Chapter 15: Eigen Things Revisited

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book
www.farin hansford.com/books/pla

©2013
1. Introduction to Eigen Things Revisited
2. The Basics Revisited
3. The Power Method
4. Application: Google Eigenvector
5. Eigenfunctions
6. WYSK
Introduction to Eigen Things Revisited

Connectivity matrix for a Google matrix

Chapter 7: 2 × 2 matrices
Here: \(n \times n \) matrices

Eigenvalues and eigenvectors reveal action and geometry of map

Important in many areas:
— characterizing harmonics of musical instruments
— moderating movement of fuel in a ship
— analysis of large data sets

Google matrix:
Used to find the webpage ranking
(See Section: Google Eigenvector)
If an $n \times n$ matrix A has fixed directions

$$Ar = \lambda r \quad \text{or} \quad [A - \lambda I]r = 0$$

$r = 0$ trivially satisfies this equation — not interesting

If $[A - \lambda I]$ maps $r \neq 0$ to 0 then

$$p(\lambda) = \det[A - \lambda I] = 0$$

characteristic equation

Polynomial of degree n in λ — its zeroes are A's eigenvalues
Example:

\[
A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 2
\end{bmatrix}
\]

\[
p(\lambda) = \det[A - \lambda I] =
\begin{vmatrix}
1 - \lambda & 1 & 0 & 0 \\
0 & 3 - \lambda & 1 & 0 \\
0 & 0 & 4 - \lambda & 1 \\
0 & 0 & 0 & 2 - \lambda
\end{vmatrix}
\]

\[
p(\lambda) = (1 - \lambda)(3 - \lambda)(4 - \lambda)(2 - \lambda) = 0
\]

\[
\lambda_1 = 4 \quad \lambda_2 = 3 \quad \lambda_3 = 2 \quad \lambda_4 = 1
\]

Convention: order the eigenvalues in decreasing order

Dominant eigenvalue: largest eigenvalue in absolute value
Example: Elementary row operations change the eigenvalues

\[
A = \begin{bmatrix} 2 & 2 \\ 1 & 2 \end{bmatrix}
\]

\[\det A = 2\] and eigenvalues \(\lambda_1 = 2 + \sqrt{2}\) and \(\lambda_2 = 2 - \sqrt{2}\)

One step of forward elimination:

\[
A' = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}
\]

Determinant is invariant under forward elimination — \(\det A' = 2\)

The eigenvalues are not: \(A'\) has eigenvalues \(\lambda_1 = 2\) and \(\lambda_2 = 1\)

Instead: use diagonalization — see Chapter 16.
General $n \times n$ matrix has a degree n characteristic polynomial

$$p(\lambda) = \det[A - \lambda I] = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda)$$

Let $\lambda = 0$ then $p(0) = \det A = \lambda_1\lambda_2 \cdot \ldots \cdot \lambda_n$

Finding zeroes of n^{th} degree polynomial nontrivial
— Use iterative method to find dominant eigenvalue (see next Section)
— Symmetric matrices always have real eigenvalues
— A and A^T have the same eigenvalues
— A is invertible and has eigenvalues λ_i, then A^{-1} has eigenvalues $1/\lambda_i$
Found the λ_i — now solve homogeneous linear systems

\[[A - \lambda_i I] r_i = 0 \]

to find the eigenvectors r_i for $i = 1, n$

r_i in the null space of $[A - \lambda_i I]$

Homogeneous systems \Rightarrow no unique solution

Sometimes eigenvectors normalized to eliminate this ambiguity
Example: Find the eigenvectors

\[A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \]

\[\lambda_i = 4, \ 3, \ 2, \ 1 \]

Starting with \(\lambda_1 = 4 \):

\[\begin{bmatrix} -3 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix} \]

\(r_1 = 0 \) \implies \(r_1 = \begin{bmatrix} 1/3 \\ 1 \\ 1 \\ 0 \end{bmatrix} \)

Repeating for all eigenvalues

\[r_2 = \begin{bmatrix} 1/2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \]

\[r_3 = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ 1 \end{bmatrix} \]

\[r_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

and check: \(A r_i = \lambda_i r_i \)
Multiple zeroes of the characteristic polynomial
⇔ identical homogeneous systems \([A - \lambda I]r = 0\)

Example:

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{bmatrix}
\]

\[\lambda_1 = \lambda_2 = 2, \quad \lambda_3 = 1\]

For \(\lambda_1 = \lambda_2 = 2\)

\[
\begin{bmatrix}
-1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} r_1 = 0 \quad \Rightarrow \quad r_1 = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}
\]

