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General Linear Spaces

All cubic polynomials over the interval [0,1] form a linear space
Some elements illustrated

Linear space = vector space
— Chapters 4 & 9: 2D & 3D

Here: higher dimensions
— Spaces can be abstract
— Powerful concept in dealing with
real-life problems
e car crash simulations
e weather forecasts
e computer games

“General” refers to the dimension
and abstraction
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Basic Properties of Linear Spaces

Ln: of dimension n

Elements of L,, are vectors
— Denoted by boldface letters such as u

Two operations defined on the elements of L,:
— Addition
— Multiplication by a scalar

Any linear combination of vectors results in a vector in the same space
W = su + tv

Both s and t may be zero = every linear space has a zero vector in it
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Basic Properties of Linear Spaces

Generalize linear spaces: include new kinds of vectors
— Objects in the linear space are not always in traditional vector format
— Key: the linearity property

Example: R?

Elements of space: u= [ﬂ and v — [—32]

= w=2u+}+v= [g} is also in R?

Example: Linear space Mjxo — the set of all 2 x 2 matrices
— Rules of matrix arithmetic guarantee the linearity property

Example: V), — all vectors w in R2 that satisfy wp, > 0
— e; and e live in V, — Is this a linear space?
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Basic Properties of Linear Spaces

Objects in general linear spaces are not always in the traditional vector
format = favor linear space over vector space

To ensure that linearity property acts as we expect
a more detailed set of rules (axioms) might be helpful

1. fuandvarein £, thenu+visin L

u+v=v-+u

ut+(v+w)=(u+v)+w

The zero vector 0 is in £ such that 0 +u=u+0=u

For each u in L, there is a —u, such that u + (—u) = (—u)+u=0
Ifuisin £, then suisin £

s(u+v) =su+sv

(s + t)u = su+ tv

s(tu) = (st)u

lu=u

LN ok eDN

,_.
e

Axioms satisfied = tools of linear algebra available
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Basic Properties of Linear Spaces

In £, define a set of vectors vi,...,v, where 1 <r <n

Vectors are means
Vi = SVo + S3V3 + ... + SV,

Will not have a solution set sp,...,s,

= Zero vector can only be expressed in a trivial manner:
If 0=svi+...+sv, thensg=...=5 =0

If the zero vector can be expressed as a nontrivial combination of r vectors
then these vectors are
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Basic Properties of Linear Spaces

of L, of dimension r:

Formed from all linear combinations of linearly independent vy,...,v,
= Subspace is by vi,...,v,
If this subspace equals whole space L, then vi,...,v, a for L,

If £, is a linear space of dimension n

then any n+ 1 vectors in it are linearly dependent

Next: two examples to practice terminology
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Basic Properties of Linear Spaces

Example: R3 and basis vectors e;, e,, e3

3 1 0 0
v= |4 =3 (0| +4|1] +7|0| isalsoinR3
7 0 0 1

The four vectors v, ey, ey, ez are linearly dependent
Any one of four vectors forms a one-dimensional subspace of R3

Any two vectors here form a two-dimensional subspace of R3
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Basic Properties of Linear Spaces

Example: R*

-1 5 3
V] = 0 Vo = 0 V3 = 0
0 -3 -3
1 1 0

These vectors are linearly dependent since
vy =v;+2vz3 or 0=v; —vy+2u;3

Set {v1,Vv2,v3} contains only two linearly independent vectors
= Any two of them spans a subspace of R* of dimension two
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Example: R3

-1 1 1 0
vi=1|0 vy = (2 vy = | 2 vy= 1|0
0 0 -3 -3

These four vectors are linearly dependent since

V3 = —

V1 +2vp vy
Any set of three of these vectors is a basis for R3
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Linear Maps

A:L,— L, means that A that transforms L, to £,
Linear map represented as an m X n matrix A
v1,Vo,Vv3 in L, mapped to Avi, Avy, Avs in L,

A preserves linear relationships means that

vi=avy +fBvz = Av; = aAv, + fAvs

(Maps without this property are called )
Suppose A : [e1,...,ep]-system —  [a1,...,a,]-system then
vV = via; + was+...vpa, isin the of A
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Linear Maps

