Practical Linear Algebra: A GEOMETRY TOOLBOX

Fourth Edition

Chapter 14: General Linear Spaces

Gerald Farin & Dianne Hansford

A K Peters/CRC Press www.farinhansford.com/books/pla

©2021

Outline

- 1 Introduction to General Linear Spaces
- Basic Properties of Linear Spaces
- 3 Linear Maps
- Inner Products
- Gram-Schmidt Orthonormalization
- QR Decomposition
- A Gallery of Spaces
- 8 Least Squares
- WYSK

General Linear Spaces

All cubic polynomials over the interval [0,1] form a linear space Some elements illustrated

Linear space = vector space — Chapters 4 & 9: 2D & 3D

Here: higher dimensions

- Spaces can be abstract
- Powerful concept in dealing with real-life problems
 - car crash simulations
 - weather forecasts
 - computer games

"General" refers to the dimension and abstraction

 \mathcal{L}_n : linear space of dimension n

Elements of \mathcal{L}_n are vectors

— Denoted by boldface letters such as ${\bf u}$

Two operations defined on the elements of \mathcal{L}_n :

- Addition
- Multiplication by a scalar

Linearity property

Any linear combination of vectors results in a vector in the same space

$$\mathbf{w} = s\mathbf{u} + t\mathbf{v}$$

Both s and t may be zero \Rightarrow every linear space has a zero vector in it

Generalize linear spaces: include new kinds of vectors

- Objects in the linear space are not always in traditional vector format
- Key: the linearity property

Example: \mathbb{R}^2

Elements of space:
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ $\Rightarrow \mathbf{w} = 2\mathbf{u} + \mathbf{v} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$ is also in \mathbb{R}^2

Example: Linear space $\mathcal{M}_{2\times 2}$ – the set of all 2×2 matrices — Rules of matrix arithmetic guarantee the linearity property

Example: V_2 – all vectors **w** in \mathbb{R}^2 that satisfy $w_2 \ge 0$

— \mathbf{e}_1 and \mathbf{e}_2 live in \mathcal{V}_2 — Is this a linear space?

5 / 56

Objects in general linear spaces are not always in the traditional vector format \Rightarrow favor *linear space* over *vector space*

To ensure that linearity property acts as we expect a more detailed set of rules (axioms) might be helpful

- 1. If \mathbf{u} and \mathbf{v} are in \mathcal{L} , then $\mathbf{u} + \mathbf{v}$ is in \mathcal{L}
- 2. u + v = v + u
- 3. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. The zero vector $\mathbf{0}$ is in \mathcal{L} such that $\mathbf{0} + \mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{u}$
- 5. For each u in \mathcal{L} , there is a -u, such that u + (-u) = (-u) + u = 0
- 6. If \mathbf{u} is in \mathcal{L} , then $s\mathbf{u}$ is in \mathcal{L}
- 7. $s(\mathbf{u} + \mathbf{v}) = s\mathbf{u} + s\mathbf{v}$
- 8. $(s+t)\mathbf{u} = s\mathbf{u} + t\mathbf{v}$
- 9. $s(t\mathbf{u}) = (st)\mathbf{u}$
- 10. 1u = u

Axioms satisfied \Rightarrow tools of linear algebra available $\longrightarrow -$

In \mathcal{L}_n define a set of vectors $\mathbf{v}_1,\ldots,\mathbf{v}_r$ where $1\leq r\leq n$

Vectors are linearly independent means

$$\mathbf{v}_1 = s_2\mathbf{v}_2 + s_3\mathbf{v}_3 + \ldots + s_r\mathbf{v}_r$$

Will *not* have a solution set s_2, \ldots, s_r

 \Rightarrow Zero vector can only be expressed in a trivial manner:

If
$$\mathbf{0} = s_1 \mathbf{v}_1 + \ldots + s_r \mathbf{v}_r$$
 then $s_1 = \ldots = s_r = 0$

If the zero vector can be expressed as a nontrivial combination of r vectors then these vectors are linearly dependent

Farin & Hansford Practical Linear Algebra

Subspace of \mathcal{L}_n of dimension r:

