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Introduction to Alternative System Solvers

A few nonzero entries (marked)
Gauss elimination methods

work well for

— Moderately-sized linear systems
(up to a few thousand equations)

— Systems absent of numerical

problems

Ill-conditioned problems:

— More efficiently attacked using
the Householder method

Huge systems (< 1 million equations)
— More successfully solved with
iterative methods
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The Householder Method

Problem: solve the linear system Au=b
n X n matrix A comprised of n column vectors — each with n elements

[@a1...a,Ju=Db
Gauss elimination: apply shears G; to achieve upper triangular form
Gn—l . GlAu = Gn—l e Glb

Solve for u with back substitution
Each G; transforms ith column vector G;_1 ... Gia;
to a vector with zeroes below the diagonal element a; ;

Gauss elimination is not the most robust method
More numerically stable method: replace shears with reflections
This is the Householder method
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The Householder method:

Series of reflections H; applied

Hn_]_ . H1Al.l = Hn_]_ . H]_b
Each H; transforms column vector H;_1 ... Hia;

to a vector with zeroes below the diagonal element
H; called a Householder transformation
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The Householder Method

Example: 2 x 2 matrix
1 -2

A= 9

First transformation: H; A

Reflect a; onto the e; axis
to the vector aj = ||a1||e;

IR

Reflect about the line L1
Construct a normal n; to this line:

ny — 21— lanfles
[lax — [[a1]les]|
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The Householder Method

Implicit equation of the line L;
nix=0

anal is distance of the point 0 + a; to L;

Reflection equivalent to moving twice ni a; in normal direction:

a) =a; — (2nia;)n; (2nfa; is a scalar)
Reflection in matrix form:

aj =a; —2n;(nia;)

=[I—2nin{]a;  (2nin] is a dyadic matrix)
Householder transformation:
H1 =/ - 2I'I1l‘lr1F

(Precisely the reflection constructed in Chapter 11)
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The Householder Method
1 -2
=1 o]

ool m[]

Construct Householder matrix Hi:

L [-0382
1= 100923

Example:

—0.353 0.853 | [0.707 —0.707

Transformed matrix is formed from the column vectors

Hiay = [ﬁ and  Hiay = [:g]
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The Householder Method

2 x 2 example illustrates underlying geometry of a reflection matrix
General Householder transformation H; construction more complicated

ay1 a2 ai3 ais
0 ap a3 axs
0 0 a33 azgs
0 0 243 asgs

Construct Hs to zero the element a4 3 and preserve upper triangular
structure

0

Let a3 = 0 Hsaz = ve3 = where v = :|:H53H

da3;3
daq3

o2 O o

— Hsasz will only modify elements a3 3 and as 3
— Length of a3z preserved
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Develop idea for n x n matrices:
Start with

0
_ 0
a; =
aj i
an,j
Want Householder matrix H; for transformation

0

where v = £||a/]|
0
«O» «Fr «E>» «E>» E DA
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The Householder Method

Like the 2 x 2 example

H; =1 —2n;n} where n; = ai — and v = %|aj|

' -
+||a;|| used to combat numerical problems:
— If a; nearly parallel to e;
then loss of significant digits will occur
from subtraction of nearly equal numbers
— Better to reflect onto direction of e;-axis representing largest reflection
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The Householder Method

Householder matrix
H; =1 —2n;n}

1

T

Built from symmetric and idempotent matrix N; = n;n;

Properties of H;:

@ symmetric: H; = H,-T — since N; is symmetric

@ involutory: HiH; =1 = H; = Hi_1

@ unitary (orthogonal): HIH; =1 = ||Hyv| = ||v||
Farin & Hansford Practical Linear Algebra
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The Householder Method

Implementation of Householder transformations:

— Householder matrix not explicitly constructed
— Numerically and computationally more efficient algorithm implemented

using knowledge of how H; acts on column vectors

Variables to aid optimization:

—sign a,-,,-Hé,-H if a,-7,- 75 0

v =a; —ve; where = - ]
—|ail otherwise
Leads to modification of n
T T
T W vv 5
2nn =T o T o= —ajiy
EV \") «
When H; applied to column vector ¢
T
vv
H;c = [l——]c:c—sv
o}
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The Householder Method

In the Householder algorithm
As we work on the j*' column vector

aj’k
a, = .
an, k
only elements j, ..., n of the k' column vector a, (k > j) are involved in

a calculation
= application of H; results in changes in the sub-block of A with a;; at
the upper-left corner

Vector a; and H;a; coincide in the first j — 1 components
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The Householder Method

Algorithm:

Input:
n X m matrix A, where n > m and rank of Ais m
n vector b, augmented to A as the (m + 1)** column

