Outline

1. Introduction to The Singular Value Decomposition
2. The Geometry of the 2 x 2 Case
3. The General Case
4. SVD Steps
5. Singular Values and Volumes
6. The Pseudoinverse
7. Least Squares
8. Application: Image Compression
9. Principal Components Analysis
10. WYSK
The Singular Value Decomposition

Matrix decomposition: fundamental tool for
— understanding the action of a matrix
— establishing its suitability to solve a problem
— solving linear systems more efficiently and effectively

Symmetric matrices: *eigendecomposition*
More general matrices: the *singular value decomposition*

Image compression and the SVD
Original image → Highest compression → Less compression → Original recovered
The Geometry of the 2×2 Case

Orthonormal vectors \mathbf{v}_1 and $\mathbf{v}_2 \Rightarrow \text{orthogonal matrix } V = [\mathbf{v}_1 \ \mathbf{v}_2]$

Orthonormal vectors \mathbf{u}_1 and $\mathbf{u}_2 \Rightarrow \text{orthogonal matrix } U = [\mathbf{u}_1 \ \mathbf{u}_2]$

Want \mathbf{v}_i and \mathbf{u}_i such that $A\mathbf{v}_1 = \sigma_1 \mathbf{u}_1$ and $A\mathbf{v}_2 = \sigma_2 \mathbf{u}_2$:

$$AV = U\Sigma \quad \text{where} \quad \Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

The *singular value decomposition* (SVD) of A:

$$A = U\Sigma V^T$$

σ_i called the *singular values* of A
The Geometry of the 2×2 Case

Properties of symmetric positive definite matrices such as $A^T A$
— Real and positive eigenvalues
— Eigenvectors are orthogonal

$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T)$$
$$= V \Sigma^T U^T U \Sigma V^T$$
$$= V \Sigma^T \Sigma V^T$$
$$= V \Lambda' V^T$$

where

$$\Lambda' = \begin{bmatrix} \lambda'_1 & 0 \\ 0 & \lambda'_2 \end{bmatrix} = \Sigma^T \Sigma = \begin{bmatrix} \sigma^2_1 & 0 \\ 0 & \sigma^2_2 \end{bmatrix}$$

This is the \textit{eigendecomposition} of $A^T A$

Columns of V called the \textit{right singular vectors} of A
The Geometry of the 2×2 Case

Eigendecomposition of symmetric positive definite AA^T

$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T$$

$$= U\Sigma V^T V\Sigma^T U^T$$

$$= U\Sigma \Sigma^T U^T$$

$$= U\Lambda' U^T$$

$\Lambda' = \Sigma^T \Sigma = \Sigma \Sigma^T$

\Rightarrow Eigenvalues are diagonal entries of Λ'

\Rightarrow Eigenvectors are columns of U

— Called the left singular vectors of A
The Geometry of the 2×2 Case

Elements of the SVD of A:

$$A = U\Sigma V^T$$

— The singular values

$$\sigma_i = \sqrt{\lambda'_i}$$

where λ'_i are the eigenvalues of $A^T A$ and AA^T

— The columns of V are the eigenvectors of $A^T A$

— The columns of U are the eigenvectors of AA^T

Can compute $u_i = A v_i / \| \cdot \|$ since $AV = U\Sigma$
The Geometry of the 2×2 Case

Example: symmetric positive definite matrix that scales in e_1-direction

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$AA^T = A^T A = \begin{bmatrix} 9 & 0 \\ 0 & 1 \end{bmatrix}$$

eigenvalues: $\lambda_1' = 9 \quad \lambda_2' = 1$

$$\Rightarrow \quad \sigma_1 = 3 \quad \text{and} \quad \sigma_2 = 1$$

$$U = V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

SVD $A = U \Sigma V^T$:

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Positive definite matrix \Rightarrow SVD identical to eigendecomposition
The Geometry of the 2×2 Case

Action: unit circle \Rightarrow action ellipse
— Semi-major axis length σ_1 — Semi-minor axis length σ_2

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \text{ circle } \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Thick point: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, Thin point: $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(Left: previous example; Right: next example)
The Geometry of the 2×2 Case

Example: a shear

\[
A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \quad \Rightarrow \quad A^T A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \quad AA^T = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}
\]

Eigenvalues: $\lambda_1' = 5.82$ and $\lambda_2' = 0.17 \quad \Rightarrow \quad \sigma_1 = 2.41$ and $\sigma_2 = 0.41$

