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Introduction to Eigen Things Revisited

Eigenvalues and eigenvectors reveal action and geometry of map

Connectivity matrix for a Google
matrix

Chapter 7: 2× 2 matrices

Here: n × n matrices

Important in many areas:

— characterizing harmonics of
musical instruments

— moderating movement of fuel in a
ship

— analysis of large data sets

Google matrix: webpage ranking
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The Basics Revisited

If an n × n matrix A has fixed directions

Ar = λr

meaning that A maps r to a scalar multiple of itself

r = 0 trivially satisfies this equation — not interesting

Write the equation above in matrix form

[A− λI ]r = 0

If [A− λI ] maps r 6= 0 to 0 then

p(λ) = det[A− λI ] = 0 characteristic equation

p(λ) is a polynomial of degree n in λ — its zeroes are A’s eigenvalues
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The Basics Revisited

Example:

A =









1 1 0 0
0 3 1 0
0 0 4 1
0 0 0 2









p(λ) = det[A− λI ] =

∣

∣

∣

∣

∣

∣

∣

∣

1− λ 1 0 0
0 3− λ 1 0
0 0 4− λ 1
0 0 0 2− λ

∣

∣

∣

∣

∣

∣

∣

∣

p(λ) = (1− λ)(3− λ)(4− λ)(2 − λ) = 0

zeroes of p(λ) : λ1 = 4 λ2 = 3 λ3 = 2 λ4 = 1

Convention: order the eigenvalues in decreasing order

Dominant eigenvalue: largest eigenvalue in absolute value
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The Basics Revisited

Not always dealing with upper triangular matrices like the one in the
previous Example

General n × n matrix has a degree n characteristic polynomial

p(λ) = det[A− λI ] = (λ1 − λ)(λ2 − λ) · . . . · (λn − λ)

Finding zeroes of nth degree polynomial non-trivial

Gauss elimination or LU decomposition change eigenvalues

Instead diagonalization can create simpler eigenvalue problems
— See Section 15.2 Similarity and Diagonalization

Iterative methods exist to find the dominant eigenvalue
— See Section 15.4 The Power Method
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The Basics Revisited

Example: Elementary row operations change the eigenvalues

A =

[

2 2
1 2

]

detA = 2 and eigenvalues λ1 = 2 +
√
2 and λ2 = 2−

√
2

One step of forward elimination:

A′ =

[

2 2
0 1

]

Determinant is invariant under forward elimination: detA′ = 2

The eigenvalues are not: A′ has eigenvalues λ1 = 2 and λ2 = 1
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The Basics Revisited

Understand/classify eigenvalues without actually calculating them:

Characteristic equation reveals

p(0) = detA = λ1λ2 · . . . · λn

The trace of A is defined as

tr(A) = λ1 + λ2 + . . .+ λn

= a1,1 + a2,2 + . . .+ an,n.

Example: given a real symmetric matrix ⇒ real, positive eigenvalues
If trace is zero then the eigenvalues must all be zero

A and AT have the same eigenvalues

A is invertible and has eigenvalues λi then A−1 has eigenvalues 1/λi
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The Basics Revisited

Found the λi — now solve homogeneous linear systems

[A− λi I ]ri = 0

to find the eigenvectors ri for i = 1, n

ri in the null space of [A− λi I ]

Homogeneous systems ⇒ no unique solution

The solution space is called the eigenspace of A corresponding to λi

Sometimes eigenvectors normalized to eliminate ambiguity
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The Basics Revisited

Example: Find the eigenvectors

A =









1 1 0 0
0 3 1 0
0 0 4 1
0 0 0 2









λi = 4, 3, 2, 1

Starting with λ1 = 4:








−3 1 0 0
0 −1 1 0
0 0 0 1
0 0 0 −2









r1 = 0 ⇒ r1 =









1/3
1
1
0









Repeating for all eigenvalues

r2 =









1/2
1
0
0









r3 =









1/2
1/2
−1/2
1









r4 =









1
0
0
0









and check: Ari = λi ri
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The Basics Revisited

Multiple zeroes of the characteristic polynomial
⇒ identical homogeneous systems [A− λI ]r = 0

Example:

A =





1 2 3
0 2 0
0 0 2



 λi = 2, 2, 1

For λ1 = λ2 = 2





−1 2 3
0 0 0
0 0 0



 r1 = 0

Rank 1 matrix ⇒ 2D null space ⇒ 2D eigenspace

Two free parameters: r3 and r2 — Set to zero or one ...