Formed from all *linear combinations* of linearly independent $\mathbf{v}_1,\dots,\mathbf{v}_r$

 \Rightarrow Subspace is spanned by $\mathbf{v}_1, \dots, \mathbf{v}_r$

If this subspace equals whole space \mathcal{L}_n then $\mathbf{v}_1, \dots, \mathbf{v}_n$ a basis for \mathcal{L}_n

If \mathcal{L}_n is a linear space of dimension n

then any n+1 vectors in it are linearly dependent

Next: two examples to practice terminology

Example: \mathbb{R}^3 and basis vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$

$$\mathbf{v} = \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 is also in \mathbb{R}^3

The four vectors $\mathbf{v}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly dependent

Any one of four vectors forms a one-dimensional subspace of \mathbb{R}^3

Any two vectors here form a two-dimensional subspace of \mathbb{R}^3

Example: \mathbb{R}^4

$$\mathbf{v}_1 = \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 5\\0\\-3\\1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 3\\0\\-3\\0 \end{bmatrix}$$

These vectors are linearly dependent since

$$\mathbf{v}_2 = \mathbf{v}_1 + 2\mathbf{v}_3$$
 or $\mathbf{0} = \mathbf{v}_1 - \mathbf{v}_2 + 2\mathbf{v}_3$

Set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ contains only two linearly independent vectors \Rightarrow Any two of them spans a subspace of \mathbb{R}^4 of dimension two

Example: \mathbb{R}^3

$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$

These four vectors are linearly dependent since

$$\mathbf{v}_3 = -\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4$$

Any set of three of these vectors is a basis for \mathbb{R}^3

 $A:\mathcal{L}_n o\mathcal{L}_m$ means that linear map A that transforms \mathcal{L}_n to \mathcal{L}_m

Linear map represented as an $m \times n$ matrix A

Preimage $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathcal{L}_n mapped to image $A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3$ in \mathcal{L}_m

A preserves linear relationships means that

$$\mathbf{v}_1 = \alpha \mathbf{v}_2 + \beta \mathbf{v}_3 \quad \Rightarrow \quad A\mathbf{v}_1 = \alpha A\mathbf{v}_2 + \beta A\mathbf{v}_3$$

(Maps without this property are called nonlinear maps)

Suppose
$$A: [\mathbf{e}_1, \dots, \mathbf{e}_n]$$
-system $\rightarrow [\mathbf{a}_1, \dots, \mathbf{a}_n]$ -system then

$$\mathbf{v}' = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots v_n \mathbf{a}_n$$
 is in the column space of A

Example: $A: \mathbb{R}^2 \to \mathbb{R}^3$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$$

Given vectors in
$$R^2$$
 $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$\mathbf{v}_2 = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

$$\mathbf{v}_3 = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$$

mapped to vectors in
$$\mathbb{R}^3$$
 $\hat{\mathbf{v}}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ $\hat{\mathbf{v}}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ $\hat{\mathbf{v}}_3 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$

$$\hat{\mathbf{v}}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\hat{\mathbf{v}}_3 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$$

 \mathbf{v}_i are linearly dependent since $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$

Linear maps preserve linear relationships \Rightarrow $\mathbf{v}_3' = 2\mathbf{v}_1' + \mathbf{v}_2'$

Matrix rank

- $m \times n$ matrix can be at most of rank $k = \min\{m, n\}$
- Rank equals number of linearly independent column vectors
- If $rank(A) = min\{m, n\} \Rightarrow full rank$
- If $rank(A) < min\{m, n\} \Rightarrow rank deficient$
- Linear map can never increase dimension
- Images of n basis vectors will span a subspace of dimension at most n
- See the last Example
- How to identify rank?
- Forward elimination to upper triangular form
- k nonzero rows \Rightarrow rank is k

Rank scenarios for an $m \times n$ matrix in upper triangular form

$$m < n$$
 $m = n$ $m > n$

Top row: full rank matrices

Bottom row: rank deficient matrices

Rank 3 — full rank since $min{4,3} = 3$

Rank 2 — rank deficient since $min\{4,3\} = 3 > 2$

4 L P 4 B P 4 E P

Review of features of linear maps from earlier chapters

 $n \times n$ matrix A that is rank n is invertible \Rightarrow inverse matrix A^{-1} exists

