Outline

1. Introduction to General Linear Spaces
2. Basic Properties of Linear Spaces
3. Linear Maps
4. Inner Products
5. Gram-Schmidt Orthonormalization
6. A Gallery of Spaces
7. WYSK
General Linear Spaces

All cubic polynomials over the interval \([0,1]\) form a linear space
Some elements illustrated

Linear space = vector space
Chapters 4 and 9: examined
properties in 2D and 3D

Here: higher dimensions
— Spaces can be abstract
— Powerful concept in dealing with
real-life problems
 • car crash simulations
 • weather forecasts
 • computer games

“General” refers to the dimension
and abstraction
Basic Properties of Linear Spaces

\(L_n: \text{linear space of dimension } n \)

Elements of \(L_n \) are vectors
— Denoted by boldface letters such as \(\mathbf{u} \)

Two operations defined on the elements of \(L_n \):
— Addition
— Multiplication by a scalar

Linearity property
Any *linear combination* of vectors results in a vector in the same space

\[
\mathbf{w} = s \mathbf{u} + t \mathbf{v}
\]

Both \(s \) and \(t \) may be zero \(\Rightarrow \) every linear space has a zero vector in it
Basic Properties of Linear Spaces

Generalize linear spaces: include new kinds of vectors
— Objects in the linear space are not always in traditional vector format
— Key: the linearity property

Example: \(\mathbb{R}^2 \)

Elements of space: \(u = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \(v = \begin{bmatrix} -2 \\ 3 \end{bmatrix} \)

\[\Rightarrow w = 2u + v = \begin{bmatrix} 0 \\ 5 \end{bmatrix} \] is also in \(\mathbb{R}^2 \)

Example: Linear space \(\mathcal{M}_{2 \times 2} \) – the set of all \(2 \times 2 \) matrices
— Rules of matrix arithmetic guarantee the linearity property

Example: \(\mathcal{V}_2 \) – all vectors \(w \) in \(\mathbb{R}^2 \) that satisfy \(w_2 \geq 0 \)
— \(e_1 \) and \(e_2 \) live in \(\mathcal{V}_2 \) — Is this a linear space?

No: \(v = 0 \times e_1 + -1 \times e_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \) which is not in \(\mathcal{V}_2 \)
Basic Properties of Linear Spaces

In \mathcal{L}_n define a set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ where $1 \leq r \leq n$

Vectors are \textbf{linearly independent} means

$$\mathbf{v}_1 = s_2 \mathbf{v}_2 + s_3 \mathbf{v}_3 + \ldots + s_r \mathbf{v}_r$$

Will \textit{not} have a solution set s_2, \ldots, s_r

\Rightarrow Zero vector can only be expressed in a trivial manner:

If $\mathbf{0} = s_1 \mathbf{v}_1 + \ldots + s_r \mathbf{v}_r$ then $s_1 = \ldots = s_r = 0$

If the zero vector \textit{can} be expressed as a nontrivial combination of r vectors then these vectors are \textbf{linearly dependent}
Basic Properties of Linear Spaces

Subspace of \mathcal{L}_n of dimension r:
Formed from all linear combinations of linearly independent v_1, \ldots, v_r
\Rightarrow Subspace is spanned by v_1, \ldots, v_r

If this subspace equals whole space \mathcal{L}_n then v_1, \ldots, v_n a basis for \mathcal{L}_n

If \mathcal{L}_n is a linear space of dimension n
then any $n + 1$ vectors in it are linearly dependent

Example: \mathbb{R}^3 and basis vectors e_1, e_2, e_3

$$v = \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ is also in } \mathbb{R}^3$$

The four vectors v, e_1, e_2, e_3 are linearly dependent

Any one of four vectors forms a one-dimensional subspace of \mathbb{R}^3
Any two vectors here form a two-dimensional subspace of \mathbb{R}^3
Example: \(\mathbb{R}^4 \)

\[
\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ 0 \\ -3 \\ 1 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ 0 \\ -3 \\ 0 \end{bmatrix}
\]

These vectors are linearly dependent since

\[
\mathbf{v}_2 = \mathbf{v}_1 + 2\mathbf{v}_3 \quad \text{or} \quad 0 = \mathbf{v}_1 - \mathbf{v}_2 + 2\mathbf{v}_3
\]

Set \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) contains only two linearly independent vectors

\(\Rightarrow \) Any two of them spans a subspace of \(\mathbb{R}^4 \) of dimension two
Basic Properties of Linear Spaces

