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Introduction to Eigen Things Revisited

Eigenvalues and eigenvectors reveal action and geometry of map

Chapter 7: 2 x 2 matrices

Here: n X n matrices

Important in many areas:

— characterizing harmonics of
musical instruments

— moderating movement of fuel in a
ship

— analysis of large data sets

. : I ix: ki
Connectivity matrix for a Google Google matrix: webpage ranking

matrix
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The Basics Reuvisited

If an n x n matrix A has fixed directions
Ar = Ar

meaning that A maps r to a scalar multiple of itself

r = 0 trivially satisfies this equation — not interesting

Write the equation above in matrix form
[A-Xr=0
If [A— Al] maps r # 0 to 0 then
p(A\) =det[A—AI]=0

p()) is a polynomial of degree nin A — its zeroes are A's
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The Basics Reuvisited

Example:

O O O
O O W
o b~ = O
N = O O

1-x 1 0 0
0 3-x 1 0
0 0 4-x 1
0 0 0 2-2A
pA) =1 -ANB-NE-1(2-1=0

zeroes of p(A): A1 =14 Ao =3 A3 =2 =1

p(A\) = det[A — Al] =

Convention: order the eigenvalues in decreasing order

. largest eigenvalue in absolute value
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The Basics Reuvisited

Not always dealing with upper triangular matrices like the one in the
previous Example

General n x n matrix has a degree n characteristic polynomial

p(N) =detfA— M =M = N2 —=A)-...-(An—A)

th degree polynomial non-trivial

Finding zeroes of n
Gauss elimination or LU decomposition change eigenvalues

Instead diagonalization can create simpler eigenvalue problems
— See Section 15.2 Similarity and Diagonalization

Iterative methods exist to find the dominant eigenvalue
— See Section 15.4 The Power Method
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The Basics Reuvisited

Example: Elementary row operations change the eigenvalues
2 2
A=)
det A = 2 and eigenvalues A\; =2 + V2and My =2 -2

One step of forward elimination:
2 2
/ —
=l
Determinant is invariant under forward elimination: det A’ = 2

The eigenvalues are not: A’ has eigenvalues \; =2 and A\, =1
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The Basics Reuvisited

Understand/classify eigenvalues without actually calculating them:

Characteristic equation reveals
p(O) =detA= M) ...\,
The trace of A is defined as

tr(A) = A1+ X +...+ Ay

=ay1+tax+...+ apn-

Example: given a real symmetric matrix = real, positive eigenvalues
If trace is zero then the eigenvalues must all be zero

A and AT have the same eigenvalues

A is invertible and has eigenvalues \; then A~ has eigenvalues 1/);
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The Basics Reuvisited

Found the A\; — now solve homogeneous linear systems
[A—Xillri=0
to find the rifori=1n

r; in the null space of [A — \;l]

Homogeneous systems = no unique solution

The solution space is called the of A corresponding to \;

Sometimes eigenvectors normalized to eliminate ambiguity
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The Basics Reuvisited

Example: Find the eigenvectors

1100
0 310
A= 00 4 1 Ai=4,3 21
0 00 2
Starting with Ay = 4:
-3 1 0 O 1/3
0 -1 1 0 =0 = r 1
0o 0 0 1|t~ S |
0 0 0 -2 0
Repeating for all eigenvalues
1/2 1/2 1
11 1 1)2 10 Ay
v, = 0 r3 = ~1/2 ry = 0 and check: Ar; = A\jr;
0 1 0
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The Basics Reuvisited

Multiple zeroes of the characteristic polynomial
= identical homogeneous systems [A — A]r =0
Example:

123
A=10 2 0] N=2 21
00 2

-1 2 3
For \i =X =2 0 0 0|rr=0
0 00

Rank 1 matrix = 2D null space = 2D eigenspace

Two free parameters: r3 and rn — Set to zero or one ...