If A is invertible then it does not reduce dimension

- ⇒ determinant is non-zero
 - Measures volume of nD parallelepiped defined by columns vectors
 - Computed by
 - transforming matrix to upper triangular
 - determinant is the product of the diagonal elements
 - if pivoting required: careful of sign

Inner product: a map from \mathcal{L}_n to the reals \mathbb{R} — denoted as $\langle \mathbf{v}, \mathbf{w} \rangle$

Properties:

Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$

Homogeneity: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{w}, \mathbf{v} \rangle$

Additivity: $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all \mathbf{v} $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$

Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Homogeneity and additivity properties combined:

$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$$

Example: the dot product $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + \ldots + v_n w_n$

Inner product space: a linear space with an inner product

Example: Define a "test" inner product in \mathbb{R}^2

$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$$

Compare it to the dot product:

$$\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = 4(1)(0) + 2(0)(1) = 0$$
 $\mathbf{e}_1 \cdot \mathbf{e}_2 = 0$

Let
$$\mathbf{r} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 (unit vector)

$$\langle {\bf e}_1, {\bf r} \rangle = 4(1)(\frac{1}{\sqrt{2}}) + 2(0)(\frac{1}{\sqrt{2}}) = \frac{4}{\sqrt{2}} \qquad \qquad {\bf e}_1 \cdot {\bf r} = \frac{1}{\sqrt{2}}$$

Does the test inner product satisfy the necessary properties?

Symmetry:
$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2 = 4w_1v_1 + 2w_2v_2 = \langle \mathbf{w}, \mathbf{v} \rangle$$

Homogeneity: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = 4(\alpha v_1)w_1 + 2(\alpha v_2)w_2 = \alpha(4v_1w_1 + 2v_2w_2) = \alpha\langle \mathbf{v}, \mathbf{w} \rangle$

Additivity:
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 4(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$$

= $(4u_1w_1 + 2u_2w_2) + (4v_1w_1 + 2v_2w_2)$
= $\langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$

Positivity:
$$\langle \mathbf{v}, \mathbf{v} \rangle = 4v_1^2 + 2v_2^2 \ge 0$$
 and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = \mathbf{0}$

Usefulness of this inner product? But it does satisfy the properties!

- 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ● 9 9 0

Length

2-norm or Euclidean norm: $\|\mathbf{v}\|_2 = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ (Subscript typically omitted for this "usual" norm)

Distance between two vectors

$$\mathsf{dist}(\mathbf{u},\mathbf{v}) = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle} = \|\mathbf{u} - \mathbf{v}\|$$

Example: the dot product in \mathbb{R}^n

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$
 $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \ldots + (u_n - v_n)^2}$

Norm and distance for two inner products

Test inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$$

$$\|\mathbf{e}_1\| = \sqrt{\langle \mathbf{e}_1, \mathbf{e}_1 \rangle} = 4(1)^2 + 2(0)^2 = 4$$

$$dist(\mathbf{e}_1, \mathbf{e}_2) = \sqrt{4(1-0)^2 + 2(0-1)^2} = \sqrt{6} \quad dist(\mathbf{e}_1, \mathbf{e}_2) = \sqrt{2}$$

Dot product

$$\langle \mathbf{v}, \mathbf{w} \rangle = v_1 w_1 + v_2 w_2$$

$$\|\mathbf{e}_1\|=1$$

$$\mathsf{dist}(\mathbf{e}_1,\mathbf{e}_2) = \sqrt{2}$$

Compare dot product and the test inner product $\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$

Set of vectors: unit vectors ${\bf r}$ rotated through $[0,2\pi]$

Black curve: dot product Gray curve: test inner product

Left: inner product $\mathbf{e}_1 \cdot \mathbf{r}$ and $\langle \mathbf{e}_1, \mathbf{r} \rangle$

Middle: length $\sqrt{\mathbf{r} \cdot \mathbf{r}}$ and $\sqrt{\langle \mathbf{r}, \mathbf{r} \rangle}$