Example: \(\mathbb{R}^3 \)

\[
\begin{align*}
v_1 &= \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} & v_2 &= \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} & v_3 &= \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} & v_4 &= \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}
\end{align*}
\]

These four vectors are linearly dependent since

\[v_3 = -v_1 + 2v_2 + v_4 \]

Any set of three of these vectors is a basis for \(\mathbb{R}^3 \)
Linear Maps

\(A : \mathcal{L}_n \rightarrow \mathcal{L}_m \) — The linear map \(A \) that transforms \(\mathcal{L}_n \) to \(\mathcal{L}_m \)

\(A \) preserves linear relationships

Preimage \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) in \(\mathcal{L}_n \) mapped to image \(A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3 \) in \(\mathcal{L}_m \)

\[\mathbf{v}_1 = \alpha \mathbf{v}_2 + \beta \mathbf{v}_3 \quad \Rightarrow \quad A\mathbf{v}_1 = \alpha A\mathbf{v}_2 + \beta A\mathbf{v}_3 \]

Maps without this property: nonlinear maps

Linear map: \(m \times n \) matrix \(A \)

\(\mathbf{v} \) in \(\mathcal{L}_n \) → \(\mathbf{v}' \) in \(\mathcal{L}_m \) \(\Rightarrow \) \(\mathbf{v}' = A\mathbf{v} \)

\(A : [\mathbf{e}_1, \ldots, \mathbf{e}_n]\)-system → \([\mathbf{a}_1, \ldots, \mathbf{a}_n]\)-system

\(\Rightarrow \)

\[\mathbf{v}' = v_1\mathbf{a}_1 + v_2\mathbf{a}_2 + \ldots v_n\mathbf{a}_n \quad \text{is in the column space of} \ A \]
Linear Maps

Example: \(A : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \)

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
2 & 2
\end{bmatrix}
\]

Given vectors in \(\mathbb{R}^2 \)

\[
\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
\]

mapped to vectors in \(\mathbb{R}^3 \)

\[
\hat{\mathbf{v}}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \hat{\mathbf{v}}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad \hat{\mathbf{v}}_3 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}
\]

\(\mathbf{v}_i \) are *linearly dependent* since \(\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2 \)

Linear maps preserve linear relationships \(\Rightarrow \mathbf{v}_3' = 2\mathbf{v}_1' + \mathbf{v}_2' \)
Matrix rank

$m \times n$ matrix can be at most of rank $k = \min\{m, n\}$

Rank equals number of linearly independent column vectors

If $\text{rank}(A) = \min\{m, n\}$ ⇒ full rank

If $\text{rank}(A) < \min\{m, n\}$ ⇒ rank deficient

Linear map can never *increase* dimension

— Possible to map \mathcal{L}_n to higher-dimensional space \mathcal{L}_m
 Images of \mathcal{L}_n’s n basis vectors will span
 a subspace of \mathcal{L}_m of dimension at most n

(See last Example)

How to identify rank?

Perform forward elimination until matrix in upper triangular form

— k nonzero rows ⇒ rank is k
Rank scenarios for an \(m \times n \) matrix
Matrices in upper triangular form

\[
m < n \quad m = n \quad m > n
\]

Top row: full rank matrices
Bottom row: rank deficient matrices
Example: Determine the rank of the matrix

\[
\begin{bmatrix}
1 & 3 & 4 \\
0 & 1 & 2 \\
1 & 2 & 2 \\
-1 & 1 & 1
\end{bmatrix}
\]

Forward elimination \(\Rightarrow \)

\[
\begin{bmatrix}
1 & 3 & 4 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

One row of zeroes: matrix has rank 3 — full rank since \(\min\{4, 3\} = 3 \)

Example: Determine the rank of the matrix

\[
\begin{bmatrix}
1 & 3 & 4 \\
0 & 1 & 2 \\
1 & 2 & 2 \\
0 & 1 & 2
\end{bmatrix}
\]

Forward elimination \(\Rightarrow \)

\[
\begin{bmatrix}
1 & 3 & 4 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Matrix has rank 2 — rank deficient
Review features of linear maps from earlier chapters

\(n \times n \) matrix \(A \) that is rank \(n \) is invertible
\[\Rightarrow \text{inverse matrix } A^{-1} \text{ exists} \]

If \(A \) is invertible then it does not reduce dimension
\[\Rightarrow \text{Determinant is nonzero} \]