Example: A:R? — R3

10
A=10 1
2 2
. . 1 0 2
Given vectors in  R? = [0} Vo = [1] V3 = L]
1 0 2
mapped to vectors in R3 4= |0 vo = |1 vy = |1
2 2 6

v; are linearly dependent since vz = 2vi + v»

Linear maps preserve linear relationships = v§ = 2v] + v}
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Linear Maps

Matrix

e m X n matrix can be at most of rank kK = min{m, n}

e Rank equals number of linearly independent column vectors

e If rank(A) = min{m, n} =

e If rank(A) < min{m, n} =

e Linear map can never increase dimension

— Images of n basis vectors will span a subspace of dimension at most n

— See the last Example

e How to identify rank?
— Forward elimination to upper triangular form

— k nonzero rows = rank is k
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m<n

Rank scenarios for an m x n matrix in upper triangular form

m=n

m>n
Top row: full rank matrices

A Ih
A b

Bottom row: rank deficient matrices, , . . . -




Linear Maps

1 3 4 1 3 4
0 1 2 N 0o 1 2
Example: 1 92 9 Forward elimination = 0 0 -3
-1 11 0 0 O
Rank 3 — full rank since min{4,3} =3
1 3 4 1 3 4
101 2 N 01 2
Example: 1 2 9 Forward elimination = 00 0
01 2 00O

Rank 2 — rank deficient since min{4,3} =3 > 2
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Linear Maps

Review of features of linear maps from earlier chapters
n X n matrix A that is rank n is invertible = inverse matrix A~! exists

If A is invertible then it does not reduce dimension

= determinant is non-zero
— Measures volume of nD parallelepiped defined by columns vectors
— Computed by

— transforming matrix to upper triangular
— determinant is the product of the diagonal elements
— if pivoting required: careful of sign
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Inner Products

: a map from L, to the reals R — denoted as (v, w)

Properties:

Symmetry: (v,w) = (w,v)

Homogeneity: (av,w) = a(w,v)

Additivity:  (u+v,w) = (u,w) + (v,w) forallv (v,v) >0
Positivity: (v,v) =0 if and only if v=10

Homogeneity and additivity properties combined:
(o + By, w) = alu,w) + Blv,w)
Example: the dot product (v,w) =v-w = viw; + vows + ... + VoW,

. a linear space with an inner product
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Example: Define a “test” inner product in R?
<V,W> =4dviwy + 2vown
Compare it to the dot product:

(e1,e2) = 4(1)(0) +2(0)(1) =0
Let r = [Uﬁ

€ ey = 0
1/\/5] (unit vector)
1 1 4
(e1,r) = 4(1)(%) + 2(0)(%) =7



Inner Products

Does the test inner product satisfy the necessary properties?

Symmetry: (v,w) = 4viwg 4+ 2vowp = 4wy vy + 2un vy = (W, V)

Homogeneity: (av,w) = 4(avi)wi+2(ava)ws = a(dviwi+2vows) = a(v,w)

Additivity: (u+v,w) = 4(u1 + vi)wy + 2(u2 + vo)wa
= (4uiwi + 2upws) + (dvawy + 2vown)

(u, w) + (v, w)

Positivity:  (v,v) = 4vZ +2vZ > 0and (v,v) =0 iff v =10

Usefulness of this inner product? But it does satisfy the properties!
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Length
2-norm or Euclidean norm: |lv|lz = /(v,v)

(Subscript typically omitted for this “usual” norm)

Distance between two vectors

dist(u,v) = \/{u —v,u —v) = |ju — v||
Example: the dot product in R”

IVl =/ + Bt 2

dist(u,v) = \/(u1 — v1)? + (2 — v2)2 + ...+ (un — vi)?
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Norm and distance for two inner products

Test inner product Dot product

(V,W> =4dviw; + 2vown (V,W> = viwy + Vowsp

le1]] = /(e1,e1) = 4(1)* +2(0)* = 4 leaf =1

diSt(e17e2) = \/4(]- - 0)2 + 2(0 - 1)2 = \/6 dist(el,eg) = \/§

DA



Inner Products

Compare dot product and the test inner product (v,w) = 4viw; + 2vowy

Set of vectors: unit vectors r rotated through [0, 27]

Black curve: dot product Gray curve: test inner product
4
4
2,
N
1 2
2n )
e 2n
-2t

4+

Left: inner product e; - r and (e1,r)
Middle: length \/r-r and \/(r,r)
Right: distance \/(e1 —r) - (e1 —r) and \/{(e1 —r), (e1 — 1))

Farin & Hansford
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Inner Products

: (v,w) =0 for v,w in L,

 V1,...,V, form a basis for £,
and all v; are mutually orthogonal: (v;,v;) =0 for / # j

Mutually orthogonal and unit length: |v;|| =1
= form an

i) = 1, ifi=,
1Yy, — P .
0, ifiz#j.