Eigenvectors of $A^T A \Rightarrow$ orthonormal column vectors of

\[
V = \begin{bmatrix} 0.38 & -0.92 \\ 0.92 & 0.38 \end{bmatrix}
\]

Eigenvectors of $AA^T \Rightarrow$ orthonormal column vectors of

\[
U = \begin{bmatrix} 0.92 & -0.38 \\ 0.38 & 0.92 \end{bmatrix}
\]

SVD of A:

\[
\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.92 & -0.38 \\ 0.38 & 0.92 \end{bmatrix} \begin{bmatrix} 2.41 & 0 \\ 0 & 0.41 \end{bmatrix} \begin{bmatrix} 0.38 & -0.92 \\ 0.92 & 0.38 \end{bmatrix}
\]
The Geometry of the 2×2 Case

Break down the action of A in terms of the SVD

$$
\begin{bmatrix}
1 & 2 \\
0 & 1
\end{bmatrix} = \begin{bmatrix} 0.92 & -0.38 \\
0.38 & 0.92 \end{bmatrix} \begin{bmatrix} 2.41 & 0 \\
0 & 0.41 \end{bmatrix} \begin{bmatrix} 0.38 & -0.92 \\
0.92 & 0.38 \end{bmatrix}
$$

Clockwise from top left:
- Initial point set forming a circle with two reference points
- $V^T x$ rotates clockwise 67.5°
- $\Sigma V^T x$ stretches in e_1 and shrinks in e_2
- $U \Sigma V^T x$ rotates counterclockwise 22.5°
The General Case

Now: $m \times n$ matrix A — not necessarily square nor invertible

$A = U \Sigma V^T$

$A^T A = V \Lambda' V^T \Rightarrow \Lambda'$ is $n \times n$

$AA^T = U \Lambda' U^T \Rightarrow \Lambda'$ is $m \times m$

Both Λ' hold the same non-zero eigenvalues \Rightarrow rank $\leq \min\{m, n\}$
The General Case

Want v_i and u_i such that $A v_i = \sigma_i u_i$

$$A V = U \Sigma$$

Rank r of A plays a role in the SVD

Main properties:
- Σ has non-zero singular values $\sigma_1, \ldots, \sigma_r$ and all other entries zero
- First r columns of U form an orthonormal basis for column space of A
- Last $m - r$ columns of U form an orthonormal basis for null space of A^T
- First r columns of V form an orthonormal basis for row space of A
- Last $n - r$ columns of V form an orthonormal basis for null space of A
The General Case

Example: Rank 2 matrix

\[
A = \begin{bmatrix}
1 & 0 \\
0 & 2 \\
0 & 1 \\
\end{bmatrix}
\]

\[
A^T A = \begin{bmatrix}
1 & 0 \\
0 & 5 \\
\end{bmatrix} \\
\lambda'_1 = 5 \\
\lambda'_2 = 1 \\
V = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

\[
A A^T = \begin{bmatrix}
1 & 0 & 0 \\
0 & 4 & 2 \\
0 & 2 & 1 \\
\end{bmatrix} \\
\lambda'_1 = 5 \\
\lambda'_2 = 1 \\
\lambda'_3 = 0 \\
U = \begin{bmatrix}
0.89 & 0 & -0.44 \\
0.44 & 0 & 0.89 \\
\end{bmatrix}
\]

\[
\Sigma = \begin{bmatrix}
2.23 & 0 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix}
\]

\[
A = U \Sigma V^T : \\
\begin{bmatrix}
1 & 0 \\
0 & 2 \\
0 & 1 \\
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
0.89 & 0 & -0.44 \\
0.44 & 0 & 0.89 \\
\end{bmatrix} \begin{bmatrix}
2.23 & 0 \\
0 & 1 \\
0 & 0 \\
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

\[m > n \implies u_3 \text{ is in the null space of } A^T \implies A^T u_3 = 0\]
The General Case

SVD and action of a matrix

Clockwise from top left:
1) Initial circle point set
2) $V^T x$ reflects
3) $\Sigma V^T x$ stretches in e_1
4) $U \Sigma V^T x$ rotates