- Measures volume of \(nD \) parallelepiped defined by columns vectors
- Computed by transforming matrix to upper triangular
 (via shears/forward elimination)
 Then the determinant is the product of the diagonal elements
 (pivoting: careful of sign)
Inner Products

Inner product: a map from \mathcal{L}_n to the reals \mathbb{R} — denoted as $\langle \mathbf{v}, \mathbf{w} \rangle$

Properties:

- **Symmetry**: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$
- **Homogeneity**: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{w}, \mathbf{v} \rangle$
- **Additivity**: $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all \mathbf{v} $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$
- **Positivity**: $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Homogeneity and additivity properties combined:

$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$$

Example: the *dot product* $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + \ldots + v_nw_n$

Inner product space: a linear space with an inner product
Example: Define a “test” inner product in \mathbb{R}^2

$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$$

Compare it to the dot product:

$$\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = 4(1)(0) + 2(0)(1) = 0 \quad \text{e}_1 \cdot \text{e}_2 = 0$$

Let $\mathbf{r} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ (unit vector)

$$\langle \mathbf{e}_1, \mathbf{r} \rangle = 4(1)(\frac{1}{\sqrt{2}}) + 2(0)(\frac{1}{\sqrt{2}}) = \frac{4}{\sqrt{2}} \quad \text{e}_1 \cdot \mathbf{r} = \frac{1}{\sqrt{2}}$$
Does the test inner product satisfy the necessary properties?

Symmetry: \(\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2 = 4w_1v_1 + 2w_2v_2 = \langle \mathbf{w}, \mathbf{v} \rangle \)

Homogeneity: \(\langle \alpha \mathbf{v}, \mathbf{w} \rangle = 4(\alpha v_1)w_1 + 2(\alpha v_2)w_2 = \alpha(4v_1w_1 + 2v_2w_2) = \alpha \langle \mathbf{v}, \mathbf{w} \rangle \)

Additivity: \(\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 4(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2 \)

\[= (4u_1w_1 + 2u_2w_2) + (4v_1w_1 + 2v_2w_2) \]

\[= \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle \]

Positivity: \(\langle \mathbf{v}, \mathbf{v} \rangle = 4v_1^2 + 2v_2^2 \geq 0 \) and \(\langle \mathbf{v}, \mathbf{v} \rangle = 0 \) iff \(\mathbf{v} = \mathbf{0} \)

Usefulness of this inner product? But it does satisfy the properties!
Inner Products

Length

2-norm or Euclidean norm: \(\|v\|_2 = \sqrt{\langle v, v \rangle} \)
(“Usual” norm ⇒ subscript typically omitted)

Distance between two vectors

\[
\text{dist}(u, v) = \sqrt{\langle u - v, u - v \rangle} = \|u - v\|
\]

Example: the dot product in \(\mathbb{R}^n \)

\[
\|v\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}
\]

\[
\text{dist}(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \ldots + (u_n - v_n)^2}
\]
Norm and distance for two inner products

Test inner product

\[\langle v, w \rangle = 4v_1w_1 + 2v_2w_2 \]

\[\| e_1 \| = \sqrt{\langle e_1, e_1 \rangle} = 4(1)^2 + 2(0)^2 = 4 \]

\[\text{dist}(e_1, e_2) = \sqrt{4(1 - 0)^2 + 2(0 - 1)^2} = \sqrt{6} \]

Dot product

\[\langle v, w \rangle = v_1w_1 + v_2w_2 \]

\[\| e_1 \| = 1 \]

\[\text{dist}(e_1, e_2) = \sqrt{2} \]
Inner Products

Black: dot product Gray: test inner product \[\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1 w_1 + 2v_2 w_2 \]

Unit vector \(\mathbf{r} \) rotated \([0, 2\pi]\)

Left: inner product \(\mathbf{e}_1 \cdot \mathbf{r} \) and \(\langle \mathbf{e}_1, \mathbf{r} \rangle \)

Middle: length \(\sqrt{\mathbf{r} \cdot \mathbf{r}} \) and \(\sqrt{\langle \mathbf{r}, \mathbf{r} \rangle} \)

Right: distance \(\sqrt{(\mathbf{e}_1 - \mathbf{r}) \cdot (\mathbf{e}_1 - \mathbf{r})} \) and \(\sqrt{\langle (\mathbf{e}_1 - \mathbf{r}), (\mathbf{e}_1 - \mathbf{r}) \rangle} \)
Orthogonality: $\langle v, w \rangle = 0$ for v, w in \mathcal{L}_n

