / 51

The Householder Method

Like the 2× 2 example

Hi = I − 2nin
T

i where ni =
āi − γei
‖ · ‖ and γ = ±‖āi‖

±‖āi‖ used to combat numerical problems:
— If āi nearly parallel to ei

then loss of significant digits will occur
from subtraction of nearly equal numbers

— Better to reflect onto direction of ei -axis representing largest reflection

Farin & Hansford Practical Linear Algebra 11 / 51

The Householder Method

Householder matrix
Hi = I − 2nin

T

i

Built from symmetric and idempotent matrix Ni = nin
T

i

Properties of Hi :

symmetric: Hi = HT

i — since Ni is symmetric

involutory: HiHi = I ⇒ Hi = H−1
i

unitary (orthogonal): HT

i Hi = I ⇒ ‖Hiv‖ = ‖v‖

Farin & Hansford Practical Linear Algebra 12 / 51

The Householder Method

Implementation of Householder transformations:
— Householder matrix not explicitly constructed
— Numerically and computationally more efficient algorithm implemented

using knowledge of how Hi acts on column vectors

Variables to aid optimization:

vi = āi − γei where γ =

{

−sign ai ,i‖āi‖ if ai ,i 6= 0

−‖āi‖ otherwise

Leads to modification of n

2nnT =
vvT

1
2v

Tv
=

vvT

α
α = γ2 − ai ,iγ

When Hi applied to column vector c

Hic =

[

I − vvT

α

]

c = c− sv

Farin & Hansford Practical Linear Algebra 13 / 51

The Householder Method

In the Householder algorithm
As we work on the jth column vector

âk =







aj ,k
...

an,k







only elements j , . . . , n of the kth column vector ak (k ≥ j) are involved in
a calculation
⇒ application of Hj results in changes in the sub-block of A with aj ,j at
the upper-left corner

Vector aj and Hjaj coincide in the first j − 1 components

Farin & Hansford Practical Linear Algebra 14 / 51

The Householder Method

Algorithm:

Input:

n ×m matrix A, where n ≥ m and rank of A is m
n vector b, augmented to A as the (m + 1)st column

Output:

Upper triangular matrix HA written over A
Hb written over b in the augmented (m + 1)st

column of A
(H = Hn−1 . . .H1)

Farin & Hansford Practical Linear Algebra 15 / 51

The Householder Method

Algorithm continued:

If n = m then p = n − 1; Else p = m (p is last column to transform)
For j = 1, 2, . . . , p

a = âj · âj
γ = −sign(aj ,j)

√
a

α = a − aj ,jγ
Temporarily set aj ,j = aj ,j − γ
For k = j + 1, . . . ,m + 1

s = 1
α(âj · âk)

âk = âk − s âj

Set âj =
[

γ 0 . . . 0
]T

Farin & Hansford Practical Linear Algebra 16 / 51

The Householder Method

Example:




1 1 0
1 −1 0
0 0 1



 u =





−1
0
1





j = 1 : γ = −
√
2 α = 2 +

√
2 (temporarily set) â1 =





1 +
√
2

1
0





k = 2 : s =
√
2/(2 +

√
2) â2 =





0

−
√
2
0





k = 3 : s = 0 and â3 remains unchanged

k = 4 : s = −
√
2/2 â4 =





√
2/2√
2/2
0





Farin & Hansford Practical Linear Algebra 17 / 51

The Householder Method

Set â1 and reflection H1 results in





−
√
2 0 0

0 −
√
2 0

0 0 1



 u =





√
2/2√
2/2
1





Not explicitly computed

n1 =





1 +
√
2

1
0



 /‖ · ‖ H1 =





−
√
2/2 −

√
2/2 0

−
√
2/2

√
2/2 0

0 0 1





Farin & Hansford Practical Linear Algebra 18 / 51

The Householder Method

Note:
— a3 was not affected

• It is in the plane about reflecting
• Result of the involutory property of the Householder matrix

— Length of each column vector not changed
• Result of the orthogonal property

Matrix is upper triangular
⇒ Use back substitution to find the solution vector

u =





−1/2
−1/2

1





Farin & Hansford Practical Linear Algebra 19 / 51

The Householder Method

Householder’s algorithm is method of choice for ill-conditioned systems

Example: least squares solution for some data sets
— Forming ATA is the problem (more on this later)