3 2
rp= |0 and = |1
1 0
Any linear combination of these eigenvectors
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The Basics Reuvisited

Example continued

0 2 3 1
For A3 =1 0 1 0|lr3=0 = r3= |0
0 01 0

Construct linearly independent eigenvectors in different eigenspaces

then merge them to form the complete set of eigenvectors

This complete set will be linearly independent
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Example: Rotation around the es-axis:

cosa —sina 0
A= |sina cosa 0
0 0 1
Expect that e3 is an eigenvector:
AE3 = e3

= corresponding eigenvalue =1

<O 4Fr <= « = E A
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Symmetric matrix A:
— real eigenvalues
— eigenvectors are orthogonal
— diagonalizable:
Diagonal matrix A = R~1AR
Called the eigendecomposition
Columns of R holds eigenvectors

A holds eigenvalues

«O> «4F>r «=Zr «=)» = o>



The Basics Reuvisited

Example: Eigendecompostion A = R™1SR of the symmetric matrix

301
S=10 3 0 Ai=4, 3,2
10 3

1 0] —1
rp = 0 rh = 1 r3 = 0
1 0] 1
4 00 [1/vV/2 0 —1/V2
A=10 3 0 R=| 0 1 0
0 0 2 (1/vV2 0 1/V2
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The Basics Reuvisited

Projection matrices:

— eigenvalues are one or zero
0: eigenvector projected to the zero vector
= determinant is zero and matrix is singular

1: eigenvector projected to itself

— If Ay = ... = X =1 then eigenvectors populate column space

= dimension is k and null space is dimension n — k
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Example: 3 x 3 projection matrix P = uu

T

1/V2 1/2 0 1/2

u—[ 0} P—[o 0 0}
1/V2 1/2 0 1/2

M=1  X=0

A3=0
~1/2 0 12
=1 = 0 -1

0
1/2

1
rn=0 = nrn=
o §

u}
8
!
. |
it
v o
it
V)
ye)
i)



The Basics Reuvisited

Example: continued

1/2 0 1/2
/\2:/\3:0 = 0 0 0 r=0
1/2 0 1/2

Find two eigenvectors that span 2D null space:

— free parameters r, and r3

o
-
w
|
—

ry =

All linear combinations
r=cry + drs

span the eigenspace corresponding to A = 0

Use Gram-Schmidt to form an orthogonal set of vectors
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Similarity and Diagonalization

Examine change of basis as a tool for transforming a matrix to a simpler
one with the same eigenvalues

— Simpler matrix will be a diagonal matrix containing the eigenvalues

A: a-basis — e-basis A~L. e-basis — a-basis

If M is a linear map in the e-basis then

M’ = A"1MA linear map in the a — basis

Matrices M and M’ are
— Share the same eigenvalues

— Do not share the same eigenvectors
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Similarity and Diagonalization

Example: change of basis for projecting a point onto a line (Example 5.10)
Solution: My = RyPR_y

— rotate into e-basis via R_y

— apply projection P

— reverse rotation via Ry

Projection matrix P is similar to M,

10 0.5 05 cosf —sinf
P= [o 0} Mo = [0.5 0.5] Ro = [sin@ cos@}
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Similarity and Diagonalization

Matrix M is if there exists an invertible matrix R such that
A= R MR is a diagonal matrix

— Eigenvalues of M are the diagonal entries in A

— Eigenvectors of M are the column vectors of R
Called the

Special:
A= RYMR orthogonal R
= M is symmetric
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Similarity and Diagonalization

Example: distinct eigenvalues not necessary to be diagonalizable

A= RYMR

2 1 11 -1 30
(e I S I
If an eigenvalue of a symmetric matrix is repeated k times

then the eigenspace spanned by the eigenvectors is k-dimensional

Gram-Schmidt method applied to achieve an orthonormal basis

= a symmetric matrix will always be diagonalizable
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Matrix does not have to be symmetric to be diagonalizable

n X n matrix M
Diagonalizable A = RTMR = n linearly independent eigenvectors
— Matrix R is not unique; recall the free parameters
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Not all matrices are diagonalizable

