
Practical Linear Algebra: A Geometry Toolbox
Fourth Edition

Chapter 14: General Linear Spaces

Gerald Farin & Dianne Hansford

A K Peters/CRC Press
www.farinhansford.com/books/pla

c©2021

Farin & Hansford Practical Linear Algebra 1 / 56



Outline

1 Introduction to General Linear Spaces

2 Basic Properties of Linear Spaces

3 Linear Maps

4 Inner Products

5 Gram-Schmidt Orthonormalization

6 QR Decomposition

7 A Gallery of Spaces

8 Least Squares

9 WYSK

Farin & Hansford Practical Linear Algebra 2 / 56



General Linear Spaces

All cubic polynomials over the interval [0,1] form a linear space
Some elements illustrated

Linear space = vector space
— Chapters 4 & 9: 2D & 3D

Here: higher dimensions
— Spaces can be abstract
— Powerful concept in dealing with

real-life problems
• car crash simulations
• weather forecasts
• computer games

“General” refers to the dimension
and abstraction
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Basic Properties of Linear Spaces

Ln: linear space of dimension n

Elements of Ln are vectors
— Denoted by boldface letters such as u

Two operations defined on the elements of Ln:
— Addition
— Multiplication by a scalar

Linearity property
Any linear combination of vectors results in a vector in the same space

w = su+ tv

Both s and t may be zero ⇒ every linear space has a zero vector in it
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Basic Properties of Linear Spaces

Generalize linear spaces: include new kinds of vectors
— Objects in the linear space are not always in traditional vector format
— Key: the linearity property

Example: R
2

Elements of space: u =

[

1
1

]

and v =

[

−2
3

]

⇒ w = 2u+ v =

[

0
5

]

is also in R
2

Example: Linear space M2×2 – the set of all 2× 2 matrices
— Rules of matrix arithmetic guarantee the linearity property

Example: V2 – all vectors w in R
2 that satisfy w2 ≥ 0

— e1 and e2 live in V2 — Is this a linear space?
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Basic Properties of Linear Spaces

Objects in general linear spaces are not always in the traditional vector
format ⇒ favor linear space over vector space

To ensure that linearity property acts as we expect
a more detailed set of rules (axioms) might be helpful

1. If u and v are in L, then u+ v is in L
2. u+ v = v + u

3. u+ (v +w) = (u + v) +w

4. The zero vector 0 is in L such that 0+ u = u+ 0 = u

5. For each u in L, there is a −u, such that u+ (−u) = (−u) + u = 0

6. If u is in L, then su is in L
7. s(u+ v) = su+ sv

8. (s + t)u = su + tv

9. s(tu) = (st)u

10. 1u = u

Axioms satisfied ⇒ tools of linear algebra available
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Basic Properties of Linear Spaces

In Ln define a set of vectors v1, . . . , vr where 1 ≤ r ≤ n

Vectors are linearly independent means

v1 = s2v2 + s3v3 + . . .+ srvr

Will not have a solution set s2, . . . , sr

⇒ Zero vector can only be expressed in a trivial manner:

If 0 = s1v1 + . . .+ srvr then s1 = . . . = sr = 0

If the zero vector can be expressed as a nontrivial combination of r vectors
then these vectors are linearly dependent
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Basic Properties of Linear Spaces

Subspace of Ln of dimension r :

Formed from all linear combinations of linearly independent v1, . . . , vr

⇒ Subspace is spanned by v1, . . . , vr

If this subspace equals whole space Ln then v1, . . . , vn a basis for Ln

If Ln is a linear space of dimension n

then any n + 1 vectors in it are linearly dependent

Next: two examples to practice terminology
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Basic Properties of Linear Spaces

Example: R
3 and basis vectors e1, e2, e3

v =





3
4
7



 = 3





1
0
0



+ 4





0
1
0



+ 7





0
0
1



 is also in R
3

The four vectors v, e1, e2, e3 are linearly dependent

Any one of four vectors forms a one-dimensional subspace of R3

Any two vectors here form a two-dimensional subspace of R3
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Basic Properties of Linear Spaces