Revisit linear least squares approximation to time/temperature data
problem: find line x2 = u1x1 + u2





















0 1
10 1
20 1
30 1
40 1
50 1
60 1





















[

u1
u2

]

=





















30
25
40
40
30
5
25





















Farin & Hansford Practical Linear Algebra 20 / 51

The Householder Method

First Householder reflection (j = 1) linear system becomes





















−95.39 −2.20
0 0.66
0 0.33
0 −0.0068
0 −0.34
0 −0.68
0 −1.01





















[

u1
u2

]

=





















−54.51
16.14
22.28
13.45
−5.44
−39.29
−28.15





















Farin & Hansford Practical Linear Algebra 21 / 51

The Householder Method

Second Householder reflection (j = 2) linear system becomes





















−95.39 −2.20
0 −1.47
0 0
0 0
0 0
0 0
0 0





















[

u1
u2

]

=





















−54.51
−51.10
11.91
13.64
5.36

−17.91
3.81





















Solve system with back substitution — starting with first non-zero row

[

u1
u2

]

=

[

−0.23
34.82

]

Excluding numerical round-off — same solution found using normal
equations

Farin & Hansford Practical Linear Algebra 22 / 51

The Householder Method

The Householder method will appear in subsequent chapters

It will help with the potentially ill-conditioned matrix product ATA that
arises in the steps for computing the singular value decomposition

— See Chapter 16

It will help with the QR decomposition introduced as a matrix approach to
the Gram-Schmidt method that avoids potential rounding error

— See Chapter 12

Farin & Hansford Practical Linear Algebra 23 / 51

Vector Norms

Vector norm measures magnitude or length of a vector

Fundamental to many geometric operations in 3D
Fundamental in n-dimensions – even if vectors have no geometric meaning
— Example: iterative methods for solving linear systems (later in chapter)

Vector length key for monitoring improvements in the solution

“Usual” way to measure length:

‖v‖2 =
√

v21 + . . . + v2n

— Non-negative scalar
— Referred to as the Euclidean norm because in R

3 it is Euclidean length
— Subscript 2 is often omitted

Farin & Hansford Practical Linear Algebra 24 / 51

Vector Norms

Outline of the unit vectors

2-norm ⇒ circle, ∞-norm ⇒ square, 1-norm ⇒ diamond

1-norm (Manhattan or taxicab norm)

‖v‖1 = |v1|+ |v2|+ . . .+ |vn|

∞-norm (max norm)

‖v‖∞ = max
i

|vi |

Family of norms — p-norms

‖v‖p = (vp1 + v
p
2 + . . .+ vpn)

1/p

Farin & Hansford Practical Linear Algebra 25 / 51

Vector Norms

Example:

v =





1
0
−2



 ‖v‖1 = 3 ‖v‖2 =
√
5 ≈ 2.24 ‖v‖∞ = 2

Relationship between norms:

‖v‖1 ≥ ‖v‖2 ≥ ‖v‖∞

Example application:
Given: 100K point pairs and a 2-norm tolerance t

Find: point pairs closer than t

— 2-norm takes more CPU clock cycles than other norms

— Max norm allows for trivial reject of some point pairs
If ‖ · ‖∞ ≥ t then ‖ · ‖2 ≥ t ⇒ reject point pair

Farin & Hansford Practical Linear Algebra 26 / 51

Vector Norms

Basic properties:

1. ‖v‖ ≥ 0

2. ‖v‖ = 0 if and only if v = 0

3. ‖cv‖ = |c |‖v‖ for c ∈ R

4. ‖v + w‖ ≤ ‖v‖ + ‖w‖ triangle inequality

Farin & Hansford Practical Linear Algebra 27 / 51

Vector Norms

Show: vector norm properties hold for the ∞-norm

Properties 1 and 2:
For each v in R

n by definition maxi |vi | ≥ 0
maxi |vi | = 0 iff vi = 0 for each i = 1, . . . n ⇒ v = 0

Property 3:

‖cv‖∞ = max
i

|cvi | = |c |max
i

|vi | = |c |‖v‖∞

Property 4 (triangle inequality):

‖v + w‖∞ = max
i

|vi + wi |

≤ max
i

{|vi |+ |wi |}

≤ max
i

|vi |+max
i

|wi |

= ‖v‖∞ + ‖w‖∞

Farin & Hansford Practical Linear Algebra 28 / 51

Matrix Norms

Magnitude of a matrix?