Next section: the Gram-Schmidt method:
— Tool to transform a basis of a linear space into an orthonormal basis
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Inner Products
— in the context of inner product spaces
(v, w)? < (v, v)(w, w)
Equality holds if and only if v and w linearly dependent

Restate the Cauchy-Schwartz inequality

(v, w)? < lv][*[w]®

(v.w) \2
(nvunwn) =1
(v, w)

= viwi =7

Angle 6 between v and w

(v, w)

cosf =
[[v[{|w]
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Inner product properties suggest

lv[[ =0
|lv|[ =0 if and only if v=10

[loww[] = vl

A fourth property is the triangle inequality:

[lv+wif < vl + [/l

(derived from the Cauchy-Schwartz inequality in Chapter 2)
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General definition of a projection

Let uy,...,ug span a subspace Ly of L
If v is a vector not in L, then

Pv = {v,u). up +...+ v,
<u17 u1> <Uk, Uk>
is v's orthogonal projection into Ly

v

<O 4Fr <= « = E A



Gram-Schmidt Orthonormalization

Every inner product space has an orthonormal basis

Given: orthonormal vectors by, ..., b, that form basis of subspace S, of
L, where n > r

Find: b, orthogonal to the given b;

Let u be an arbitrary vector in L, but not in S,

u's orthogonal projection into S;:

i = projg u = (u,by)b; +... + (u,b,)b,
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Gram-Schmidt Orthonormalization

Check orthogonality: for example (u — G,b;) =0

(u — ﬁ, b1> = (u,b1> — (u,b1>(b1,b1> — ... <u, br><b1, br>
u — projg u
-1l

Repeat to form an orthonormal basis for all of £,

= br—i—l =

Key tools: projections and vector decomposition
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Build the orthonormal basis:

Given: basis v,

.,V of L,
by = 2t

V2 — projs Vo v — (v, by)b;
[ [
V3 — projs,v3

vz — (v3,b1)b; — (v3,b)by

S, is depicted as R?

DA




Gram-Schmidt Orthonormalization

1 1 1 0
Example: v; = 0 vy = 1 vz = L vy = 0
0 1 0 1
0 1 0 0
Form an orthonormal basis by, by, b3, by
1 0 7 0
b, = 0 b, = 1/\/§ bs = 2/\/6
0 1/vV3| 7 |-1/v6
0 1/v/3] —~1//6
0
b, = V4~ (va,b1)b1 — (v4,bz)by — (v4,b3)b3 _ 0
* I 1/v2
—1/V/2

Check: b1 b2 b3 b4|:1
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Gram-Schmidt Orthonormalization

Sometimes an orthogonal set of vectors is more desirable than an
orthonormal set

We might want to avoid the extra computational cost of normalization
Given: basis vi,...,v,

Find: orthogonal basis b;

Solution: set by = v; then

(Vk, b1) i, b1) (Vi, bi—1)
L

by = vk — = Wk Dko1)
KT by, by) (bk—1,bk_1)

bk—l k:2,...,n
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QR Decomposition

Matrix computation is fundamental to linear algebra
Apply this concept again to the Gram-Schmidt method
The QR decomposition will emerge

Immediate benefit is a new perspective on methods for solving least
squares approximation
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QR Decomposition

Given: n linearly independent vectors a; in R” (stored in A)
Find: n orthonormal vectors q; in R” (stored in Q)
Develop method with a example from the Gram-Schmidt section

1
1
A= 1
1

OO O =
OO = =
o= O O

Step through the Gram-Schmidt process using a matrix representation

Map a; to a unit vector q;

Al = ARl = [q1 dz as a4] where Rl =1

Farin & Hansford Practical Linear Algebra
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QR Decomposition