Example: R
4

v1 =









−1
0
0
1









v2 =









5
0
−3
1









v3 =









3
0
−3
0









These vectors are linearly dependent since

v2 = v1 + 2v3 or 0 = v1 − v2 + 2v3

Set {v1, v2, v3} contains only two linearly independent vectors

⇒ Any two of them spans a subspace of R4 of dimension two
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Basic Properties of Linear Spaces

Example: R
3

v1 =





−1
0
0



 v2 =





1
2
0



 v3 =





1
2
−3



 v4 =





0
0
−3





These four vectors are linearly dependent since

v3 = −v1 + 2v2 + v4

Any set of three of these vectors is a basis for R3
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Linear Maps

A : Ln → Lm means that linear map A that transforms Ln to Lm

Linear map represented as an m × n matrix A

Preimage v1, v2, v3 in Ln mapped to image Av1,Av2,Av3 in Lm

A preserves linear relationships means that

v1 = αv2 + βv3 ⇒ Av1 = αAv2 + βAv3

(Maps without this property are called nonlinear maps)

Suppose A : [e1, . . . , en]-system → [a1, . . . , an]-system then

v′ = v1a1 + v2a2 + . . . vnan is in the column space of A
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Linear Maps

Example: A : R2 → R
3

A =





1 0
0 1
2 2





Given vectors in R2 v1 =

[

1
0

]

v2 =

[

0
1

]

v3 =

[

2
1

]

mapped to vectors in R
3 v̂1 =





1
0
2



 v̂2 =





0
1
2



 v̂3 =





2
1
6





vi are linearly dependent since v3 = 2v1 + v2

Linear maps preserve linear relationships ⇒ v′3 = 2v′1 + v′2
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Linear Maps

Matrix rank

• m × n matrix can be at most of rank k = min{m, n}
• Rank equals number of linearly independent column vectors

• If rank(A) = min{m, n} ⇒ full rank

• If rank(A) < min{m, n} ⇒ rank deficient

• Linear map can never increase dimension

— Images of n basis vectors will span a subspace of dimension at most n

— See the last Example

• How to identify rank?

— Forward elimination to upper triangular form

— k nonzero rows ⇒ rank is k
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Linear Maps

Rank scenarios for an m × n matrix in upper triangular form

m < n m = n m > n

Top row: full rank matrices

Bottom row: rank deficient matrices
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Linear Maps

Example:









1 3 4
0 1 2
1 2 2
−1 1 1









Forward elimination ⇒









1 3 4
0 1 2
0 0 −3
0 0 0









Rank 3 — full rank since min{4, 3} = 3

Example:









1 3 4
0 1 2
1 2 2
0 1 2









Forward elimination ⇒









1 3 4
0 1 2
0 0 0
0 0 0









Rank 2 — rank deficient since min{4, 3} = 3 > 2
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Linear Maps

Review of features of linear maps from earlier chapters

n × n matrix A that is rank n is invertible ⇒ inverse matrix A−1 exists

If A is invertible then it does not reduce dimension

⇒ determinant is non-zero

— Measures volume of nD parallelepiped defined by columns vectors

— Computed by

– transforming matrix to upper triangular
– determinant is the product of the diagonal elements
– if pivoting required: careful of sign
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Inner Products

Inner product: a map from Ln to the reals R — denoted as 〈v,w〉
Properties:

Symmetry: 〈v,w〉 = 〈w, v〉
Homogeneity: 〈αv,w〉 = α〈w, v〉
Additivity: 〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉 for all v 〈v, v〉 ≥ 0

Positivity: 〈v, v〉 = 0 if and only if v = 0

Homogeneity and additivity properties combined:

〈αu+ βv,w〉 = α〈u,w〉 + β〈v,w〉

Example: the dot product 〈v,w〉 = v · w = v1w1 + v2w2 + . . .+ vnwn

Inner product space: a linear space with an inner product
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Inner Products

Example: Define a “test” inner product in R
2

〈v,w〉 = 4v1w1 + 2v2w2

Compare it to the dot product:

〈e1, e2〉 = 4(1)(0) + 2(0)(1) = 0 e1 · e2 = 0

Let r =

[

1/
√
2

1/
√
2

]

(unit vector)

〈e1, r〉 = 4(1)(
1√
2
) + 2(0)(

1√
2
) =

4√
2

e1 · r =
1√
2
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Inner Products

Does the test inner product satisfy the necessary properties?