$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix}$
The General Case

Example:

\[A = \begin{bmatrix} -0.8 & 0 & 0.8 \\ 1 & 1.5 & -0.3 \end{bmatrix} \]

\[A^T A = \begin{bmatrix} 1.64 & 1.5 & -0.94 \\ 1.5 & 2.25 & -0.45 \\ -0.94 & -0.45 & 0.73 \end{bmatrix} \]

\[\lambda'_1 = 3.77 \quad \lambda'_2 = 0.84 \quad \lambda'_3 = 0 \]

\[V = \begin{bmatrix} -0.63 & 0.38 & 0.67 \\ -0.71 & -0.62 & -0.31 \\ 0.30 & -0.68 & 0.67 \end{bmatrix} \]

\[AA^T = \begin{bmatrix} 1.28 & -1.04 \\ -1.04 & 3.34 \end{bmatrix} \]

\[\lambda'_1 = 3.77 \quad \lambda'_2 = 0.84 \]

\[U = \begin{bmatrix} 0.39 & -0.92 \\ -0.92 & -0.39 \end{bmatrix} \]

\[\Sigma = \begin{bmatrix} 1.94 & 0 & 0 \\ 0 & 0.92 & 0 \end{bmatrix} \]

SVD: \[A = U \Sigma V^T \]

\[\begin{bmatrix} -0.8 & 0 & 0.8 \\ 1 & 1.5 & -0.3 \end{bmatrix} = \begin{bmatrix} 0.39 & -0.92 \\ -0.92 & -0.39 \end{bmatrix} \begin{bmatrix} 1.94 & 0 & 0 \\ 0 & 0.92 & 0 \end{bmatrix} \begin{bmatrix} -0.63 & -0.71 & 0.3 \\ 0.38 & -0.62 & -0.68 \\ 0.67 & -0.31 & 0.67 \end{bmatrix} \]

\[m < n \implies v_3 \text{ in null space of } A \implies Av_3 = 0 \]
The General Case

SVD and action of a matrix

\[
A = \begin{bmatrix}
-0.8 & 0 & 0.8 \\
1 & 1.5 & -0.3
\end{bmatrix}
\]

Clockwise from top left:
1) Initial circle point set
2) \(V^T x \)
3) \(\Sigma V^T x \)
4) \(U \Sigma V^T x \)
The General Case

Example: a projection into the \([e_1, e_2]\)-plane — a rank deficient matrix

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

\(A\) is symmetric and idempotent \(\Rightarrow A = A^T A = AA^T\)

\(A = U\Sigma V^T:\)

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Rank = 2

\(\Rightarrow\) first 2 columns of \(U\) form orthonormal basis for column space of \(A\)

\(\Rightarrow\) first 2 columns of \(V\) form orthonormal basis for row space of \(A\)

\(e_3\) vector projected to the zero vector \(\Rightarrow\) spans the null space of \(A\) and \(A^T\)
SVD Steps

\[A = U \Sigma V^T \]

Here: review steps — for a robust algorithm ⇒ advanced numerical methods

Input: an \(m \times n \) matrix \(A \)

Output: \(U, V, \Sigma \) such that \(A = U \Sigma V^T \)

1. Find the *eigenvalues* \(\lambda'_1, \ldots, \lambda'_n \) of \(A^T A \)
 - Order the \(\lambda'_i \) so that \(\lambda'_1 \geq \lambda'_2 \geq \ldots \geq \lambda'_n \)
 - Suppose \(\lambda'_1, \ldots, \lambda'_r > 0 \), then the *rank* of \(A \) is \(r \)

2. Create an \(m \times n \) diagonal matrix \(\Sigma \) with \(\sigma_{i,i} = \sqrt{\lambda'_i}, i = 1, \ldots, r \)

3. Find the corresponding (normalized) eigenvectors \(\mathbf{v}_i \) of \(A^T A \)

4. Create an \(n \times n \) matrix \(V \) with column vectors \(\mathbf{v}_i \)

5. Find the (normalized) eigenvectors \(\mathbf{u}_i \) of \(AA^T \)

6. Create an \(m \times m \) matrix \(U \) with column vectors \(\mathbf{u}_i \)
SVD Steps

Notes on steps:

- Can compute u_i, $i = 1, r$ as $u_i = A v_i / \| \cdot \|$
 - If $m > n$ then the remaining u_i are found from the null space of A^T

- The only “hard” task is finding the λ_i'
 - Since $A^T A$ is symmetric \Rightarrow Can choose a highly efficient algorithm

- Forming $A^T A$ can result in an ill-posed problem
 - $\kappa(A^T A) = \kappa(A)^2$
 - Avoid direct computation of this matrix
 — employ the Householder method
Singular Values and Volumes