r1 =





3
0
1



 and r2 =





2
1
0





Any linear combination of these eigenvectors

r = cr1 + dr2
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The Basics Revisited

Example continued

For λ3 = 1





0 2 3
0 1 0
0 0 1



 r3 = 0 ⇒ r3 =





1
0
0





Construct linearly independent eigenvectors in different eigenspaces

then merge them to form the complete set of eigenvectors

This complete set will be linearly independent
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The Basics Revisited

Example: Rotation around the e3-axis:

A =





cosα − sinα 0
sinα cosα 0
0 0 1





Expect that e3 is an eigenvector:

Ae3 = e3 ⇒ corresponding eigenvalue = 1
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The Basics Revisited

Symmetric matrix A:

— real eigenvalues

— eigenvectors are orthogonal

— diagonalizable:

Diagonal matrix Λ = R−1AR

Called the eigendecomposition

Columns of R holds eigenvectors

Λ holds eigenvalues
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The Basics Revisited

Example: Eigendecompostion Λ = R−1SR of the symmetric matrix

S =





3 0 1
0 3 0
1 0 3



 λi = 4, 3, 2

Corresponding eigenvectors

r1 =





1
0
1



 r2 =





0
1
0



 r3 =





−1
0
1





Λ =





4 0 0
0 3 0
0 0 2



 R =





1/
√
2 0 −1/

√
2

0 1 0

1/
√
2 0 1/

√
2




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The Basics Revisited

Projection matrices:

— eigenvalues are one or zero

0: eigenvector projected to the zero vector

⇒ determinant is zero and matrix is singular

1: eigenvector projected to itself

— If λ1 = . . . = λk = 1 then eigenvectors populate column space

⇒ dimension is k and null space is dimension n − k
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The Basics Revisited

Example: 3× 3 projection matrix P = uuT

u =





1/
√
2

0

1/
√
2



 P =





1/2 0 1/2
0 0 0

1/2 0 1/2





λ1 = 1 λ2 = 0 λ3 = 0

λ1 = 1 ⇒





−1/2 0 1/2
0 −1 0

1/2 0 −1/2



 r1 = 0 ⇒ r1 =





1
0
1




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The Basics Revisited

Example: continued

λ2 = λ3 = 0 ⇒





1/2 0 1/2
0 0 0
1/2 0 1/2



 r = 0

Find two eigenvectors that span 2D null space:

— free parameters r2 and r3

r2 =





−1
0
1



 r3 =





0
1
0





All linear combinations
r = cr2 + dr3

span the eigenspace corresponding to λ2 = 0

Use Gram-Schmidt to form an orthogonal set of vectors
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Similarity and Diagonalization

Examine change of basis as a tool for transforming a matrix to a simpler
one with the same eigenvalues

— Simpler matrix will be a diagonal matrix containing the eigenvalues

A: a-basis → e-basis A−1: e-basis → a-basis

If M is a linear map in the e-basis then

M ′ = A−1MA linear map in the a− basis

Matrices M and M ′ are similar

— Share the same eigenvalues

— Do not share the same eigenvectors
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Similarity and Diagonalization

Example: change of basis for projecting a point onto a line (Example 5.10)

Solution: M2 = RθPR−θ

— rotate into e-basis via R−θ

— apply projection P

— reverse rotation via Rθ

Projection matrix P is similar to M2

P =

[

1 0
0 0

]

M2 =

[

0.5 0.5
0.5 0.5

]

Rθ =

[

cos θ − sin θ
sin θ cos θ

]
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Similarity and Diagonalization

Matrix M is diagonalizable if there exists an invertible matrix R such that

Λ = R−1MR is a diagonal matrix

— Eigenvalues of M are the diagonal entries in Λ

— Eigenvectors of M are the column vectors of R

Called the eigenbasis

Special: orthogonally diagonalizable

Λ = RTMR orthogonal R

⇒ M is symmetric
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Similarity and Diagonalization

Example: distinct eigenvalues not necessary to be diagonalizable

Λ = RTMR

M =

[

2 1
1 2

]

R =
1√
2

[

1 −1
1 1

]

Λ =

[

3 0
0 3

]

If an eigenvalue of a symmetric matrix is repeated k times

then the eigenspace spanned by the eigenvectors is k-dimensional

Gram-Schmidt method applied to achieve an orthonormal basis

⇒ a symmetric matrix will always be diagonalizable
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Similarity and Diagonalization

Matrix does not have to be symmetric to be diagonalizable

n × n matrix M

Diagonalizable Λ = RTMR ≡ n linearly independent eigenvectors

— Matrix R is not unique; recall the free parameters
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Similarity and Diagonalization

Not all matrices are diagonalizable

Example: shear

M =

[

1 1/2
0 1

]

where λ1 = λ2 = 1

has just one fixed direction
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Similarity and Diagonalization

If a matrix M is diagonalizable matrix then repeating the map is simple

M = RΛR−1 ⇒ Mk = RΛkR−1

Λk =













(λ1)
k

. . .
. . .