Example: shear

v — [1 1/2

0 1:| where )\12)\221
has just one fixed direction
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If a matrix M is diagonalizable matrix then repeating the map is simple
M=RAR™! =

Mk = RAKR1

(A1)*

(An)*

This topic will be the focus of the power method



Quadratic forms in R”
Given: v in R” and n X n symmetric matrix A

T 2
f(V) =v Av = aivy + 23172V1V2 + ...+ annv,

«40O>» «Fr « =) < A
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Quadratic Forms

Examples:
2 0 0 2 00 -2 0 0
Ai=10 05 0 Ab=10 0 0 A;=|10 05 0
0 0 1 0 01 0 0 1

Quadratic form for each matrix:

f(v) = 2v12 + 0.5v22 + v§ f(v) = 2v12 + v§ f3(v) = —2v12 + 0.5v22 + v32

A =1 M =2 X=1 A3=05
|As] =0 A =2 Jd=1 A3=0
Asl=-1 A =-2 M=1 XA3=05
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Quadratic Forms

Contour plots

Left: 4 =0.5and 4 =1.5

— Outer ellipsoid clipped against the bounding box
Middle:  =05and L, =1

Right: ; =0.1 and 3 =0.5

O
8
I
i
i
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Quadratic Forms

matrix: a real matrix satisfying
f(v) =viAv >0 forany v#0 e R"

= quadratic form is positive everywhere except for v=10

Contour f(v) = 1 is an n-dimensional ellipsoid

— Semi-minor axis corresponds to ry with length 1/1/A1
— Semi-major axis corresponds to r, with length 1/v/X,
Example: Only A; is positive definite

fi(v) = 1 ellipsoid:

— Shortest axis length 1/4/2 = 0.5 along the e;-axis

— Longest axis length 1/4/0.5 = 2 along the e-axis
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Quadratic Forms

vl Av

vTy

q(v) =

Maximum in the dominant eigenvector direction: q(r1) = A1
Minimum in direction corresponding to the smallest eigenvalue: g(r,) = A,

Rayleigh quotient used to approximate eigenvalues and eigenvectors

— the power method
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A: symmetric n X n matrix with n distinct eigenvalues

Let A be the dominant eigenvalue and r its corresponding eigenvector

Alr = My

Use this property to find the dominant eigenvalue and eigenvector

«O> «4F>r «=Zr «=)» = o>



The Power Method

Choose an arbitrary vector r!)  (non-zero/a; # 0)
There exists ag, an, ..., a, such that

r(D) = a1f + aofy + ...+ aplp

Apply a linear map:
Ar(l) = A(alrl + aofy + ...+ oz,,r,,)

= a1A1r + aXor + ...+ apApr,

. . A\ An)
Alr@) =\ [ oari + a2 22 rp+...+tap| | I
)\1 )\1

For large i Alr) ~ al)\’irl

Repeat

Farin & Hansford Practical Linear Algebra 32/53



The Power Method

Instead of computing A’ directly, iteratively apply A

rHD) = Akl = A(apMery) = A(aa M b)) = ar® k=12, ..

After a sufficiently large k: r(k) will begin to line up with ry

Vector sequences examples:

— Initial guess: longest black vector

— Successive iterations: lighter gray

— Left and middle figures demonstrate convergence
— (Each iteration scaled with co-norm)
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The Power Method

Find \q:
(PN Tkt 1) o 2y (p(RY ()

(r(k))Tr(k—i-l)

W ~ A Rayleigh quotient

In the algorithm to follow all components of r(k*1) and r(k) are
(approximately) related by

(k1)

J _ P
§C) =) forj=1....n
J

Rather than checking each ratio, use the oo-norm to define A\; upon each
iteration
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The Power Method

Algorithm:

Initialization:
Estimate dominant eigenvector r(!) £ 0
Find j where |rj(1)| = ||rM]|» and set rt) = r(l)/rj(l)
Set AU =0