For \(\lambda_3 = 1\)

\[
\begin{bmatrix}
0 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} r_3 = 0 \quad \Rightarrow \quad r_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
\]
Example: Rotation around the e_3-axis:

$$A = \begin{bmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{bmatrix}$$

Expect that e_3 is an eigenvector:

$$Ae_3 = e_3 \Rightarrow \text{corresponding eigenvalue} = 1$$
Symmetric matrix A:
— real eigenvalues
— eigenvectors are orthogonal

$\Rightarrow A$ is diagonalizable:
Possible to transform A to diagonal matrix $\Lambda = R^{-1}AR$
— Columns of R are A’s eigenvectors
— Λ is a diagonal matrix of A’s eigenvalues
— eigendecomposition of A
Example: Eigendecomposition $\Lambda = R^{-1}SR$ of the symmetric matrix

$$S = \begin{bmatrix}
3 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 3
\end{bmatrix} \quad \lambda_i = 4, \ 3, \ 2$$

Corresponding eigenvectors

$$r_1 = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} \quad r_2 = \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} \quad r_3 = \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}$$

$$\Lambda = \begin{bmatrix}
4 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{bmatrix} \quad R = \begin{bmatrix}
1/\sqrt{2} & 0 & -1/\sqrt{2} \\
0 & 1 & 0 \\
1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}$$
Projection matrices:
- eigenvalues are one or zero
 0: eigenvector projected to the zero vector
 ⇒ determinant is zero and matrix is singular
 1: eigenvector projected to itself
- If $\lambda_1 = \ldots = \lambda_k = 1$ then eigenvectors populate column space
 ⇒ dimension is k and null space is dimension $n - k$
The Basics Revisited

Example: 3 × 3 projection matrix $P = uu^T$

$u = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}$ \quad $P = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$ \quad $\lambda_i = 1, 0, 0$

$\lambda_1 = 1 \Rightarrow \begin{bmatrix} -1/2 & 0 & 1/2 \\ 0 & -1 & 0 \\ 1/2 & 0 & -1/2 \end{bmatrix} \Rightarrow r_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

$\lambda_{1,2} = 0 \Rightarrow \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \Rightarrow r_2 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

Or find two eigenvectors that span 2D null space:

$r_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad r_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
The Basics Revisited

Trace of matrix A

$$tr(A) = \lambda_1 + \lambda_2 + \ldots + \lambda_n = a_{1,1} + a_{2,2} + \ldots + a_{n,n}$$

Gives insight to eigenvalues without computing directly

For 2×2 matrices

$$\det[A - \lambda I] = \lambda^2 - \lambda tr(A) + \det A \quad \Rightarrow \quad \lambda_{1,2} = \frac{tr(A) \pm \sqrt{tr(A)^2 - 4 \det A}}{2}$$

Example:

$$A = \begin{bmatrix} 1 & -2 \\ 0 & -2 \end{bmatrix} \quad \Rightarrow \quad \lambda_i = -2, 1$$

$$tr(A) = -1 \text{ and } \det A = -2 \quad \Rightarrow \quad \lambda_{1,2} = \frac{-1 \pm 3}{2}$$
The Basics Revisited

Quadratic forms in \mathbb{R}^n

$$f(\mathbf{v}) = \mathbf{v}^T \mathbf{C} \mathbf{v} = c_{1,1} v_1^2 + 2c_{1,2} v_1 v_2 + \ldots + c_{n,n} v_n^2$$

The contour $f(\mathbf{v}) = 1$ is an n-dimensional ellipsoid

— Semi-minor axis corresponds to \mathbf{r}_1 with length $1/\sqrt{\lambda_1}$
— Semi-major axis corresponds to \mathbf{r}_n with length $1/\sqrt{\lambda_n}$

Positive definite matrix: A real matrix satisfying

$$f(\mathbf{v}) = \mathbf{v}^T \mathbf{A} \mathbf{v} > 0 \quad \text{for any} \quad \mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$$
A: symmetric $n \times n$ matrix
Let λ be the dominant eigenvalue and \mathbf{r} its corresponding eigenvector

$$A^i \mathbf{r} = \lambda^i \mathbf{r}$$

Use this property to find the dominant eigenvalue and eigenvector
The Power Method

Start with arbitrary (nonzero) \(r^{(1)} \) — construct vector sequence

\[
r^{(i+1)} = Ar^{(i)}; \quad i = 1, 2, \ldots
\]

After a sufficiently large \(i \) \(r^{(i)} \) will begin to line up with \(r \): \(r^{(i+1)} = \lambda r^{(i)} \)

\[\Rightarrow\] All components of \(r^{(i+1)} \) and \(r^{(i)} \) are (approximately) related by

\[
\frac{r_{j}^{(i+1)}}{r_{j}^{(i)}} = \lambda \quad \text{for} \ j = 1, \ldots, n \quad (*)
\]