Right: distance
$$\sqrt{(\mathbf{e}_1-\mathbf{r})\cdot(\mathbf{e}_1-\mathbf{r})}$$
 and $\sqrt{\langle(\mathbf{e}_1-\mathbf{r}),(\mathbf{e}_1-\mathbf{r})\rangle}$

Farin & Hansford Practical Linear Algebra 23 / 56

Orthogonality: $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ for \mathbf{v}, \mathbf{w} in \mathcal{L}_n

Orthogonal basis: $\mathbf{v}_1, \dots, \mathbf{v}_n$ form a basis for \mathcal{L}_n and all \mathbf{v}_i are mutually orthogonal: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$

Mutually orthogonal and unit length: $\|\mathbf{v}_i\| = 1$

⇒ form an orthonormal basis

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

Next section: the Gram-Schmidt method:

— Tool to transform a basis of a linear space into an orthonormal basis

Cauchy-Schwartz inequality — in the context of inner product spaces

$$\langle \mathbf{v}, \mathbf{w} \rangle^2 \le \langle \mathbf{v}, \mathbf{v} \rangle \langle \mathbf{w}, \mathbf{w} \rangle$$

Equality holds if and only if **v** and **w** linearly dependent

Restate the Cauchy-Schwartz inequality

$$\begin{split} \langle \mathbf{v}, \mathbf{w} \rangle^2 &\leq \|\mathbf{v}\|^2 \|\mathbf{w}\|^2 \\ &\left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}\right)^2 \leq 1 \\ &-1 \leq \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|} \leq 1 \end{split}$$

Angle θ between \mathbf{v} and \mathbf{w}

$$\cos \theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

Inner product properties suggest

$$\|\mathbf{v}\| \ge 0$$

 $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$
 $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$

A fourth property is the triangle inequality:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$

(derived from the Cauchy-Schwartz inequality in Chapter 2)

General definition of a projection

Let $\mathbf{u}_1, \dots, \mathbf{u}_k$ span a subspace \mathcal{L}_k of \mathcal{L}

If **v** is a vector *not* in \mathcal{L}_k then

$$\textit{P}\textbf{v} = \frac{\langle \textbf{v}, \textbf{u}_1 \rangle}{\langle \textbf{u}_1, \textbf{u}_1 \rangle} \textbf{u}_1 + \ldots + \frac{\langle \textbf{v}, \textbf{u}_k \rangle}{\langle \textbf{u}_k, \textbf{u}_k \rangle} \textbf{u}_k$$

is \mathbf{v} 's orthogonal projection into \mathcal{L}_k

Every inner product space has an orthonormal basis

Given: orthonormal vectors $\mathbf{b}_1, \dots, \mathbf{b}_r$ that form basis of subspace \mathcal{S}_r of \mathcal{L}_n where n > r

Find: \mathbf{b}_{r+1} orthogonal to the given \mathbf{b}_i

Let **u** be an arbitrary vector in \mathcal{L}_n , but not in \mathcal{S}_r **u**'s *orthogonal projection* into \mathcal{S}_r :

$$\hat{\mathbf{u}} = \mathsf{proj}_{\mathcal{S}_r} \mathbf{u} = \langle \mathbf{u}, \mathbf{b}_1 \rangle \mathbf{b}_1 + \ldots + \langle \mathbf{u}, \mathbf{b}_r \rangle \mathbf{b}_r$$

Check orthogonality: for example $\langle \textbf{u} - \hat{\textbf{u}}, \textbf{b}_1 \rangle = 0$

$$\begin{split} \langle u - \hat{u}, b_1 \rangle &= \langle u, b_1 \rangle - \langle u, b_1 \rangle \langle b_1, b_1 \rangle - \ldots - \langle u, b_r \rangle \langle b_1, b_r \rangle \\ \Rightarrow \quad b_{r+1} &= \frac{u - \mathsf{proj}_{\mathcal{S}_r} u}{\| \cdot \|} \end{split}$$

Repeat to form an orthonormal basis for all of \mathcal{L}_n

Key tools: projections and vector decomposition

Build the orthonormal basis:

Given: basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ of \mathcal{L}_n

$$\begin{split} & \mathbf{b}_1 = \frac{\mathbf{v}_1}{\parallel \cdot \parallel} \\ & \mathbf{b}_2 = \frac{\mathbf{v}_2 - \mathsf{proj}_{\mathcal{S}_1} \mathbf{v}_2}{\parallel \cdot \parallel} = \frac{\mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{b}_1 \rangle \mathbf{b}_1}{\parallel \cdot \parallel} \\ & \mathbf{b}_3 = \frac{\mathbf{v}_3 - \mathsf{proj}_{\mathcal{S}_2} \mathbf{v}_3}{\parallel \cdot \parallel} \\ & = \frac{\mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{b}_1 \rangle \mathbf{b}_1 - \langle \mathbf{v}_3, \mathbf{b}_2 \rangle \mathbf{b}_2}{\parallel \cdot \parallel} \end{split}$$

 \mathcal{S}_2 is depicted as \mathbb{R}^2

Example:
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

Form an orthonormal basis $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$

$$\mathbf{b}_1 = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \quad \mathbf{b}_2 = egin{bmatrix} 0 \ 1/\sqrt{3} \ 1/\sqrt{3} \end{bmatrix} \quad \mathbf{b}_3 = egin{bmatrix} 0 \ 2/\sqrt{6} \ -1/\sqrt{6} \ -1/\sqrt{6} \end{bmatrix}$$

$$\mathbf{b}_4 = \frac{\mathbf{v}_4 - \langle \mathbf{v}_4, \mathbf{b}_1 \rangle \mathbf{b}_1 - \langle \mathbf{v}_4, \mathbf{b}_2 \rangle \mathbf{b}_2 - \langle \mathbf{v}_4, \mathbf{b}_3 \rangle \mathbf{b}_3}{\|\cdot\|} = \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

Check: $|\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \ \mathbf{b}_4| = 1$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

Sometimes an *orthogonal set* of vectors is more desirable than an *orthonormal set*

We might want to avoid the extra computational cost of normalization

Given: basis $\mathbf{v}_1, \dots, \mathbf{v}_n$

Find: orthogonal basis \mathbf{b}_i

Solution: set $\mathbf{b}_1 = \mathbf{v}_1$ then

$$\mathbf{b}_{k} = \mathbf{v}_{k} - \frac{\langle \mathbf{v}_{k}, \mathbf{b}_{1} \rangle}{\langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle} \mathbf{b}_{1} - \ldots - \frac{\langle \mathbf{v}_{k}, \mathbf{b}_{k-1} \rangle}{\langle \mathbf{b}_{k-1}, \mathbf{b}_{k-1} \rangle} \mathbf{b}_{k-1} \qquad k = 2, \ldots, n$$

Matrix computation is fundamental to linear algebra

Apply this concept again to the Gram-Schmidt method

The QR decomposition will emerge

Immediate benefit is a new perspective on methods for solving least squares approximation

Given: n linearly independent vectors \mathbf{a}_i in \mathbb{R}^n (stored in A)

Find: n orthonormal vectors \mathbf{q}_i in \mathbb{R}^n (stored in Q)

Develop method with a example from the Gram-Schmidt section

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Step through the Gram-Schmidt process using a matrix representation Map ${f a}_1$ to a unit vector ${f q}_1$

$$A_1 = AR_1 = [\mathbf{q}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$$
 where $R_1 = I$

Next map $\mathbf{a}_2 \to \mathbf{q}_2$

$$\mathbf{q}_2 = \frac{1}{\sqrt{3}}\mathbf{a}_2 - \frac{1}{\sqrt{3}}\mathbf{q}_1$$

represented as an elementary matrix

$$R_2 = \begin{bmatrix} 1 & -\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{then} \quad A_2 = AR_1R_2 = [\mathbf{q}_1 \ \mathbf{q}_2 \ \mathbf{a}_3 \ \mathbf{a}_4]$$

By right-multiplying by R_2 the elementary matrix is acting on the second column of A only

Continue ... (see text for details) then final step:

$$A_4 = AR_1R_2R_3R_4 = [\mathbf{q}_1 \ \mathbf{q}_2 \ \mathbf{q}_3 \ \mathbf{q}_4] = Q$$