Next map ax — q2

1 1
= —ad>» — —
q2 /3 2 \/§Q1

represented as an elementary matrix

Ry, = then A = AR1Ry, = [ql gz a3 a4]

< s-s-
o~ o o
—_ o o o

OO O

By right-multiplying by R»
the elementary matrix is acting on the second column of A only
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QR Decomposition

Continue ... (see text for details) then final step:

Ay =ARIRR3Rs =[a1 q2 g3 qa] =
Let R7L = R1R>R3R, then

A= QR is the of A

To complete the example:

11 1 0
oVi kG

R = 3 1 1
00 ik %
0 0 0 s+

and the columns of Q are given on slide 28 (called b;)
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Upper triangular matrix R describes the transformation of q; — a;

qi a1 qi -ax qi -a3 q] ‘a4
T T T
R — 0 q; a2 q; -az q; a4
0 0 q3-a3 q3-a4
0 0 0 q; - ag
«O> «4F>r «=Zr «=)» = o>



QR Decomposition

QR Decomposition and Least Squares

Revisit finding the best fit line to seven time and temperature data pairs
— Overdetermined linear system

— Find best approximation with respect to the least squares error

— Normal equations formed with QR decomposition of A

(QR)"(QR)u=(QR)"b
RTYQYQRu = RTQTb
RYRu = RTQ"b

Ru= Q"b.

QR decomposition provides a new approach to the normal equations
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QR Decomposition
Householder method is numerically more stable than the possibly
ill-conditioned normal equations

Transforms the linear system via orthogonal reflection matrices H;
Ho—1...HiAu=H,_1...Hib
Let QT = H,_1 ... H; then
Ru=Q'b

Householder can be used to construct the QR decomposition instead of
the Gram-Schmidt method

— Probably the better choice due to potential rounding error problems in
Gram-Schmidt

Chapter 15: another application of the QR decomposition — the QR
algorithm for finding eigenvalues
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A Gallery of Spaces

Let’s highlight some special linear spaces—but there are many more!

— Polynomials, continuous functions, matrices, linear maps

Polynomials: linear space P, whose elements are all polynomials of
degree < n

p(t) = ao + art + at’+ ...+ apt"
Addition: coefficient by coefficient

Multiplication: polynomial times a real number

Farin & Hansford Practical Linear Algebra
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r(t)

n hd
0.2 0.4 0.6

Check linearity property with an example:

0.8

=-a(t)
p(t) =3 — 2t + 3t2

—1+t + 2t
2p(t) +3q(t) = 3 — t 4 12¢°

Yet another polynomial of the same degree
«40O>» «Fr « =) < > o>
~ Farin&Hansfod  Practical Linear Alggbra ~ 41/56
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A Gallery of Spaces

Application of the linear space properties of P, in shape design
Feature curves (polynomials) designed over a common domain interval
Shape formed from convex combinations of the feature curves

Idea can be used for 3D surface design using the techniques in Chapter 20
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Linear map: derivative p’ of a degree n polynomial p

p'(t) = ay +2apt + ...+ na,t™ !
Rank of this mapis n—1

«O>» <Fr «=» «=>» A



A Gallery of Spaces

Example: Two cubic polynomials
p(t)=3—t+2t>4+3t> and q(t)=1+t—1t>
in the linear space of cubic polynomials P3
Let r(t)=2p(t)—q(t)=5—3t+4t>+ 73

(See Figure on slide 40)

r'(t) = —3 + 8t +21¢t°
pl(t) = —1+4t+9¢t°
q(t)=1-3¢t

Linearity of the derivative map = r/(t) = 2p'(t) — ¢'(t)
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A Gallery of Spaces

The usual inner product for P,

b
(p(t). (1)) = / p(t)a(t)dt
Example: For t € [-1,1]
pi(t) =1  p(t)=t  pa(t)=t

Calculate the inner products:

<1,t>:/1(1>< t)dt:%t2‘1 =0

-1
1

(1 t2>—/1(1xt2)dt—1t3‘ _2
A ~3 ~3

1 1 1
(t, t?) :/ (t x t?)dt = Zt“‘ =0
-1

(These polynomials are not an orthogonal)
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Inner product spaces offer the concept of length

b
1p(D)]] = (p(t). p(1)) = / p(t)2dt

Example: For t € [-1,1]