Output:
Upper triangular matrix HA written over A
Hb written over b in the augmented (m + 1)t
column of A
(H=Hp_1...Hy)
Farin & Hansford Practical Linear Algebra
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The Householder Method

Algorithm continued:

If n=mthenp=n—1;Else p=m (p is last column to transform)
Forj=1,2,...,p
a = éj . éj

v = —sign(aj;)va

= a— aj;y

Temporarily set aj j = ajj —

Fork=j+1,...,m+1
s=1(a;-4ay)

SetéJ-:[V 0 ... O]T
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The Householder Method

Example:
1 1 0 -1
1 -1 0fju=]0
0 0 1 1
1++v2
j=1: ~v=—=V2 a=2+V2 (temporarily set) a; = 1
0
k=2: s=V2/2+V2) a=|-V2
0
k =3 :s5=0 and a3 remains unchanged
V32

k=4: s=-V2/2 az= |2/2
0
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Set a1 and reflection Hj results in

-2 0 0 V22
75 [
0 0 1 1

Not explicitly computed
—V2/2 —/2/2 0
/- Hi= | =v2/2
0

142
ng = 1 V2/2 0
0 0 1




The Householder Method

Note:
— a3 was not affected

e It is in the plane about reflecting

e Result of the involutory property of the Householder matrix
— Length of each column vector not changed

e Result of the orthogonal property

Matrix is upper triangular
= Use back substitution to find the solution vector

~1/2
u=|-1/2
1
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The Householder Method

Householder's algorithm is method of choice for ill-conditioned systems

Example: least squares solution for some data sets
— Forming AT A is the problem (more on this later)

Revisit linear least squares approximation to time/temperature data

problem: find line xo = u1x1 + U
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The Householder Method

First Householder reflection (j = 1) linear system becomes

Farin & Hansford

[—95.39
0

O O O oo

—2.20 7]
0.66
0.33
—0.0068
—0.34
—0.68

~1.01 |

Practical Linear Algebra

u1
u2

[—54.517
16.14
22.28
13.45
—5.44

—39.29

| —28.15
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The Householder Method

Second Householder reflection (j = 2) linear system becomes

-95.30 —2.207 (5451
0 —1.47 ~51.10
0 0 11.91
0 0 [“1] — | 13.64
0 0 H2 5.36
0 0 ~17.91

0 0 | 3.81 |

Solve system with back substitution — starting with first non-zero row

ur| —0.23

u» - 34.82
Excluding numerical round-off — same solution found using normal
equations
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The Householder Method

The Householder method will appear in subsequent chapters

It will help with the potentially ill-conditioned matrix product AT A that
arises in the steps for computing the singular value decomposition

— See Chapter 16

It will help with the QR decomposition introduced as a matrix approach to
the Gram-Schmidt method that avoids potential rounding error

— See Chapter 12
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Vector Norms

measures magnitude or length of a vector

Fundamental to many geometric operations in 3D

Fundamental in n-dimensions — even if vectors have no geometric meaning

— Example: iterative methods for solving linear systems (later in chapter)
Vector length key for monitoring improvements in the solution

“Usual” way to measure length:
Ivll2=/VE+...+ V2

— Non-negative scalar
— Referred to as the Euclidean norm because in R3 it is Euclidean length
— Subscript 2 is often omitted
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Vector Norms

Outline of the unit vectors
2-norm => circle, oo-norm = square, 1l-norm =- diamond

1-norm (Manhattan or taxicab norm)

IVl[1 = [vi| + [vo| + ... + | V4]
oo-norm (max norm)
I¥]loc = max|v
Family of norms — p-norms

Vllp = (V0 + v +...+ PP
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Vector Norms

Example:
v= |0 vl =3 vl = V5~ 2.24 IV||oo = 2

Relationship between norms:
IvilL = lIvll2 = [[vllso

Example application:
Given: 100K point pairs and a 2-norm tolerance t

Find: point pairs closer than t
— 2-norm takes more CPU clock cycles than other norms

— Max norm allows for of some point pairs
If || - |loc > tthen|[-[2>t = reject point pair
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Basic properties:

L vl >0
2. |lv|=0 ifand onlyif v=0
3. lev| = |cl||jv]] for c€R

4. |lv+wl < |lv| + |lw| triangle inequality

«O>» <Fr «=» «=>» A



Vector Norms

Show: vector norm properties hold for the co-norm

Properties 1 and 2:
For each v in R" by definition max; |v;| > 0
max;|vi| =0 iff y =0 foreachi=1,...n=v=0

Property 3:
levlloo = max(evi| = |c|max|vi| = |cf[|v]loc
Property 4 (triangle inequality):

IV + wW||oo = max|v; + w;]
1

IN

max{|vi + |}

< max|v;| + max|w;]|
1 1

= [[vlloo + [lwlloo
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Matrix Norms

Magnitude of a matrix?