(λn)
k













This topic will be the focus of the power method
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Quadratic Forms

Quadratic forms in R
n

Given: v in R
n and n × n symmetric matrix A

f (v) = vTAv = a1,1v
2
1 + 2a1,2v1v2 + . . .+ an,nv

2
n
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Quadratic Forms

Examples:

A1 =





2 0 0
0 0.5 0
0 0 1



 A2 =





2 0 0
0 0 0
0 0 1



 A3 =





−2 0 0
0 0.5 0
0 0 1





Quadratic form for each matrix:

f1(v) = 2v21 + 0.5v22 + v23 f2(v) = 2v21 + v23 f3(v) = −2v21 + 0.5v22 + v23

|A1| = 1 λ1 = 2 λ2 = 1 λ3 = 0.5

|A2| = 0 λ1 = 2 λ2 = 1 λ3 = 0

|A3| = −1 λ1 = −2 λ2 = 1 λ3 = 0.5
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Quadratic Forms

Contour plots

Left: f1 = 0.5 and f1 = 1.5

— Outer ellipsoid clipped against the bounding box

Middle: f2 = 0.5 and f2 = 1

Right: f3 = 0.1 and f3 = 0.5
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Quadratic Forms

Positive definite matrix: a real matrix satisfying

f (v) = vTAv > 0 for any v 6= 0 ∈ R
n

⇒ quadratic form is positive everywhere except for v = 0

Contour f (v) = 1 is an n-dimensional ellipsoid

— Semi-minor axis corresponds to r1 with length 1/
√
λ1

— Semi-major axis corresponds to rn with length 1/
√
λn

Example: Only A1 is positive definite

f1(v) = 1 ellipsoid:

— Shortest axis length 1/
√
2 = 0.5 along the e1-axis

— Longest axis length 1/
√
0.5 = 2 along the e2-axis
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Quadratic Forms

Rayleigh quotient q(v) =
vTAv

vTv

Maximum in the dominant eigenvector direction: q(r1) = λ1

Minimum in direction corresponding to the smallest eigenvalue: q(rn) = λn

Rayleigh quotient used to approximate eigenvalues and eigenvectors

— the power method
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The Power Method

A: symmetric n × n matrix with n distinct eigenvalues

Let λ be the dominant eigenvalue and r its corresponding eigenvector

Ai r = λi r

Use this property to find the dominant eigenvalue and eigenvector
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The Power Method

Choose an arbitrary vector r(1) (non-zero/α1 6= 0)
There exists α1, α2, . . . , αn such that

r(1) = α1r1 + α2r2 + . . .+ αnrn

Apply a linear map:

Ar(1) = A(α1r1 + α2r2 + . . . + αnrn)

= α1λ1r1 + α2λ2r2 + . . . + αnλnrn

Repeat

Ai r(1) = λi
1

(

α1r1 + α2

(

λ2

λ1

)i

r2 + . . .+ αn

(

λn

λ1

)i

rn

)

For large i Ai r(1) ≈ α1λ
i
1r1
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The Power Method

Instead of computing Ai directly, iteratively apply A

r(k+1) = Ar(k) ≈ A(α1λ
k
1r1) = λ1(α1λ

k
1r1) = λ1r

(k) k = 1, 2, . . .