Let $R^{-1} = R_1 R_2 R_3 R_4$ then

A = QR is the QR decomposition of A

To complete the example:

$$R = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & \sqrt{3} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & 0 & \sqrt{\frac{3}{2}} - \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ 0 & 0 & 0 & -\frac{1}{3\sqrt{2}} + \frac{2\sqrt{2}}{3} \end{bmatrix}$$

and the columns of Q are given on slide 28 (called \mathbf{b}_i)

QR Decomposition

Upper triangular matrix R describes the transformation of $\mathbf{q}_i o \mathbf{a}_i$

$$R = \begin{bmatrix} \boldsymbol{q}_1^{\mathrm{T}} \cdot \boldsymbol{a}_1 & \boldsymbol{q}_1^{\mathrm{T}} \cdot \boldsymbol{a}_2 & \boldsymbol{q}_1^{\mathrm{T}} \cdot \boldsymbol{a}_3 & \boldsymbol{q}_1^{\mathrm{T}} \cdot \boldsymbol{a}_4 \\ 0 & \boldsymbol{q}_2^{\mathrm{T}} \cdot \boldsymbol{a}_2 & \boldsymbol{q}_2^{\mathrm{T}} \cdot \boldsymbol{a}_3 & \boldsymbol{q}_2^{\mathrm{T}} \cdot \boldsymbol{a}_4 \\ 0 & 0 & \boldsymbol{q}_3^{\mathrm{T}} \cdot \boldsymbol{a}_3 & \boldsymbol{q}_3^{\mathrm{T}} \cdot \boldsymbol{a}_4 \\ 0 & 0 & 0 & \boldsymbol{q}_4^{\mathrm{T}} \cdot \boldsymbol{a}_4 \end{bmatrix}$$

QR Decomposition

QR Decomposition and Least Squares

Revisit finding the best fit line to seven time and temperature data pairs

- Overdetermined linear system
- Find best approximation with respect to the least squares error
- Normal equations formed with QR decomposition of A

$$(QR)^{\mathrm{T}}(QR)\mathbf{u} = (QR)^{\mathrm{T}}\mathbf{b}$$

 $R^{\mathrm{T}}Q^{\mathrm{T}}QR\mathbf{u} = R^{\mathrm{T}}Q^{\mathrm{T}}\mathbf{b}$
 $R^{\mathrm{T}}R\mathbf{u} = R^{\mathrm{T}}Q^{\mathrm{T}}\mathbf{b}$
 $R\mathbf{u} = Q^{\mathrm{T}}\mathbf{b}$.

QR decomposition provides a new approach to the normal equations

QR Decomposition

Householder method is numerically more stable than the possibly ill-conditioned normal equations

Transforms the linear system via orthogonal reflection matrices H_i

$$H_{n-1}\ldots H_1A\mathbf{u}=H_{n-1}\ldots H_1\mathbf{b}$$

Let $Q^{\mathrm{T}} = H_{n-1} \dots H_1$ then

$$R\mathbf{u} = Q^{\mathrm{T}}\mathbf{b}$$

Householder can be used to construct the QR decomposition instead of the Gram-Schmidt method

— Probably the better choice due to potential rounding error problems in Gram-Schmidt

Chapter 15: another application of the QR decomposition – the QR algorithm for finding eigenvalues

Farin & Hansford Practical Linear Algebra 39 / 56

Let's highlight some special linear spaces—but there are many more!

— Polynomials, continuous functions, matrices, linear maps

Polynomials: linear space \mathcal{P}_n whose elements are all polynomials of degree $\leq n$

$$p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n$$

Addition: coefficient by coefficient

Multiplication: polynomial times a real number

Check linearity property with an example:

$$p(t) = 3 - 2t + 3t^{2} \qquad q(t) = -1 + t + 2t^{2}$$
$$2p(t) + 3q(t) = 3 - t + 12t^{2}$$

Yet another polynomial of the same degree

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √○⟨○⟩

Application of the linear space properties of \mathcal{P}_n in shape design Feature curves (polynomials) designed over a common domain interval Shape formed from convex combinations of the feature curves Idea can be used for 3D surface design using the techniques in Chapter 20