Symmetry: 〈v,w〉 = 4v1w1 + 2v2w2 = 4w1v1 + 2w2v2 = 〈w, v〉
Homogeneity: 〈αv,w〉 = 4(αv1)w1+2(αv2)w2 = α(4v1w1+2v2w2) = α〈v,w〉

Additivity: 〈u+ v,w〉 = 4(u1 + v1)w1 + 2(u2 + v2)w2

= (4u1w1 + 2u2w2) + (4v1w1 + 2v2w2)

= 〈u,w〉 + 〈v,w〉

Positivity: 〈v, v〉 = 4v21 + 2v22 ≥ 0 and 〈v, v〉 = 0 iff v = 0

Usefulness of this inner product? But it does satisfy the properties!
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Inner Products

Length

2-norm or Euclidean norm: ‖v‖2 =
√

〈v, v〉
(Subscript typically omitted for this “usual” norm)

Distance between two vectors

dist(u, v) =
√

〈u− v,u− v〉 = ‖u− v‖

Example: the dot product in R
n

‖v‖ =
√

v21 + v22 + . . .+ v2n

dist(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + . . . + (un − vn)2
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Inner Products

Norm and distance for two inner products

Test inner product Dot product

〈v,w〉 = 4v1w1 + 2v2w2 〈v,w〉 = v1w1 + v2w2

‖e1‖ =
√

〈e1, e1〉 = 4(1)2 + 2(0)2 = 4 ‖e1‖ = 1

dist(e1, e2) =
√

4(1 − 0)2 + 2(0− 1)2 =
√
6 dist(e1, e2) =

√
2
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Inner Products

Compare dot product and the test inner product 〈v,w〉 = 4v1w1 + 2v2w2

Set of vectors: unit vectors r rotated through [0, 2π]

Black curve: dot product Gray curve: test inner product

Π 2 Π

-4

-2

2

4

Π 2 Π

1

2

Π 2 Π

2

4

Left: inner product e1 · r and 〈e1, r〉
Middle: length

√
r · r and

√

〈r, r〉
Right: distance

√

(e1 − r) · (e1 − r) and
√

〈(e1 − r), (e1 − r)〉
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Inner Products

Orthogonality: 〈v,w〉 = 0 for v,w in Ln

Orthogonal basis: v1, . . . , vn form a basis for Ln

and all vi are mutually orthogonal: 〈vi , vj 〉 = 0 for i 6= j

Mutually orthogonal and unit length: ‖vi‖ = 1

⇒ form an orthonormal basis

〈vi , vj 〉 =
{

1, if i = j ,

0, if i 6= j .

Next section: the Gram-Schmidt method:
— Tool to transform a basis of a linear space into an orthonormal basis
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Inner Products

Cauchy-Schwartz inequality — in the context of inner product spaces

〈v,w〉2 ≤ 〈v, v〉〈w,w〉

Equality holds if and only if v and w linearly dependent

Restate the Cauchy-Schwartz inequality

〈v,w〉2 ≤ ‖v‖2‖w‖2
( 〈v,w〉
‖v‖‖w‖

)2

≤ 1

−1 ≤ 〈v,w〉
‖v‖‖w‖ ≤ 1

Angle θ between v and w

cos θ =
〈v,w〉
‖v‖‖w‖
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Inner Products

Inner product properties suggest

‖v‖ ≥ 0

‖v‖ = 0 if and only if v = 0

‖αv‖ = |α|‖v‖

A fourth property is the triangle inequality:

‖v + w‖ ≤ ‖v‖ + ‖w‖

(derived from the Cauchy-Schwartz inequality in Chapter 2)
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Inner Products

General definition of a projection

Let u1, . . . ,uk span a subspace Lk of L
If v is a vector not in Lk then

Pv =
〈v,u1〉
〈u1,u1〉

u1 + . . .+
〈v,uk 〉
〈uk ,uk〉

uk

is v’s orthogonal projection into Lk

Farin & Hansford Practical Linear Algebra 27 / 56



Gram-Schmidt Orthonormalization

Every inner product space has an orthonormal basis

Given: orthonormal vectors b1, . . . ,br that form basis of subspace Sr of
Ln where n > r

Find: br+1 orthogonal to the given bi

Let u be an arbitrary vector in Ln, but not in Sr

u’s orthogonal projection into Sr :