After a sufficiently large k : r(k) will begin to line up with r1

Vector sequences examples:
— Initial guess: longest black vector
— Successive iterations: lighter gray
— Left and middle figures demonstrate convergence
— (Each iteration scaled with ∞-norm)
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The Power Method

Find λ1:
(r(k))Tr(k+1) ≈ λ1(r

(k))Tr(k)

(r(k))Tr(k+1)

(r(k))Tr(k)
≈ λ1 Rayleigh quotient

In the algorithm to follow all components of r(k+1) and r(k) are
(approximately) related by

r
(k+1)
j

r
(k)
j

= λ1 for j = 1, . . . , n

Rather than checking each ratio, use the ∞-norm to define λ1 upon each
iteration
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The Power Method

Algorithm:

Initialization:
Estimate dominant eigenvector r(1) 6= 0

Find j where |r (1)j | = ‖r(1)‖∞ and set r(1) = r(1)/r
(1)
j

Set λ(1) = 0
Set tolerance ǫ
Set maximum number of iterations m

For k = 2, . . . ,m

y = Ar(k−1)

λ(k) = yj
Find j where |yj | = ‖y‖∞
If yj = 0 Then output: “eigenvalue zero; select new r(1) and restart”; exit
r(k) = y/yj
If |λ(k) − λ(k−1)| < ǫ Then output: λ(k) and r(k); exit
If k = m output: maximum iterations exceeded
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The Power Method

Some remarks on this method:

If |λ| is either “large” or “close” to zero, could cause numerical
problems — Good to scale the r(k) — Done here with ∞-norm

Convergence seems impossible if r(1) is perpendicular to r, but
numerical round-off helps and it will converge slowly

Very slow convergence if |λ1| ≈ |λ2|
Limited to symmetric matrices with one dominant eigenvalue
May be generalized to more cases

Example application of the ∞-norm

guess r(1) =

[

1.5
−0.1

]

∞-norm scaled ⇒ r(1) =

[

1
−0.066667

]
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The Power Method

Example:

A1 =

[

2 1
1 2

]

λ1 = 3 λ2 = 1

A2 =

[

2 0.1
0.1 2

]

λ1 = 2.1 λ2 = 1.9

A3 =

[

2 −0.1
0.1 2

]

λ1 = 2 + 0.1i λ2 = 2− 0.1i

Power method demonstration with A1,A2,A3 (left to right)
— Initial guess: longest black vector
— Successive iterations: lighter gray
— Each iteration scaled with ∞-norm
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The Power Method

Example: continued

A1: symmetric and λ1 separated from λ2

⇒ rapid convergence in 11 iterations — Estimate: λ = 2.99998

A2: symmetric but λ1 close to λ2

⇒ convergence slower 41 iterations — Estimate: λ = 2.09549

A3: rotation matrix (not symmetric) and complex eigenvalues
⇒ no convergence.
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Application: Google Eigenvector

Linear algebra + search engines

Search engine techniques are highly proprietary and changing

All share the basic idea of ranking webpages

Concept introduced by Brin and Page in 1998 — Google

Ranking webpages is an eigenvector problem!

The web frozen at some point in time consists of N webpages

— A page pointed to very often: important

— A page with none or few other pages pointing to it: unimportant

How can we rank all web pages?
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Application: Google Eigenvector

Basics:

— Assume all webpages are ordered: assign a number i to each

— If page i → j : record an outlink for page i

— If page j → i : record an inlink for page i

— A page is not supposed to link to itself

Example: 4 web pages

Directed graph

4× 4 adjacency matrix C :
— Outlink for page i ⇒ cj ,i = 1
— Else cj ,i = 0

C =









0 1 1 1
0 0 1 0
1 1 0 1
0 0 1 0








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Application: Google Eigenvector

Ranking ri of page i determined by C

Example rules:

1 ri should grow with the number of page i ’s inlinks

2 ri should be weighted by the ranking of each of page i ’s inlinks

3 Let page i have an inlink from page j

then the more outlinks page j has, the less it should contribute to ri

Not realistic but assume each page has at least one outlink and inlink

oi : total number of outlinks of page i

Scale every element of column i by 1/oi

Google matrix D

dj ,i =
cj ,i

oi

Stochastic matrix: columns have non-negative entries and sum to one
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Application: Google Eigenvector

Connectivity/Adjacency matrix Stochastic Google matrix

C =









0 1 1 1
0 0 1 0
1 1 0 1
0 0 1 0









⇒ D =









0 1/2 1/3 1/2
0 0 1/3 0
1 1/2 0 1/2
0 0 1/3 0








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Application: Google Eigenvector

Finding ri involves knowing the ranking of all pages including ri !

— Seems like an ill-posed circular problem, but ...