1
||p1(t)||=,//_11dt=fz

«40O>» «Fr « =)

« =
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A Gallery of Spaces

Build an orthogonal set of polynomials with the Gram-Schmidt method

Example:

For t € [~1,1] transform p;(t) = {1,t, t?}

to an orthogonal set of polynomials {qi1(t), g2(t), g3(t)}
— use the inner product definition from previous slide

Gp=p1=1
(t,1)
=t— 1=t
P (1,1)

2 <t27t> _<t271>1: 2

1
% &n (L1 3

The g; are the

Orthogonal polynomials provide for more computationally efficient and
better conditioned solutions to least squares approximation
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A Gallery of Spaces

Continuous functions:

A linear space given by the set of all real-valued continuous functions over
the interval [0, 1]
— This space is typically named C[0, 1]
— The linearity condition is met:
If f and g are elements of C[0, 1] then af + Bg is also in C[0,1]
— This is an infinite-dimensional linear space
No finite set of functions forms a basis for C[0, 1]

Matrices:

The set of all 3 x 3 matrices form a linear space

— This space consists of matrices

— Linear combinations formed using standard matrix addition and
multiplication with a scalar
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A Gallery of Spaces

Linear Maps: (A more abstract example)

The linear space formed from

the set of all linear maps from a linear space L, into the reals
— Called the Ly of L,

— Its dimension equals that of £,

— The linear maps in £}, are known as

Let a fixed vector v and an variable vector u be in £,

The linear functionals defined by ®,(u) = (u,v) are in L},

For any basis by, ...,b, of £, define linear functionals
CDb,.(u) = (u,b;) for i = ]., -

These functionals form a basis for £}

Farin & Hansford Practical Linear Algebra
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A Gallery of Spaces

Example: In R? consider the fixed vector
1
V= [_2} then ®,(u) = (u,v) = u; — 2up

for all vectors u where (-, ) is the dot product

Example: Pick e, e, for a basis in R?

The associated linear functionals are

Oe,(u) =11 De,(u) = 1
Any linear functional ® can now be defined as

O (u) = rde, (u) + NPe, (u)

where r; and rp are scalars
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Find the best approximation to the function f(x) by another function g(x)

in a particular linear space of continuous functions over a fixed interval
[a, b]

Example: given a cubic polynomial, find the best linear polynomial fit

«O> «4F>r «=Zr «=)»



Need a quantitative definition of “best”

interval

Measure the difference between two functions f and g over the fixed
Easier:

b
E- / 1F(x) — g(x)]dx

b
£ = [ () — (e

<O 4Fr <= « = E A
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Least Squares

Approximation space: let's use the orthogonal trigonometric polynomials

— Well known in the context of the Fourier series of a function f(x)
f(x) = ap + a1 cos(x) + by sin x + ap cos(2x) + bysin(2x) + ...
The a; and b; for i = 1,...,n — oo are called the Fourier coefficients

— For the approximation problem, choose a finite n

Let's choose n = 2 and the interval [0, 27| then

the least squares approximation to f(x)
is the orthogonal projection of f into space of trigonometric polynomials
of degree less than or equal to 2
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Least Squares

Compute the unknown coefficients ag, a1, b1, a», by
Details for as:

27 2T
/ f(x) cos(x)dx = ao/ cos(x)dx
0 0
2 2w
+ a1 / cos?(x)dx + by / sin(x) cos(x)dx
0 0

2 2m
+ a> / cos?(x)dx + by / sin(x) cos(x)dx
0 0

Cancellation due to the interval and orthogonality of the basis functions

. fo Jcos(x)dx  (f,cos(x))
1= =

f02 cos2 (x)dx (cos(x), cos(x))
Farin & Hansford Practical Linear Algebra
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Least Squares

Example:

Given: f(x) = x over [0, 27]

Find: the least square approximation in the space of trigonometric

polynomials of degree n < 2
g(x) = ag + a1 cos(x) + by sin(x) + az c

Solution: g(x) =7 —2sinx

\\
\

0s(2x) + bo sin(2x)

—sin2x

Also illustrated in gray color: degree 10 solution

Farin & Hansford Practical Linear Algebra
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WYSK
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