Orthogonal basis: v_1, \ldots, v_n form a basis for \mathcal{L}_n and all v_i are mutually orthogonal: $\langle v_i, v_j \rangle = 0$ for $i \neq j$

And if all v_i are unit length: $\|v_i\| = 1$

they form an orthonormal basis

The *Gram-Schmidt method*:
— Basis of a linear space \Rightarrow an orthonormal basis
— See the next Section
Inner Products

Cauchy-Schwartz inequality — in the context of inner product spaces

$$\langle v, w \rangle^2 \leq \langle v, v \rangle \langle w, w \rangle$$

Equality holds if and only if v and w linearly dependent

Restate the Cauchy-Schwartz inequality

$$\langle v, w \rangle^2 \leq \|v\|^2 \|w\|^2$$

$$\left(\frac{\langle v, w \rangle}{\|v\| \|w\|}\right)^2 \leq 1$$

$$-1 \leq \frac{\langle v, w \rangle}{\|v\| \|w\|} \leq 1$$

Angle θ between v and w

$$\cos \theta = \frac{\langle v, w \rangle}{\|v\| \|w\|}$$
Inner product properties suggest

\[\|v\| \geq 0 \]
\[\|v\| = 0 \text{ if and only if } v = 0 \]
\[\|\alpha v\| = |\alpha|\|v\| \]

A fourth property is the triangle inequality:

\[\|v + w\| \leq \|v\| + \|w\| \]

(derived from the Cauchy-Schwartz inequality in Chapter 2)
Inner Products

General definition of a projection

Let $\mathbf{u}_1, \ldots, \mathbf{u}_k$ span a subspace \mathcal{L}_k of \mathcal{L}.
If \mathbf{v} is a vector not in \mathcal{L}_k then

$$P\mathbf{v} = \langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \ldots + \langle \mathbf{v}, \mathbf{u}_k \rangle \mathbf{u}_k$$

is \mathbf{v}'s orthogonal projection into \mathcal{L}_k.
Gram-Schmidt Orthonormalization

Every inner product space has an orthonormal basis

Given: orthonormal vectors b_1, \ldots, b_r

— Form basis of subspace S_r of \mathcal{L}_n where $n > r$

Find: b_{r+1} orthogonal to the given b_i

Let u be an arbitrary vector in \mathcal{L}_n, but not in S_r

u's orthogonal projection into S_r:

$$\hat{u} = \text{proj}_{S_r} u = \langle u, b_1 \rangle b_1 + \ldots + \langle u, b_r \rangle b_r$$

Check orthogonality: for example $\langle u - \hat{u}, b_1 \rangle = 0$

$$\langle u - \hat{u}, b_1 \rangle = \langle u, b_1 \rangle - \langle u, b_1 \rangle\langle b_1, b_1 \rangle - \ldots - \langle u, b_r \rangle\langle b_1, b_r \rangle$$

$$\Rightarrow$$

$$b_{r+1} = \frac{u - \text{proj}_{S_r} u}{\| \cdot \|}$$

Repeat to form an orthonormal basis for all of \mathcal{L}_n

Key elements: projections and vector decomposition
Gram-Schmidt Orthonormalization

S_2 is depicted as \mathbb{R}^2

Build the orthonormal basis:
Given basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \mathcal{L}_n

$$
\begin{align*}
\mathbf{b}_1 &= \frac{\mathbf{v}_1}{\| \cdot \|} \\
\mathbf{b}_2 &= \frac{\mathbf{v}_2 - \text{proj}_{S_1} \mathbf{v}_2}{\| \cdot \|} = \frac{\mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{b}_1 \rangle \mathbf{b}_1}{\| \cdot \|} \\
\mathbf{b}_3 &= \frac{\mathbf{v}_3 - \text{proj}_{S_2} \mathbf{v}_3}{\| \cdot \|} = \frac{\mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{b}_1 \rangle \mathbf{b}_1 - \langle \mathbf{v}_3, \mathbf{b}_2 \rangle \mathbf{b}_2}{\| \cdot \|} \\
& \vdots
\end{align*}
$$
Gram-Schmidt Orthonormalization

Example: \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \)

Form an orthonormal basis \(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4 \)

\[
\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{b}_2 = \begin{bmatrix} 0 \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \quad \mathbf{b}_3 = \begin{bmatrix} 0 \\ 2/\sqrt{6} \\ -1/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix}
\]

\[
\mathbf{b}_4 = \frac{\mathbf{v}_4 - \langle \mathbf{v}_4, \mathbf{b}_1 \rangle \mathbf{b}_1 - \langle \mathbf{v}_4, \mathbf{b}_2 \rangle \mathbf{b}_2 - \langle \mathbf{v}_4, \mathbf{b}_3 \rangle \mathbf{b}_3}{\| \cdot \|} = \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}
\]

Check: \(\begin{vmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 \end{vmatrix} = 1 \)
A Gallery of Spaces

Let’s highlight some special linear spaces—but there are many more!