Insight from a 2× 2 matrix:
— Maps unit circle to action ellipse

Consider ATA

— symmetric and positive definite

⇒ real and positive eigenvalues λ′
i

Singular values of A:

σi =
√

λ′
i

σ1: length of semi-major axis
σ2: length of semi-minor axis

If A symmetric and positive definite
⇒ σi = λi

Farin & Hansford Practical Linear Algebra 29 / 51

Matrix Norms

How much does A distort the unit circle?

Measured by its 2-norm ‖A‖2
If we find the largest ‖Avi‖2
then have an indication of how much A distorts

With k unit vectors vi compute

‖A‖2 ≈ max
i

‖Avi‖2

Increase k : ⇒ better and better approximation to ‖A‖2

‖A‖2 = max
‖v‖2=1

‖Av‖2

Farin & Hansford Practical Linear Algebra 30 / 51

Matrix Norms

Matrix norms not restricted to 2× 2 matrices
For n × n

‖A‖2 = σ1 (A’s largest singular value)

Inverse matrix A−1 “undoes” the action of A
Let singular values of A−1 be called σ̂i

σ̂1 =
1

σn
, . . . , σ̂n =

1

σ1

‖A−1‖2 =
1

σn

Singular values typically computed using a method called
Singular Value Decomposition or SVD
— Focus of Chapter 16

Farin & Hansford Practical Linear Algebra 31 / 51

Matrix Norms

Analogous to vector norms — there are several matrix norms

‖A‖1 : maximum absolute column sum

‖A‖∞ : maximum absolute row sum

Careful: notation for matrix and vector norms identical

Frobenius norm: gives the total distortion caused by A

‖A‖F =
√

σ2
1 + . . . + σ2

n

Euclidean norm:

‖A‖E =
√

a21,1 + a21,2 + . . .+ a2n,n

Not obvious: ‖A‖F = ‖A‖E

Farin & Hansford Practical Linear Algebra 32 / 51

Matrix Norms

Example:

A =





1 2 3
3 4 5
5 6 −7





Singular values: 10.5, 7.97, 0.334

‖A‖2 = max{10.5, 7.97, 0.334} = 10.5

‖A‖1 = max{9, 12, 15} = 15

‖A‖∞ = max{6, 12, 18} = 18

‖A‖F =
√

12 + 32 + . . . (−7)2 =
√

10.52 + 7.972 + 0.334 = 13.2

Farin & Hansford Practical Linear Algebra 33 / 51

Matrix Norms

Matrix norms are real-valued functions
of the linear space defined over all n × n matrices

Matrix norms satisfy conditions very similar to the vector norm conditions

‖A‖ > 0 for A 6= Z

‖A‖ = 0 for A = Z

‖cA‖ = |c |‖A| c ∈ R

‖A+ B‖ ≤ ‖A‖+ ‖B‖
‖AB‖ ≤ ‖A‖‖B‖

Z being the zero matrix

How to choose a matrix norm?
Computational expense and properties of the norm are the deciders
Example: the Frobenius and 2-norms are invariant with respect to
orthogonal transformations

Farin & Hansford Practical Linear Algebra 34 / 51

The Condition Number

How sensitive is the solution to Au = b is to changes in A and b?