û = projSr
u = 〈u,b1〉b1 + . . .+ 〈u,br 〉br

Farin & Hansford Practical Linear Algebra 28 / 56



Gram-Schmidt Orthonormalization

Check orthogonality: for example 〈u− û,b1〉 = 0

〈u− û,b1〉 = 〈u,b1〉 − 〈u,b1〉〈b1,b1〉 − . . .− 〈u,br 〉〈b1,br 〉

⇒ br+1 =
u− projSr

u

‖ · ‖
Repeat to form an orthonormal basis for all of Ln

Key tools: projections and vector decomposition
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Gram-Schmidt Orthonormalization

Build the orthonormal basis:

S2 is depicted as R2

Given: basis v1, . . . , vn of Ln

b1 =
v1

‖ · ‖

b2 =
v2 − projS1

v2

‖ · ‖ =
v2 − 〈v2,b1〉b1

‖ · ‖

b3 =
v3 − projS2

v3

‖ · ‖

=
v3 − 〈v3,b1〉b1 − 〈v3,b2〉b2

‖ · ‖
...

Farin & Hansford Practical Linear Algebra 30 / 56



Gram-Schmidt Orthonormalization

Example: v1 =









1
0
0
0









v2 =









1
1
1
1









v3 =









1
1
0
0









v4 =









0
0
1
0









Form an orthonormal basis b1,b2,b3,b4

b1 =









1
0
0
0









b2 =









0

1/
√
3

1/
√
3

1/
√
3









b3 =









0

2/
√
6

−1/
√
6

−1/
√
6









b4 =
v4 − 〈v4,b1〉b1 − 〈v4,b2〉b2 − 〈v4,b3〉b3

‖ · ‖ =









0
0

1/
√
2

−1/
√
2









Check:
∣

∣b1 b2 b3 b4
∣

∣ = 1
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Gram-Schmidt Orthonormalization

Sometimes an orthogonal set of vectors is more desirable than an
orthonormal set

We might want to avoid the extra computational cost of normalization

Given: basis v1, . . . , vn

Find: orthogonal basis bi

Solution: set b1 = v1 then

bk = vk −
〈vk ,b1〉
〈b1,b1〉

b1 − . . . − 〈vk ,bk−1〉
〈bk−1,bk−1〉

bk−1 k = 2, . . . , n
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QR Decomposition

Matrix computation is fundamental to linear algebra

Apply this concept again to the Gram-Schmidt method

The QR decomposition will emerge

Immediate benefit is a new perspective on methods for solving least
squares approximation
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QR Decomposition

Given: n linearly independent vectors ai in R
n (stored in A)

Find: n orthonormal vectors qi in R
n (stored in Q)

Develop method with a example from the Gram-Schmidt section

A =









1 1 1 0
0 1 1 0
0 1 0 1
0 1 0 0









Step through the Gram-Schmidt process using a matrix representation

Map a1 to a unit vector q1

A1 = AR1 = [q1 a2 a3 a4] where R1 = I
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QR Decomposition

Next map a2 → q2

q2 =
1√
3
a2 −

1√
3
q1

represented as an elementary matrix

R2 =











1 − 1√
3

0 0

0 1√
3

0 0

0 0 1 0
0 0 0 1











then A2 = AR1R2 = [q1 q2 a3 a4]

By right-multiplying by R2

the elementary matrix is acting on the second column of A only
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QR Decomposition

Continue ... (see text for details) then final step:

A4 = AR1R2R3R4 = [q1 q2 q3 q4] = Q

Let R−1 = R1R2R3R4 then

A = QR is the QR decomposition of A

To complete the example:

R =













1 1 1 0

0
√
3 1√

3
1√
3

0 0
√

3
2 − 1√

6
− 1√

6

0 0 0 − 1
3
√
2
+ 2

√
2

3













and the columns of Q are given on slide 28 (called bi )
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QR Decomposition

Upper triangular matrix R describes the transformation of qi → ai

R =









qT1 · a1 qT1 · a2 qT1 · a3 qT1 · a4
0 qT2 · a2 qT2 · a3 qT2 · a4
0 0 qT3 · a3 qT3 · a4
0 0 0 qT4 · a4








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QR Decomposition

QR Decomposition and Least Squares

Revisit finding the best fit line to seven time and temperature data pairs

— Overdetermined linear system

— Find best approximation with respect to the least squares error

— Normal equations formed with QR decomposition of A

(QR)T(QR)u = (QR)Tb

RTQTQRu = RTQTb

RTRu = RTQTb

Ru = QTb.