Longest black vector: initial guess; Successive iterations lighter shades
Each iteration scaled with respect to the \(\infty \)-norm
The Power Method

Algorithm:

Rather than checking each ratio (*) use the ∞-norm to define λ

Initialization:

- Estimate dominant eigenvector $r^{(1)} \neq 0$
- Find j where $|r_j^{(1)}| = \|r^{(1)}\|\infty$ and set $r^{(1)} = r^{(1)}/r_j^{(1)}$
- Set $\lambda^{(1)} = 0$
- Set tolerance ϵ
- Set maximum number of iterations m

For $k = 2, \ldots, m$

- $y = Ar^{(k-1)}$
- $\lambda^{(k)} = y_j$
- Find j where $|y_j| = \|y\|\infty$
- If $y_j = 0$ Then output: “eigenvalue zero; select new $r^{(1)}$ and restart”; exit
- $r^{(k)} = y/y_j$
- If $|\lambda^{(k)} - \lambda^{(k-1)}| < \epsilon$ Then output: $\lambda^{(k)}$ and $r^{(k)}$; exit
- If $k = m$ output: maximum iterations exceeded
The Power Method

Some remarks on this method:

- If $|\lambda|$ is either “large” or “close” to zero, could cause numerical problems — Good to scale the $r^{(k)}$ — Done here with ∞-norm
- Convergence seems impossible if $r^{(1)}$ is perpendicular to r, but numerical round-off helps and it will converge slowly
- Very slow convergence if $|\lambda_1| \approx |\lambda_2|$
- Limited to symmetric matrices with one dominant eigenvalue
 May be generalized to more cases
The Power Method

Example: A_1, A_2, A_3 correspond to Figure from left to right

\[
A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \lambda_1 = 3 \quad \lambda_2 = 1
\]

\[
A_2 = \begin{bmatrix} 2 & 0.1 \\ 0.1 & 2 \end{bmatrix} \quad \lambda_1 = 2.1 \quad \lambda_2 = 1.9
\]

\[
A_3 = \begin{bmatrix} 2 & -0.1 \\ 0.1 & 2 \end{bmatrix} \quad \lambda_1 = 2 + 0.1i \quad \lambda_2 = 2 - 0.1i
\]

\[
\mathbf{r}^{(1)} = \begin{bmatrix} 1.5 \\ -0.1 \end{bmatrix} \quad \text{∞-norm scaled} \quad \Rightarrow \quad \mathbf{r}^{(1)} = \begin{bmatrix} 1 \\ -0.066667 \end{bmatrix}
\]

A_1: symmetric and λ_1 separated from λ_2

\Rightarrow rapid convergence in 11 iterations — Estimate: $\lambda \approx 2.99998$

A_2: symmetric but λ_1 close to λ_2

\Rightarrow convergence slower 41 iterations — Estimate: $\lambda \approx 2.09549$

A_3: rotation matrix (not symmetric) and complex eigenvalues

\Rightarrow no convergence.
Linear algebra + search engines

Search engine techniques are highly proprietary and changing

All share the basic idea of ranking webpages

Concept introduced by Brin and Page in 1998 — Google

Ranking webpages is an eigenvector problem!

The web frozen at some point in time consists of N webpages
— A page pointed to very often: important
— A page with none or few other pages pointing to it: unimportant

How can we rank all web pages?
Application: Google Eigenvector

Basics:
— Assume all webpages are ordered: assign a number i to each
— If page $i \rightarrow j$: record an **outlink** for page i
— If page $j \rightarrow i$: record an **inlink** for page i
— A page is not supposed to link to itself

Example: 4 web pages

$$\begin{align*}
4 \times 4 \text{ adjacency matrix } C: \\
&\text{— Outlink for page } i \Rightarrow c_{j,i} = 1 \\
&\text{— Else } c_{j,i} = 0
\end{align*}$$

$$C = \begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}$$
Application: Google Eigenvector

Ranking r_i of page i determined by C

Example rules:

1. r_i should grow with the number of page i’s inlinks
2. r_i should be weighted by the ranking of each of page i’s inlinks
3. Let page i have an inlink from page j
 then the more outlinks page j has, the less it should contribute to r_i

Not realistic but assume each page has at least one outlink and inlink

o_i: total number of outlinks of page i

Scale every element of column i by $1/o_i$

Google matrix D

$$d_{j,i} = \frac{c_{j,i}}{o_i}$$

Stochastic matrix: columns have non-negative entries and sum to one
Application: Google Eigenvector

Adjacency matrix

\[C = \begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix} \]

\[\Rightarrow \]

Stochastic Google matrix

\[D = \begin{bmatrix}
0 & 1/2 & 1/3 & 1/2 \\
0 & 0 & 1/3 & 0 \\
1 & 1/2 & 0 & 1/2 \\
0 & 0 & 1/3 & 0
\end{bmatrix} \]
Application: Google Eigenvector

Finding r_i involves knowing the ranking of all pages including r_i
— Seems like an ill-posed circular problem, but ...