Set tolerance ¢

Set maximum number of iterations m
Fork=2....m

y = Arlk—1)

k) _

AW =y

Find j where |y;| = |ly|/~

If yj =0 Then output: “eigenvalue zero; select new r(1) and restart”: exit

(k) —

LA j

If [AK) — Xk=1)| < ¢ Then output: A% and r(K); exit

If Kk = m output: maximum iterations exceeded
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The Power Method

Some remarks on this method:

@ If |A\| is either “large” or “close” to zero, could cause numerical
problems — Good to scale the r") — Done here with co-norm

@ Convergence seems impossible if r() is perpendicular to r, but
numerical round-off helps and it will converge slowly

@ Very slow convergence if |A\1]| =~ |\

@ Limited to symmetric matrices with one dominant eigenvalue
May be generalized to more cases

Example application of the co-norm

(1) _ 1.5 i (1) _ 1
guess r [—O.l} oo-norm scaled = r [—0.066667
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The Power Method

Example:
2 1
Al:_l 2] A1=3 =1
[2 0.1
A, = 01 2 } A =21 A =19

Power method demonstration with Ag, Ay, As (left to right)
— Initial guess: longest black vector

— Successive iterations: lighter gray

— Each iteration scaled with co-norm

Practical Linear Algebra 37/53
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The Power Method

Example: continued

A1: symmetric and \; separated from \»
= rapid convergence in 11 iterations — Estimate: A = 2.99998

As: symmetric but A; close to Ao
= convergence slower 41 iterations — Estimate: A = 2.09549

As: rotation matrix (not symmetric) and complex eigenvalues
=> no convergence.
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Application: Google Eigenvector

Linear algebra 4 search engines

Search engine techniques are highly proprietary and changing
All share the basic idea of ranking webpages

Concept introduced by Brin and Page in 1998 — Google
Ranking webpages is an eigenvector problem!

The web frozen at some point in time consists of N webpages
— A page pointed to very often: important
— A page with none or few other pages pointing to it: unimportant

How can we rank all web pages?
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Application: Google Eigenvector

Basics:

— Assume all webpages are ordered: assign a number / to each
— If page i — j: record an for page i

— If page j — i: record an for page i

— A page is not supposed to link to itself

Example: 4 web pages

4 x4 C:
— QOutlink for page i = ¢j; =1
— Else ¢;; =0
0111
0010
€= 1101
0010
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Application: Google Eigenvector

Ranking r; of page i determined by C
Example rules:

© r; should grow with the number of page i's inlinks

© r; should be weighted by the ranking of each of page i's inlinks

© Let page i have an inlink from page j

then the more outlinks page j has, the less it should contribute to r;
Not realistic but assume each page has at least one outlink and inlink
o;j: total number of outlinks of page i
Scale every element of column i by 1/0;
D

: columns have non-negative entries and sum to one
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Connectivity/Adjacency matrix Stochastic Google matrix
0111 0 1/2 1/3 1/2
|00 10 o0 1/3 0
=11 101 = D=l 0 o
0010 0 0 1/3 0




Application: Google Eigenvector

Finding r; involves knowing the ranking of all pages including r;
— Seems like an ill-posed circular problem, but ...

Find r = Dr where r = [r1,..., ry]T

— Eigenvector of D corresponding to the eigenvalue 1

— All stochastic matrices have an eigenvalue 1

— ris called a

— 1 is D’s largest (dominant) eigenvalue

— Employ the power method

— Vector r now contains the

r =[0.67, 0.33, 1, 0.33]T - \
(2 _»14)

= Highest ranked: page 3
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Application: Google Eigenvector

In the real world — in 2021 — approximately 3.5 billion webpages
= World's largest matrix to be used

Luckily it contains mostly zeroes — sparse matrix
Introduction Figure illustrates a Google matrix for ~ 3 million pages