Farin & Hansford

Insight from a 2 x 2 matrix:
— Maps unit circle to action ellipse

Consider ATA

— symmetric and positive definite

=> real and positive eigenvalues \’
of A:

R /
o =[N

o1: length of semi-major axis
o2: length of semi-minor axis

If A symmetric and positive definite
= 07 = \j

Practical Linear Algebra 29 /51



Matrix Norms

How much does A distort the unit circle?
Measured by its 2-norm |[|Al|2

If we find the largest || Av;]|2
then have an indication of how much A distorts

With k unit vectors v; compute

1All2 & max | Avi 2

Increase k: = better and better approximation to ||Al|2

[All2 = max [[Av]}2
Ivll2=1
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Matrix Norms

Matrix norms not restricted to 2 x 2 matrices
For n x n

lAll2 = o1 (A’s largest singular value)

Inverse matrix A~1 “undoes’ the action of A
Let singular values of A~ be called &;

. 1 . 1
g1 = —, ey Op = —
On 01
1
-1
A7 ]2 = —

Singular values typically computed using a method called
Singular Value Decomposition or SVD
— Focus of Chapter 16

Farin & Hansford Practical Linear Algebra
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Matrix Norms

Analogous to vector norms — there are several matrix norms

|All1 : maximum absolute column sum

|Alloo : maximum absolute row sum

Careful: notation for matrix and vector norms identical

gives the total distortion caused by A

JAlF = \Jo?2 + ... + 03

JAlle = \Ja2y+ @+ ...+ 3

Not obvious: [|Alr = ||Al|e
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Example:

1 2 3
A=1(3 4 5
5 6 —7

Singular values: 10.5, 7.97, 0.334

||All2 = max{10.5,7.97,0.334} = 10.5
|All; = max{9,12, 15} = 15
|Alloc = max{6,12,18} = 18

JAllF = /12432 + ... (-7)2 = V1052 + 7.972 1+ 0.334 = 13.2



Matrix Norms

Matrix norms are real-valued functions
of the linear space defined over all n x n matrices

Matrix norms satisfy conditions very similar to the vector norm conditions

Al >0 for A#Z
Al =0 for A=Z
[cAll = [ell|Al - ceR
A+ Bl <[All + Bl
IAB| < [Allll B

Z being the zero matrix

How to choose a matrix norm?

Computational expense and properties of the norm are the deciders
Example: the Frobenius and 2-norms are invariant with respect to
orthogonal transformations

Farin & Hansford Practical Linear Algebra
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The Condition Number

How sensitive is the solution to Au = b is to changes in A and b?

Action ellipse/ellipsoid describes geometry of map
— Semi-major length = o7 (singular value of A)

Semi-minor axis length = o,
— 2 x 2: if o1 very large and o, very small = elongated ellipse

k(A) = [|All2| A7 2 = 01/,

) . ) " .. |15 0
Figure: symmetric, positive definite A = [ 0 0'05}
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The Condition Number

AT A is symmetric and positive definite = x(A) > 1
— k(A) close to one

No distortion: k(A) =1 Example: the identity matrix
— k(A) “large’

Example: Rotation matrix — no distortion

A— cosa —sina
" |sina  cosa

ATA=1 = o1=00=1 = k(A)=1

Example: Non-uniform scaling — severely distorting

100 0
A= [ 0 0.01}

o1 =100 and 0 =0.01 = rk(A) = 100/0.01 = 10,000

Farin & Hansford Practical Linear Algebra
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The Condition Number

Back to solving Au=b

Avoid creating a poorly designed linear system with ill-conditioned A
— Definition of large x(A) subjective and problem-specific
— Guideline: #(A) a2 10 can result in a loss of k digits of accuracy

— If k(A) large then solution cannot be depended upon
(irrespective of round-off)

[ll-conditioned matrix
= solution is numerically very sensitive to small changes in A or b

Well-conditioned matrix
= can confidently calculate the inverse

Farin & Hansford Practical Linear Algebra
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The Condition Number

Condition number is a better measure of singularity than the determinant

— Scale and size n invariant measure: k(sA) = k(A)

Example: Let n = 100
Form the identity matrix / and J = 0.1/

det/ =1 k(/)=1 detJ=10"10 k() =1

det J small = problem with this matrix

But scale of J poses no problem in solving a linear system
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The Condition Number

Overdetermined linear systems Au = b

Least squares approximation:

— Solved the system AT Au = ATb

— Condition number k(AT A) = k(A)?