Find r = Dr where r = [r1, . . . , rN ]
T

— Eigenvector of D corresponding to the eigenvalue 1

— All stochastic matrices have an eigenvalue 1

— r is called a stationary vector

— 1 is D’s largest (dominant) eigenvalue

— Employ the power method

— Vector r now contains the page rank

r = [0.67, 0.33, 1, 0.33]T

⇒ Highest ranked: page 3
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Application: Google Eigenvector

In the real world — in 2021 — approximately 3.5 billion webpages
⇒ World’s largest matrix to be used

Luckily it contains mostly zeroes — sparse matrix

Introduction Figure illustrates a Google matrix for ≈ 3 million pages

In the real world many more rules are needed and much more robust
numerical analysis methods required
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QR Algorithm

Triangular matrices prove to be helpful in developing efficient algorithms
— Continue that theme here with the QR algorithm

QR decomposition: A = QR

R : upper triangular matrix Q: orthogonal matrix

Utilize QR decomposition to solve eigenvalue problem Au = λu

Orthogonal matrix Q suitable for a similarity transformation

A′ = QTAQ ⇒ A, A′ share same eigenvalues

Write similarity transformation as

A′ = RQ where R = QTA

This process is repeated in the QR algorithm
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QR Algorithm

Algorithm:

Let A(1) = A

For k = 1, 2, . . .

Form the QR decomposition A(k) = Q(k)R (k)

Set A(k+1) = R (k)Q(k)

Elegantly simple algorithm!

If eigenvalues are distinct,

algorithm will return an approximation of the eigenvalues in A(k)

Matrix A(k) will converge to an upper triangular matrix

— Eigenvalues on the diagonal

— If A is symmetric, then the matrix will be diagonal
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QR Algorithm

Example:

A(1) =





2 −1 0
−1 2 −1
0 −1 2



 λi ≈ 3.4, 2, 0.58

Sample iterations:

A(2) =





2.8 −0.74 0
−0.74 2.34 0.63

0 0.63 0.85



 A(6) =





3.4 −0.13 0
−0.13 2.0 0.004

0 0.004 0.58





More iterations results in A(k) becoming closer to diagonal and
improvements on the exact eigenvalues are made.
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Eigenfunctions

Explore the space of all real-valued functions — function space

Do eigenvalues and eigenvectors have meaning there?

Let f be a function: y = f (x) where x and y are real numbers
— Assume that f is smooth or differentiable
— Example: f (x) = sin(x)
— The set of all such functions f forms a linear space

Define linear maps for elements of this function space
— Example: Lf = 2f
— Example: Derivatives Df = f ′

To any function f the map D assigns another function
Example: let f (x) = sin(x) then Df (x) = cos(x)
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Eigenfunctions

How can we marry the concept of eigenvalues and linear maps?

D will not have eigenvectors since our linear space consists of functions

Instead: eigenfunctions

A function f is an eigenfunction of linear map D if

Df = λf

D may have many eigenfunctions each corresponding to a different λ

Farin & Hansford Practical Linear Algebra 49 / 53



Eigenfunctions

Any function f satisfying
f ′ = λf

is an eigenfunction of the derivative map

The function f (x) = ex satisfies

f ′(x) = ex which may be written as Df = f = 1× f

⇒ 1 is an eigenvalue of the derivative map D

More generally: all functions f (x) = eλx satisfy (for λ 6= 0):

f ′(x) = λeλx which may be written as Df = λf

⇒ all real numbers λ 6= 0 are eigenvalues of D

Corresponding eigenfunctions are eλx ⇒ infinitely many eigenfunctions!
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Eigenfunctions

Example: second derivative Lf = f ′′

A set of eigenfunctions for this map is cos(kx) for k = 1, 2, . . .

d2 cos(kx)

dx2
= −k

d sin(kx)

dx
= −k2 cos(kx)

and the eigenvalues are −k2
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Eigenfunctions

Eigenfunctions have many uses
— Differential equations
— Mathematical physics
— Engineering mathematics:

orthogonal functions key for data fitting and vibration analysis

Orthogonal functions arise as solution to a Sturm-Liouville equation

y ′′(x) + λy(x) = 0 such that y(0) = 0 and y(π) = 0

— Solution: y(x) = sin(ax) for a = 1, 2, . . .
— These are eigenfunctions of the Sturm-Liouville equation
— The corresponding eigenvalues are λ = a2

See Section 15.8 Application: Influenza Modeling
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WYSK

eigenvalue

eigenvector

characteristic polynomial

eigenvalues and eigenvectors of
a symmetric matrix

dominant eigenvalue

eigendecomposition

trace

quadratic form

positive definite matrix

power method

QR algorithm

max-norm

connectivity matrix

adjacency matrix

directed graph

stochastic matrix

stationary vector

orthogonally diagonalizable

similarity transformation

eigenfunction
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