QR decomposition provides a new approach to the normal equations
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QR Decomposition

Householder method is numerically more stable than the possibly
ill-conditioned normal equations

Transforms the linear system via orthogonal reflection matrices Hi

Hn−1 . . .H1Au = Hn−1 . . .H1b

Let QT = Hn−1 . . .H1 then

Ru = QTb

Householder can be used to construct the QR decomposition instead of
the Gram-Schmidt method

— Probably the better choice due to potential rounding error problems in
Gram-Schmidt

Chapter 15: another application of the QR decomposition – the QR
algorithm for finding eigenvalues
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A Gallery of Spaces

Let’s highlight some special linear spaces—but there are many more!

— Polynomials, continuous functions, matrices, linear maps

Polynomials: linear space Pn whose elements are all polynomials of
degree ≤ n

p(t) = a0 + a1t + a2t
2 + . . . + ant

n

Addition: coefficient by coefficient

Multiplication: polynomial times a real number
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A Gallery of Spaces

p(t)

r(t)

q(t)
0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

14

Check linearity property with an example:

p(t) = 3− 2t + 3t2 q(t) = −1 + t + 2t2

2p(t) + 3q(t) = 3− t + 12t2

Yet another polynomial of the same degree
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A Gallery of Spaces

Application of the linear space properties of Pn in shape design

Feature curves (polynomials) designed over a common domain interval

Shape formed from convex combinations of the feature curves

Idea can be used for 3D surface design using the techniques in Chapter 20
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A Gallery of Spaces

Linear map: derivative p′ of a degree n polynomial p

p′(t) = a1 + 2a2t + . . .+ nant
n−1

Rank of this map is n − 1

Farin & Hansford Practical Linear Algebra 43 / 56



A Gallery of Spaces

Example: Two cubic polynomials

p(t) = 3− t + 2t2 + 3t3 and q(t) = 1 + t − t3

in the linear space of cubic polynomials P3

Let r(t) = 2p(t)− q(t) = 5− 3t + 4t2 + 7t3

(See Figure on slide 40)

r ′(t) = −3 + 8t + 21t2

p′(t) = −1 + 4t + 9t2

q′(t) = 1− 3t2

Linearity of the derivative map ⇒ r ′(t) = 2p′(t)− q′(t)

Farin & Hansford Practical Linear Algebra 44 / 56



A Gallery of Spaces

The usual inner product for Pn

〈p(t), q(t)〉 =
∫ b

a

p(t)q(t)dt

Example: For t ∈ [−1, 1]

p1(t) = 1 p2(t) = t p3(t) = t2

Calculate the inner products:

〈1, t〉 =
∫ 1

−1
(1× t)dt =

1

2
t2
∣

∣

∣

1

−1
= 0

〈1, t2〉 =
∫ 1

−1
(1× t2)dt =

1

3
t3
∣

∣

∣

1

−1
=

2

3

〈t, t2〉 =
∫ 1

−1
(t × t2)dt =

1

4
t4
∣

∣

∣

1

−1
= 0

(These polynomials are not an orthogonal)
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A Gallery of Spaces

Inner product spaces offer the concept of length

||p(t)|| = 〈p(t), p(t)〉 =

√

∫ b

a

p(t)2dt

Example: For t ∈ [−1, 1]

||p1(t)|| =
√

∫ 1

−1
1dt =

√
2
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A Gallery of Spaces

Build an orthogonal set of polynomials with the Gram-Schmidt method

Example:

For t ∈ [−1, 1] transform pi (t) = {1, t, t2}
to an orthogonal set of polynomials {q1(t), q2(t), q3(t)}
— use the inner product definition from previous slide

q1 = p1 = 1

q2 = t − 〈t, 1〉
〈1, 1〉1 = t

q3 = t2 − 〈t2, t〉
〈t, t〉 t −

〈t2, 1〉
〈1, 1〉 1 = t2 − 1

3

The qi are the quadratic Legendre polynomials

Orthogonal polynomials provide for more computationally efficient and
better conditioned solutions to least squares approximation
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A Gallery of Spaces