Action ellipse/ellipsoid describes geometry of map
— Semi-major length = σ1 (singular value of A)

Semi-minor axis length = σn
— 2× 2: if σ1 very large and σ2 very small ⇒ elongated ellipse

Condition number

κ(A) = ‖A‖2‖A−1‖2 = σ1/σn

Figure: symmetric, positive definite A =

[

1.5 0
0 0.05

]

Farin & Hansford Practical Linear Algebra 35 / 51

The Condition Number

ATA is symmetric and positive definite ⇒ κ(A) ≥ 1
— Well-conditioned matrix: κ(A) close to one

No distortion: κ(A) = 1 Example: the identity matrix
— Ill-conditioned matrix: κ(A) “large”

Example: Rotation matrix — no distortion

A =

[

cosα − sinα
sinα cosα

]

ATA = I ⇒ σ1 = σ2 = 1 ⇒ κ(A) = 1

Example: Non-uniform scaling — severely distorting

A =

[

100 0
0 0.01

]

σ1 = 100 and σ2 = 0.01 ⇒ κ(A) = 100/0.01 = 10, 000

Farin & Hansford Practical Linear Algebra 36 / 51

The Condition Number

Back to solving Au = b

Avoid creating a poorly designed linear system with ill-conditioned A

— Definition of large κ(A) subjective and problem-specific

— Guideline: κ(A) ≈ 10k can result in a loss of k digits of accuracy

— If κ(A) large then solution cannot be depended upon
(irrespective of round-off)

Ill-conditioned matrix
⇒ solution is numerically very sensitive to small changes in A or b

Well-conditioned matrix
⇒ can confidently calculate the inverse

Farin & Hansford Practical Linear Algebra 37 / 51

The Condition Number

Condition number is a better measure of singularity than the determinant

— Scale and size n invariant measure: κ(sA) = κ(A)

Example: Let n = 100

Form the identity matrix I and J = 0.1I

det I = 1 κ(I) = 1 det J = 10−100 κ(J) = 1

det J small ⇒ problem with this matrix

But scale of J poses no problem in solving a linear system

Farin & Hansford Practical Linear Algebra 38 / 51

The Condition Number

Overdetermined linear systems Au = b

Least squares approximation:

— Solved the system ATAu = ATb

— Condition number κ(ATA) = κ(A)2

— If A has a high condition number ⇒ ill-posed problem

— The Householder method is preferred

Farin & Hansford Practical Linear Algebra 39 / 51

Vector Sequences

Sequences of real numbers:

1,
1

2
,
1

4
,
1

8
, . . . limit 0

1, 2, 4, 8, . . . no limit

Limit: A sequence of real numbers ai has a limit a
if beyond some index i all ai differ from the limit by an arbitrarily small ǫ

Vector sequences in R
n: v(0), v(1), v(2), . . . ,

A vector sequence has a limit if each component has a limit

Example: vector sequences

v(i) =





1/i
1/i2

1/i3



 limit v =





0
0
0



 v(i) =





i

1/i2

1/i3



 no limit

Farin & Hansford Practical Linear Algebra 40 / 51

Vector Sequences

Vector sequence converges to v with respect to a norm
if for any tolerance ǫ > 0 there exists an integer m such that

‖v(i) − v‖ < ǫ for all i > m

v(0)

v(1)

v

Farin & Hansford Practical Linear Algebra 41 / 51

Vector Sequences

If sequence converges with respect to one norm
it will converge with respect to all norms

In practical applications: limit vector v not known

For some problems: know limit exists but do not know it a priori

⇒ Modify the theoretical convergence measure to
distance between iterations:

‖v(i) − v(i+1)‖ < ǫ

Farin & Hansford Practical Linear Algebra 42 / 51

Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

• Some applications generate linear systems with many thousands of
equations
• Example: Finite Element Methods (FEM) and fluid flow problems
• Gauss elimination too slow
• Typically huge linear systems have a sparse coefficient matrix
— Only a few nonzero entries per row
— Example: 100,000 × 100,000 system

⇒ 10,000,000,000 matrix elements and 1,000,000 nonzero entries
• Solution to large sparse systems typically obtained by iterative methods

Farin & Hansford Practical Linear Algebra 43 / 51

Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

An iterative method starts from a guess for the solution
Then refines it until it is the solution
Gauss-Jacobi iteration:

Example:





4 1 0
2 5 1
−1 2 4









u1
u2
u3



 =





1
0
3





Guess: u(1) =







u
(1)
1

u
(1)
2

u
(1)
3






=





1
1
1



 Au(1) 6= b

Better guess: use u
(1)
i and solve i th equation for a new u

(2)
i

4u
(2)
1 + 1 = 1

2 + 5u
(2)
2 + 1 = 0

−1 + 2 + 4u
(2)
3 = 3

⇒ u(2) =





0
−0.6
0.5





Farin & Hansford Practical Linear Algebra 44 / 51

Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Next iteration:

4u
(3)
1 − 0.6 = 1

5u
(3)
2 + 0.5 = 0

−1.2 + 4u
(3)
3 = 3

⇒ u(3) =





0.4
−0.1
1.05





After a few more iterations — close enough to the true solution

u =





0.333
−0.333

1.0





Farin & Hansford Practical Linear Algebra 45 / 51

Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Gauss-Jacobi iteration for Au = b with n equations and n unknowns

D: diagonal matrix with A’s diagonal elements
R : A with all diagonal elements set to zero

A = D + R ⇒ Du+ Ru = b

u = D−1[b− Ru]

u(k+1) = D−1
[

b− Ru(k)
]

Example:

A =





4 1 0
2 5 1
−1 2 4



 R =





0 1 0
2 0 1
−1 2 0



 D−1 =





0.25 0 0
0 0.2 0
0 0 0.25





u(2) =





0.25 0 0
0 0.2 0
0 0 0.25













1
0
3



−





0 1 0
2 0 1
−1 2 0









1
1
1







 =





0
−0.6
0.5





Farin & Hansford Practical Linear Algebra 46 / 51

Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Will the Gauss-Jacobi method succeed?
⇒ Will sequence of vectors u(k) converge?

Answer: sometimes yes and sometimes no

It will always succeed if A is diagonally dominant
— for every row:

|diagonal element| > ∑ |remaining elements|
— Result of many practical problems — e.g., FEM

How to determine if convergence is taking place?
Length of the residual vector

‖Au(k) − b‖ < tolerance

Farin & Hansford Practical Linear Algebra 47 / 51

Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Gauss-Seidel iteration

Modification of Gauss-Jacobi
— In computation of u(k+1): u

(k+1)
2 computed using u

(k)
1 , u

(k)
3 , . . . , u

(k)
n

— Instead: could use newly computed u
(k+1)
1

⇒ Idea of Gauss-Seidel iteration

Summary:
Gauss-Jacobi updates the new guess vector once all elements computed
Gauss-Seidel updates as soon as a new element is computed

Typically Gauss-Seidel converges faster than Gauss-Jacobi

Farin & Hansford Practical Linear Algebra 48 / 51

Application: Mesh Smoothing

Triangulation smoothing application
Left: “rough” triangulation
Right: smoother triangulation after application of Laplacian smoothing

— triangles are closer to being equilateral
— achieve desired shape properties

via partial differential equations/minimize an energy functional

Farin & Hansford Practical Linear Algebra 49 / 51

Application: Mesh Smoothing

Simple example of Laplacian smoothing
Boundary points fixed
Move interior points — average of their neighbors

p5 = 0.25(p1 + p3 + p4 + p6) p6 = 0.25(p1 + p2 + p3 + p5)
[

1 −0.25
−0.25 1

] [

p5
p6

]

=

[

0.25(p1 + p3 + p4)
0.25(p1 + p2 + p3)

]

Farin & Hansford Practical Linear Algebra 50 / 51

WYSK

reflection matrix

Householder
method

overdetermined
system

symmetric matrix

involutory matrix

orthogonal matrix

unitary matrix

vector norm

vector norm
properties

Euclidean norm

L2 norm

∞ norm

Manhattan norm

matrix norm

matrix norm
properties

Frobenius norm

action ellipse axes

singular values

condition number

well-conditioned
matrix

ill-conditioned
matrix

vector sequence

convergence

iterative method

sparse matrix

Gauss-Jacobi
method

Gauss-Seidel
method

residual vector

Farin & Hansford Practical Linear Algebra 51 / 51

	Outline
	Introduction to Alternative System Solvers
	The Householder Method
	Vector Norms
	Matrix Norms
	The Condition Number
	Vector Sequences
	Iterative System Solvers: Gauss-Jacobi and Gauss-Seidel
	Application: Mesh Smoothing
	WYSK