Linear map: derivative p' of a degree n polynomial p

$$p'(t) = a_1 + 2a_2t + \ldots + na_nt^{n-1}$$

Rank of this map is n-1

Example: Two cubic polynomials

$$p(t) = 3 - t + 2t^2 + 3t^3$$
 and $q(t) = 1 + t - t^3$

in the linear space of cubic polynomials \mathcal{P}_3

Let
$$r(t) = 2p(t) - q(t) = 5 - 3t + 4t^2 + 7t^3$$

(See Figure on slide 40)

$$r'(t) = -3 + 8t + 21t^{2}$$

$$p'(t) = -1 + 4t + 9t^{2}$$

$$q'(t) = 1 - 3t^{2}$$

Linearity of the derivative map \Rightarrow r'(t) = 2p'(t) - q'(t)

The usual inner product for \mathcal{P}_n

$$\langle p(t), q(t) \rangle = \int_a^b p(t)q(t)dt$$

Example: For $t \in [-1, 1]$

$$p_1(t) = 1$$
 $p_2(t) = t$ $p_3(t) = t^2$

Calculate the inner products:

$$\langle 1, t \rangle = \int_{-1}^{1} (1 \times t) dt = \frac{1}{2} t^{2} \Big|_{-1}^{1} = 0$$
 $\langle 1, t^{2} \rangle = \int_{-1}^{1} (1 \times t^{2}) dt = \frac{1}{3} t^{3} \Big|_{-1}^{1} = \frac{2}{3}$
 $\langle t, t^{2} \rangle = \int_{-1}^{1} (t \times t^{2}) dt = \frac{1}{4} t^{4} \Big|_{-1}^{1} = 0$

(These polynomials are not an orthogonal)

◆ロト ◆昼 ト ◆ 恵 ト ・ 夏 ・ りへ ○

Inner product spaces offer the concept of length

$$||p(t)|| = \langle p(t), p(t) \rangle = \sqrt{\int_a^b p(t)^2 dt}$$

Example: For $t \in [-1, 1]$

$$||p_1(t)|| = \sqrt{\int_{-1}^1 1 dt} = \sqrt{2}$$

Build an orthogonal set of polynomials with the Gram-Schmidt method

Example:

For $t \in [-1,1]$ transform $p_i(t) = \{1,t,t^2\}$ to an orthogonal set of polynomials $\{q_1(t),q_2(t),q_3(t)\}$ — use the inner product definition from previous slide

$$egin{aligned} q_1 &= p_1 = 1 \ q_2 &= t - rac{\langle t, 1
angle}{\langle 1, 1
angle} 1 = t \ q_3 &= t^2 - rac{\langle t^2, t
angle}{\langle t, t
angle} t - rac{\langle t^2, 1
angle}{\langle 1, 1
angle} 1 = t^2 - rac{1}{3} \end{aligned}$$

The q_i are the quadratic Legendre polynomials

Orthogonal polynomials provide for more computationally efficient and better conditioned solutions to least squares approximation and a square square square square square square squares approximation and square s

Farin & Hansford Practical Linear Algebra 47 / 56

Continuous functions:

A linear space given by the set of all real-valued continuous functions over the interval [0,1]

- This space is typically named C[0,1]
- The linearity condition is met:
 - If f and g are elements of C[0,1] then $\alpha f + \beta g$ is also in C[0,1]
- This is an *infinite-dimensional* linear space

 No finite set of functions forms a basis for C[0,1]

Matrices:

The set of all 3×3 matrices form a linear space

- This space consists of matrices
- Linear combinations formed using standard matrix addition and multiplication with a scalar

Linear Maps: (A more abstract example)

The linear space formed from the set of all linear maps from a linear space \mathcal{L}_n into the reals

- Called the dual space \mathcal{L}_n^* of \mathcal{L}_n
- Its dimension equals that of \mathcal{L}_n
- The linear maps in \mathcal{L}_n^* are known as linear functionals

Let a fixed vector \mathbf{v} and an variable vector \mathbf{u} be in \mathcal{L}_n