Continuous functions:

A linear space given by the set of all real-valued continuous functions over
the interval [0, 1]
— This space is typically named C [0, 1]
— The linearity condition is met:

If f and g are elements of C [0, 1] then αf + βg is also in C [0, 1]
— This is an infinite-dimensional linear space

No finite set of functions forms a basis for C [0, 1]

Matrices:

The set of all 3× 3 matrices form a linear space
— This space consists of matrices
— Linear combinations formed using standard matrix addition and
multiplication with a scalar
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A Gallery of Spaces

Linear Maps: (A more abstract example)

The linear space formed from
the set of all linear maps from a linear space Ln into the reals
— Called the dual space L∗

n of Ln

— Its dimension equals that of Ln

— The linear maps in L∗
n are known as linear functionals

Let a fixed vector v and an variable vector u be in Ln

The linear functionals defined by Φv(u) = 〈u, v〉 are in L∗
n

For any basis b1, . . . ,bn of Ln define linear functionals

Φbi (u) = 〈u,bi 〉 for i = 1, . . . , n

These functionals form a basis for L∗
n
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A Gallery of Spaces

Example: In R
2 consider the fixed vector

v =

[

1
−2

]

then Φv(u) = 〈u, v〉 = u1 − 2u2

for all vectors u where 〈·, ·〉 is the dot product

Example: Pick e1, e2 for a basis in R
2

The associated linear functionals are

Φe1(u) = u1 Φe2(u) = u2

Any linear functional Φ can now be defined as

Φ(u) = r1Φe1(u) + r2Φe2(u)

where r1 and r2 are scalars
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Least Squares

Find the best approximation to the function f (x) by another function g(x)
in a particular linear space of continuous functions over a fixed interval
[a, b]

Example: given a cubic polynomial, find the best linear polynomial fit
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Least Squares

Need a quantitative definition of “best”

Measure the difference between two functions f and g over the fixed
interval

E =

∫ b

a

|f (x) − g(x)|dx

Easier:

E 2 =

∫ b

a

(f (x)− g(x))2dx
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Least Squares

Approximation space: let’s use the orthogonal trigonometric polynomials

— Well known in the context of the Fourier series of a function f (x)

f (x) = a0 + a1 cos(x) + b1 sin x + a2 cos(2x) + b2 sin(2x) + . . .

The ai and bi for i = 1, . . . , n → ∞ are called the Fourier coefficients

— For the approximation problem, choose a finite n

Let’s choose n = 2 and the interval [0, 2π] then

the least squares approximation to f (x)
is the orthogonal projection of f into space of trigonometric polynomials
of degree less than or equal to 2
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Least Squares

Compute the unknown coefficients a0, a1, b1, a2, b2

Details for a1:

∫ 2π

0
f (x) cos(x)dx = a0

∫ 2π

0
cos(x)dx

+ a1

∫ 2π

0
cos2(x)dx + b1

∫ 2π

0
sin(x) cos(x)dx

+ a2

∫ 2π

0
cos2(x)dx + b2

∫ 2π

0
sin(x) cos(x)dx

Cancellation due to the interval and orthogonality of the basis functions

a1 =

∫ 2π
0 f (x) cos(x)dx
∫ 2π
0 cos2(x)dx

=
〈f , cos(x)〉

〈cos(x), cos(x)〉
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Least Squares

Example:

Given: f (x) = x over [0, 2π]

Find: the least square approximation in the space of trigonometric
polynomials of degree n ≤ 2

g(x) = a0 + a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x)

Solution: g(x) = π − 2 sin x − sin 2x

f(x)

g(x)

1 2 3 4 5 6

1

2

3

4

5

6

7

Also illustrated in gray color: degree 10 solution
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WYSK

linear space

vector space

dimension

linear combination

linearity property

linearly independent

subspace

span

linear map

image

preimage

domain

range

rank

full rank

rank deficient

inverse

determinant

inner product

inner product space

distance in an inner
product space

length in an inner
product space

orthogonal

Gram-Schmidt
method

projection

basis

orthonormal

orthogonal
decomposition

best approximation

dual space

linear functional

QR decomposition
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