— If A has a high condition number = ill-posed problem
— The Householder method is preferred
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Vector Sequences
Sequences of real numbers:
11
,4,8,... no limit

A sequence of real numbers a; has a limit a
if beyond some index i all a; differ from the limit by an arbitrarily small ¢

in R™: v v @
A vector sequence has a limit if each component has a limit

Example: vector sequences

, 1/i 0 , i
vi) = [1/2|  limitv= [0 viD = 11/i2  no limit
1/i3 0 1/
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Vector Sequences

Vector sequence converges to v with respect to a norm
if for any tolerance € > 0 there exists an integer m such that

v — v < ¢ forall i>m
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Vector Sequences

If sequence converges with respect to one norm
it will converge with respect to all norms

In practical applications: limit vector v not known

For some problems: know limit exists but do not know it a priori
= Modify the theoretical convergence measure to
distance between iterations:

W — v < o
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lterative System Solvers: Gauss-Jacobi and Gauss-Seidel

e Some applications generate linear systems with many thousands of
equations
e Example: Finite Element Methods (FEM) and fluid flow problems
e Gauss elimination too slow
e Typically huge linear systems have a sparse coefficient matrix
— Only a few nonzero entries per row
— Example: 100,000 x 100,000 system
= 10,000,000,000 matrix elements and 1,000,000 nonzero entries
e Solution to large sparse systems typically obtained by iterative methods
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lterative System Solvers: Gauss-Jacobi and Gauss-Seidel

An starts from a guess for the solution
Then refines it until it is the solution

4 1 0| [y 1
Example: 2 5 1| || =10
-1 2 4 us 3
Y
Guess: u®) = uél) =1 Au(l);éb
e 1
3

1 . . 2
Better guess: use uf ) and solve ith equation for a new u,( )

4u§2)+1:1 o 0
2
2 = u¥=1]-0.6
2+5u) +1=0 o
142440 =3
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lterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Next iteration:

aul® —06=1 o 0.4
3
(3) _ = u? = |-01
S5u;7+05=0 1.05
—12+ 40 =3

After a few more iterations — close enough to the true solution

0.333
u= [—-0.333
1.0
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lterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Gauss-Jacobi iteration for Au = b with n equations and n unknowns

D: diagonal matrix with A's diagonal elements
R: A with all diagonal elements set to zero

A=D4+R = Du+Ru=b
u=D"'[b— Ru]
ulk+l) = p-1 [b - Ru(k)]

Example:
4 10 [0 1 0 025 0 0
A=1|2 5 1| R=|2 01 D'=|0 02 0
—-1 2 4 -1 20 0 0 025

025 0 0 1 0 1
u@=1]0 02 o0 ol -2 o
0 0 025 3 1 2
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lterative System Solvers: Gauss-Jacobi and Gauss-Seidel

Will the Gauss-Jacobi method succeed?
= Will sequence of vectors u(k) converge?

Answer: sometimes yes and sometimes no

It will always succeed if A is
— for every row:

|diagonal element| > > |remaining elements|
— Result of many practical problems — e.g., FEM

How to determine if convergence is taking place?
Length of the

|Aut®) — b|| < tolerance

Farin & Hansford Practical Linear Algebra
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lterative System Solvers: Gauss-Jacobi and Gauss-Seidel

iteration

Modification of Gauss-Jacobi
— In computation of ulk+1): ugkﬂ) computed using u(k), uék) ul)

1 ,...,Up
(k+1)

— Instead: could use newly computed u;

= |dea of Gauss-Seidel iteration

Summary:

Gauss-Jacobi updates the new guess vector once all elements computed
Gauss-Seidel updates as soon as a new element is computed

Typically Gauss-Seidel converges faster than Gauss-Jacobi
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Application: Mesh Smoothing

Triangulation smoothing application
Left: “rough” triangulation
Right: smoother triangulation after application of
— triangles are closer to being equilateral
— achieve desired shape properties
via partial differential equations/minimize an energy functional

S

LA




Application: Mesh Smoothing

Simple example of Laplacian smoothing
Boundary points fixed
Move interior points — average of their neighbors

ps = 0.25(p1 +p3 +ps+Ps)  Ps = 0.25(p1 + p2 + P3 + Ps)

[ 1 —0-25} [Pﬂ _ [0-25(P1 + P3 + pa)
-025 1 Ps 0.25(p1 + p2 + P3)
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@ reflection matrix

@ Householder

method

overdetermined
system

symmetric matrix
involutory matrix
orthogonal matrix
unitary matrix
vector norm

vector norm
properties

Euclidean norm

@ L2 norm

Farin & Hansford

Manhattan norm

@ matrix norm

matrix norm
properties

Frobenius norm
action ellipse axes
singular values
condition number

well-conditioned
matrix

ill-conditioned
matrix
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vector sequence
convergence
iterative method
sparse matrix

Gauss-Jacobi
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Gauss-Seidel
method

residual vector
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