Application: compute the determinant

\[\det U = \pm 1 \quad \text{and} \quad \det V = \pm 1 \quad \Rightarrow \quad |\det A| = \det \Sigma = \sigma_1 \cdots \sigma_n \]

Example: given a 2D triangle \(T \) with area \(\varphi \)
Transform \(T \to T' \) with 2D linear map with singular values \(\sigma_1, \sigma_2 \)
Area of \(T' = \pm \sigma_1 \sigma_2 \varphi \)

Example: given a 3D object \(O \) with volume \(\varphi \)
Transform \(O \to O' \) with 3D linear map with singular values \(\sigma_1, \sigma_2, \sigma_3 \)
Volume of \(O' = \pm \sigma_1 \sigma_2 \sigma_3 \varphi \)

Recall determinants without using singular values

\[\det A = \lambda_1 \cdots \lambda_n \]
The Pseudoinverse

The inverse of a matrix:
— Limited to square, nonsingular matrices
— Mainly a theoretical tool for analyzing the solution to a linear system

The generalized inverse or pseudoinverse \(A^\dagger \)
— For general matrices
— Suited for practical use
— Can be computed with the SVD

Given an \(m \times n \) diagonal matrix \(\Sigma \) with diagonal elements \(\sigma_i \)
The pseudoinverse: the \(n \times m \) matrix \(\Sigma^\dagger \) with

\[
\sigma_i^\dagger = \begin{cases}
\frac{1}{\sigma_i} & \text{if } \sigma_i > 0 \\
0 & \text{else}
\end{cases}
\]

If \(\text{rank}(\Sigma) = r \) then
— \(\Sigma^\dagger \Sigma \) holds the \(r \times r \) identity matrix
— All other elements are zero
The Pseudoinverse

Leads to the pseudoinverse for a general $m \times n$ matrix A

$$A^\dagger = (U\Sigma V^T)^{-1} = V\Sigma^\dagger U^T$$

If A is square and invertible then $A^\dagger = A^{-1}$

Properties:

$$A^\dagger AA^\dagger = A^\dagger \quad \text{and} \quad AA^\dagger A = A$$

Often times called the Moore-Penrose generalized inverse

Primary application: least squares approximation
The Pseudoinverse

Example: Find the pseudoinverse of

\[A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0.89 & 0 & -0.44 \\ 0.44 & 0 & 0.89 \end{bmatrix} \begin{bmatrix} 2.23 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[\Sigma^\dagger = \begin{bmatrix} 1/2.23 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]

\[A^\dagger = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/5 & 1/5 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/2.23 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.89 & 0.44 \\ 1 & 0 & 0 \\ 0 & -0.44 & 0.89 \end{bmatrix} \]
The Pseudoinverse

Example: square and nonsingular A

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad A^{-1} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1 \end{bmatrix}$$

The pseudoinverse is equal to the inverse:

$$A^\dagger = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1 \end{bmatrix}$$
Least Squares

Overdetermined linear system: \(m \) equations in \(n \) unknowns where \(m \geq n \)

\[
Ax = b
\]

Linear system is inconsistent — unlikely that \(b \) lives in subspace \(\mathcal{V} \) defined by columns of \(A \)

The least squares solution finds the orthogonal projection of \(b \) into \(\mathcal{V} \) — Call this projection \(b' \)

\(\Rightarrow \) Solution to \(Ax = b' \) produces vector closest to \(b \) that lives in \(\mathcal{V} \)

Normal equations

\[
A^T Ax = A^T b \quad \text{solution minimizes } \|Ax - b\|
\]

This system can be ill-posed \(\Rightarrow \) use pseudoinverse

\[
x = A^\dagger b
\]
Least Squares

Why is $x = A^\dagger b$ the least squares solution?