A linear space \mathcal{P}_n whose elements are all polynomials of a fixed degree n

$$p(t) = a_0 + a_1 t + a_2 t^2 + \ldots + a_n t^n$$

where t is the independent variable of $p(t)$

— Addition in this space is coefficient by coefficient
— Multiplication in this space: polynomial times a real number

Check linearity property: $p(t) = 3 - 2t + 3t^2$ and $q(t) = -1 + t + 2t^2$
then $2p(t) + 3q(t) = 3 - t + 12t^2$ is yet another polynomial of the same degree

\Rightarrow Linear map: derivative p' of a degree n polynomial p

$$p'(t) = a_1 + 2a_2 t + \ldots + na_n t^{n-1}$$

Rank of this map is $n - 1$
A Gallery of Spaces

Example: Two cubic polynomials

\[p(t) = 3 - t + 2t^2 + 3t^3 \quad \text{and} \quad q(t) = 1 + t - t^3 \]

in the linear space of cubic polynomials \(P_3 \)

Let \(r(t) = 2p(t) - q(t) = 5 - 3t + 4t^2 + 7t^3 \)

\[r'(t) = -3 + 8t + 21t^2 \]
\[p'(t) = -1 + 4t + 9t^2 \]
\[q'(t) = 1 - 3t^2 \]

\[r'(t) = 2p'(t) - q'(t) \Rightarrow \text{linearity of the derivative map} \]
A Gallery of Spaces

A linear space given by the set of all real-valued continuous functions over the interval $[0, 1]$
— This space is typically named $C[0, 1]$
— The linearity condition is met:
 If f and g are elements of $C[0, 1]$ then $\alpha f + \beta g$ is also in $C[0, 1]$
— This is an infinite-dimensional linear space
 No finite set of functions forms a basis for $C[0, 1]$

The set of all 3×3 matrices form a linear space
— This space consists of matrices
— Linear combinations formed using standard matrix addition and multiplication with a scalar
A Gallery of Spaces

A more abstract example:
The linear space formed from the set of all linear maps from a linear space \mathcal{L}_n into the reals
— Called the **dual space** \mathcal{L}_n^* of \mathcal{L}_n
— Its dimension equals that of \mathcal{L}_n
— The linear maps in \mathcal{L}_n^* are known as **linear functionals**

Let a fixed vector v and an variable vector u be in \mathcal{L}_n
The linear functionals defined by $\Phi_v(u) = \langle u, v \rangle$ are in \mathcal{L}_n^*
For any basis b_1, \ldots, b_n of \mathcal{L}_n define linear functionals

$$\Phi_{b_i}(u) = \langle u, b_i \rangle \quad \text{for } i = 1, \ldots, n$$

These functionals form a basis for \mathcal{L}_n^*
A Gallery of Spaces

Example: In \mathbb{R}^2 consider the fixed vector

$$v = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Then $\Phi_v(u) = \langle u, v \rangle = u_1 - 2u_2$ for all vectors u where $\langle \cdot, \cdot \rangle$ is the dot product.

Example: Pick e_1, e_2 for a basis in \mathbb{R}^2
The associated linear functionals are

$$\Phi_{e_1}(u) = u_1, \quad \Phi_{e_2}(u) = u_2$$

Any linear functional Φ can now be defined as

$$\Phi(u) = r_1 \Phi_{e_1}(u) + r_2 \Phi_{e_2}(u)$$

where r_1 and r_2 are scalars.
• linear space
• vector space
• dimension
• linear combination
• linearity property
• linearly independent
• subspace
• span
• linear map
• image
• preimage
• domain

• range
• rank
• full rank
• rank deficient
• inverse
• determinant
• inner product
• inner product space
• distance in an inner product space
• length in an inner product space

• orthogonal
• Gram-Schmidt method
• projection
• basis
• orthonormal
• orthogonal decomposition
• best approximation
• dual space
• linear functional