The linear functionals defined by $\Phi_{\mathbf{v}}(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v} \rangle$ are in \mathcal{L}_n^*

For any basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ of \mathcal{L}_n define linear functionals

$$\Phi_{\mathbf{b}_i}(\mathbf{u}) = \langle \mathbf{u}, \mathbf{b}_i \rangle$$
 for $i = 1, \dots, n$

These functionals form a basis for \mathcal{L}_n^*

Example: In \mathbb{R}^2 consider the fixed vector

$$\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 then $\Phi_{\mathbf{v}}(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v} \rangle = u_1 - 2u_2$

for all vectors \mathbf{u} where $\langle \cdot, \cdot \rangle$ is the dot product

Example: Pick $\mathbf{e}_1, \mathbf{e}_2$ for a basis in \mathbb{R}^2

The associated linear functionals are

$$\Phi_{\mathbf{e}_1}(\mathbf{u}) = u_1 \qquad \Phi_{\mathbf{e}_2}(\mathbf{u}) = u_2$$

Any linear functional Φ can now be defined as

$$\Phi(\mathbf{u}) = r_1 \Phi_{\mathbf{e}_1}(\mathbf{u}) + r_2 \Phi_{\mathbf{e}_2}(\mathbf{u})$$

where r_1 and r_2 are scalars

- 4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ● 9 9 0

Find the best approximation to the function f(x) by another function g(x) in a particular linear space of continuous functions over a fixed interval [a,b]

Example: given a cubic polynomial, find the best linear polynomial fit

Need a quantitative definition of "best"

Measure the difference between two functions f and g over the fixed interval

$$E = \int_a^b |f(x) - g(x)| dx$$

Easier:

$$E^{2} = \int_{a}^{b} (f(x) - g(x))^{2} dx$$

Approximation space: let's use the orthogonal trigonometric polynomials — Well known in the context of the *Fourier series* of a function f(x)

$$f(x) = a_0 + a_1 \cos(x) + b_1 \sin x + a_2 \cos(2x) + b_2 \sin(2x) + \dots$$

The a_i and b_i for $i=1,\ldots,n\to\infty$ are called the *Fourier coefficients* — For the approximation problem, choose a finite n

Let's choose n=2 and the interval $[0,2\pi]$ then the least squares approximation to f(x)is the orthogonal projection of f into space of tri

is the orthogonal projection of f into space of trigonometric polynomials of degree less than or equal to 2

Compute the unknown coefficients a_0, a_1, b_1, a_2, b_2

Details for a_1 :

$$\int_0^{2\pi} f(x) \cos(x) dx = a_0 \int_0^{2\pi} \cos(x) dx$$

$$+ a_1 \int_0^{2\pi} \cos^2(x) dx + b_1 \int_0^{2\pi} \sin(x) \cos(x) dx$$

$$+ a_2 \int_0^{2\pi} \cos^2(x) dx + b_2 \int_0^{2\pi} \sin(x) \cos(x) dx$$

Cancellation due to the interval and orthogonality of the basis functions

$$a_1 = \frac{\int_0^{2\pi} f(x) \cos(x) dx}{\int_0^{2\pi} \cos^2(x) dx} = \frac{\langle f, \cos(x) \rangle}{\langle \cos(x), \cos(x) \rangle}$$

4□ > 4□ > 4□ > 4□ > 4□ > 6

Example:

Given: f(x) = x over $[0, 2\pi]$

Find: the least square approximation in the space of trigonometric polynomials of degree $n \le 2$

$$g(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x)$$

Solution: $g(x) = \pi - 2 \sin x - \sin 2x$

Also illustrated in gray color: degree 10 solution

Farin & Hansford Practical Linear Algebra 55 / 56

WYSK

- linear space
- vector space
- dimension
- linear combination
- linearity property
- linearly independent
- subspace
- span
- linear map
- image
- preimage
- domain

- range
- rank
- full rank
- rank deficient
- inverse
- determinant
- inner product
- inner product space
- distance in an inner product space
- length in an inner product space

- orthogonal
- Gram-Schmidt method
- projection
- basis
- orthonormal
- orthogonal decomposition
- best approximation
- dual space
- linear functional
- QR decomposition