Find $\mathbf{r} = D\mathbf{r}$ where $\mathbf{r} = [r_1, \ldots, r_N]^T$
— Eigenvector of D corresponding to the eigenvalue 1
— All stochastic matrices have an eigenvalue 1
— \mathbf{r} is called a stationary vector
— 1 is D’s largest (dominant) eigenvalue
— Employ the power method
— Vector \mathbf{r} now contains the page rank

$\mathbf{r} = [0.67, 0.33, 1, 0.33]^T \Rightarrow$ Highest ranked: page 3
Application: Google Eigenvector

In the real world — in 2013 — approximately 50 billion webpages
⇒ World’s largest matrix to be used

Luckily it contains mostly zeroes — *sparse matrix*

Introduction Figure illustrates a Google matrix for ≈3 million pages

In the real world many more rules are needed and much more robust numerical analysis methods required
Explore the space of all real-valued functions — function space
Do eigenvalues and eigenvectors have meaning there?

Let f be a function: $y = f(x)$ where x and y are real numbers
— Assume that f is smooth or differentiable
— Example: $f(x) = \sin(x)$
— The set of all such functions f forms a linear space

Define linear maps for elements of this function space
— Example: $Lf = 2f$
— Example: Derivatives $Df = f'$

 To any function f the map D assigns another function
 Example: let $f(x) = \sin(x)$ then $Df(x) = \cos(x)$
Eigenfunctions

How can we marry the concept of eigenvalues and linear maps?

D will not have eigenvectors since our linear space consists of functions.

Instead: eigenfunctions

A function f is an eigenfunction of linear map D if

$$Df = \lambda f$$

D may have many eigenfunctions each corresponding to a different λ
Eigenfunctions

\[f' = \lambda f \]

Any function \(f \) satisfying this is an eigenfunction of the derivative map

The function \(f(x) = e^x \) satisfies

\[f'(x) = e^x \quad \text{which may be written as} \quad Df = f = 1 \times f \]

\(\Rightarrow 1 \) is an eigenvalue of the derivative map \(D \)

More generally: all functions \(f(x) = e^{\lambda x} \) satisfy (for \(\lambda \neq 0 \)):

\[f'(x) = \lambda e^{\lambda x} \quad \text{which may be written as} \quad Df = \lambda f \]

\(\Rightarrow \) all real numbers \(\lambda \neq 0 \) are eigenvalues of \(D \)

Corresponding eigenfunctions are \(e^{\lambda x} \)

This map \(D \) has infinitely many eigenfunctions!
Eigenfunctions

Example: the map is the second derivative $Lf = f''$

A set of eigenfunctions for this map is $\cos(kx)$ for $k = 1, 2, \ldots$

$$\frac{d^2 \cos(kx)}{dx^2} = -k \frac{d \sin(kx)}{dx} = -k^2 \cos(kx)$$

and the eigenvalues are $-k^2$
Eigenfunctions

Eigenfunctions have many uses
— Differential equations
— Mathematical physics
— Engineering mathematics:
 orthogonal functions key for data fitting and vibration analysis

Orthogonal functions arise as result of the solution to a Sturm-Liouville equation

\[y''(x) + \lambda y(x) = 0 \quad \text{such that} \quad y(0) = 0 \text{ and } y(\pi) = 0 \]

— Linear second order differential equation with boundary conditions
— Defines a boundary value problem
— Unknown are the functions \(y(x) \) that satisfy this equation
— Solution: \(y(x) = \sin(ax) \) for \(a = 1, 2, \ldots \)
— These are eigenfunctions of the Sturm-Liouville equation
— The corresponding eigenvalues are \(\lambda = a^2 \)
- eigenvalue
- eigenvector
- characteristic polynomial
- eigenvalues and eigenvectors of a symmetric matrix
- dominant eigenvalue
- eigendecomposition
- trace
- quadratic form
- positive definite matrix
- power method
- max-norm
- adjacency matrix
- directed graph
- stochastic matrix
- stationary vector
- eigenfunction