In the real world many more rules are needed and much more robust
numerical analysis methods required
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QR Algorithm

Triangular matrices prove to be helpful in developing efficient algorithms
— Continue that theme here with the QR algorithm

A= QR

R: upper triangular matrix Q: orthogonal matrix

Utilize QR decomposition to solve eigenvalue problem Au = Au

Orthogonal matrix @ suitable for a similarity transformation
A =QTAQ = A, A share same eigenvalues
Write similarity transformation as
A = RQ where R=Q"A

This process is repeated in the

Farin & Hansford Practical Linear Algebra 45 /53



QR Algorithm

Algorithm:
Let A = A
For k=1,2,...

Form the QR decomposition A(K) = Q(K) R(K)
Set Alk+1) — R(K) (k)
Elegantly simple algorithm!

If eigenvalues are distinct,

algorithm will return an approximation of the eigenvalues in A(K)
Matrix AK) will converge to an upper triangular matrix

— Eigenvalues on the diagonal

— If Ais symmetric, then the matrix will be diagonal
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QR Algorithm

Example:
2 -1 0
AD = |1 2 -1 N\ ~3.4, 2, 058
0 -1 2
Sample iterations:
28 —074 0 34  -013 0
A® = |-074 234 063 A®) = |_-013 2.0 0.004
0 0.63 0.85 0 0.004 0.58

More iterations results in A(K) becoming closer to diagonal and
improvements on the exact eigenvalues are made.
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Eigenfunctions

Explore the space of all real-valued functions —

Do eigenvalues and eigenvectors have meaning there?

Let f be a function: y = f(x) where x and y are real numbers
— Assume that f is smooth or differentiable

— Example: f(x) = sin(x)

— The set of all such functions f forms a linear space

Define linear maps for elements of this function space

— Example: Lf = 2f

— Example: Derivatives Df = f’
To any function f the map D assigns another function
Example: let f(x) = sin(x) then Df(x) = cos(x)
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Eigenfunctions

How can we marry the concept of eigenvalues and linear maps?

D will not have eigenvectors since our linear space consists of functions

Instead:

A function f is an eigenfunction of linear map D if
Df = \f

D may have many eigenfunctions each corresponding to a different A
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Eigenfunctions

Any function f satisfying
f'' = \f
is an eigenfunction of the derivative map
The function f(x) = €~ satisfies
f'(x) =€ which may be written as Df=f=1xf
=- 1 is an eigenvalue of the derivative map D
More generally: all functions f(x) = e satisfy (for A # 0):

f'(x) = Ae™ which may be written as Df = \f

=> all real numbers A # 0 are eigenvalues of D

Corresponding eigenfunctions are e = infinitely many eigenfunctions!
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Example: second derivative Lf = "

A set of eigenfunctions for this map is cos(kx) for k =1,2,...

d? cos(kx) —kd sin(kx)
dx2 dx
and the eigenvalues are —k?

= —k? cos(kx)

<O 4Fr <= « = E A
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Eigenfunctions

Eigenfunctions have many uses
— Differential equations
— Mathematical physics
— Engineering mathematics:
orthogonal functions key for data fitting and vibration analysis

Orthogonal functions arise as solution to a Sturm-Liouville equation
y'(x)+Ay(x) =0  suchthat  y(0)=0 and y(r)=0
— Solution: y(x) =sin(ax) fora=1,2,...
— These are eigenfunctions of the Sturm-Liouville equation

— The corresponding eigenvalues are \ = a°

See Section 15.8 Application: Influenza Modeling
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WYSK

eigenvalue
eigenvector
characteristic polynomial

eigenvalues and eigenvectors of
a symmetric matrix

dominant eigenvalue
eigendecomposition
trace

quadratic form

positive definite matrix
power method

QR algorithm

max-norm
connectivity matrix
adjacency matrix

directed graph

stochastic matrix
stationary vector
orthogonally diagonalizable
similarity transformation

eigenfunction
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