Find x to minimize $\|Ax - b\|$

$$Ax - b = U\Sigma V^T x - b$$
$$= U\Sigma V^T x - UU^T b$$
$$= U(\Sigma y - z)$$

This new framing of the problem exposes that

$$\|Ax - b\| = \|\Sigma y - z\|$$

⇒ an easier diagonal least squares problem to solve
Least Squares

Steps:
1. Compute the SVD $A = U\Sigma V^T$
2. Compute the $m \times 1$ vector $z = U^T b$
3. Compute the $n \times 1$ vector $y = \Sigma^\dagger z$
 — Least squares solution to $m \times n$ problem $\Sigma y = z$

 \[
 \begin{bmatrix}
 \sigma_1 y_1 - z_1 \\
 \sigma_2 y_2 - z_2 \\
 \vdots \\
 \sigma_r y_r - z_r \\
 -z_{r+1} \\
 \vdots \\
 -z_m
 \end{bmatrix}
 \]

 requires minimizing $v = \Sigma y - z$

 $\text{rank}(\Sigma) = r$

 y minimizing v: $y_i = z_i / \sigma_i \quad i = 1, \ldots, r \quad \Rightarrow \quad y = \Sigma^\dagger z$
4. Compute the $n \times 1$ solution vector $x = V y$
Least Squares

Summarize — The calculations in reverse order include

\[x = Vy \]
\[x = V(\Sigma^\dagger z) \]
\[x = V\Sigma^\dagger(U^Tb) \]

Example: Revisit temperature-time data: find the best fit line coefficients — Chapter 12 (normal equations) and Chapter 13 (Householder)

\[
\begin{bmatrix}
0 & 1 \\
10 & 1 \\
20 & 1 \\
30 & 1 \\
40 & 1 \\
50 & 1 \\
60 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
\end{bmatrix}
=
\begin{bmatrix}
30 \\
25 \\
40 \\
40 \\
30 \\
5 \\
25 \\
\end{bmatrix}
Least Squares

Step 1) Compute the SVD \(A = U\Sigma V^T \)

\[
\Sigma = \begin{bmatrix}
95.42 & 0 \\
0 & 1.47 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[
\Sigma^\dagger = \begin{bmatrix}
0.01 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.68 & 0 & 0 & 0 & 0 & 0 \\
U & 7 \times 7 \\
\end{bmatrix}
\]

Step 2) \(z = U^Tb = \begin{bmatrix}
54.5 \\
51.1 \\
3.2 \\
-15.6 \\
9.6 \\
15.2 \\
10.8 \\
\end{bmatrix} \)

Step 3) \(y = \Sigma^\dagger z = \begin{bmatrix}
0.57 \\
34.8 \\
\end{bmatrix} \)

Step 4) \(x = Vy = \begin{bmatrix}
-0.23 \\
34.8 \\
\end{bmatrix} \) \(\Rightarrow \) best fit line: \(x_2 = -0.23x_1 + 34.8 \)
The normal equations give a best approximation

\[x = (A^T A)^{-1} A^T b \]

to the original problem \(Ax = b \)

by considering \(b' \) in the subspace of \(A \) called \(V \)
Substitute this expression for \(x \) into \(Ax = b' \):

\[b' = A(A^T A)^{-1} A^T b = AA^\dagger b = \text{proj}_V b \]

— Goal is to project \(b \) into \(V \) ⇒ \(AA^\dagger \) is a projection
— Property \(A^\dagger AA^\dagger = A^\dagger \) ensures necessary idempotent property
Application: Image Compression

Given $m \times n$ matrix A with $k = \min(m, n)$ singular values σ_i

$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$

Using the SVD write A as a sum of k rank one matrices:

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \ldots + \sigma_k u_k v_k^T$$

Use this for image compression

— An image is comprised of a grid of colored pixels — grayscales here

— Figure (left): input image with 4×4 pixels

— Each grayscale associated with a number ⇒ grid is a matrix
Application: Image Compression

Singular values for this matrix are $\sigma_i = 7.1, 3.8, 1.3, 0.3$
Images from left to right I_0, I_1, I_2, I_3 — Original image is I_0

\[
A_1 = \sigma_1 u_1 v_1^T \implies \text{image } I_1
\]
\[
A_2 = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T \implies \text{image } I_2
\]

Original image nearly replicated incorporating only half the singular values
\Rightarrow σ_1 and σ_2 large in comparison to σ_3 and σ_4

Image I_3 created from $A_3 = A_2 + \sigma_3 u_3 v_3^T$
Image I_4 is not displayed — identical to I_0
Application: Image Compression

The change in an image by adding the smallest σ_i can be hardly noticeable
⇒ Omitting images l_k corresponding to small σ_k amounts to compressing the original image

Chapter introduction Figure: 8×8 matrix

$\sigma_i = 6.2, 1.7, 1.49, 0, \ldots, 0$
— Figure illustrates images corresponding to each non-zero σ_i
— Last image is identical to the input
⇒ the five remaining $\sigma_i = 0$ are unimportant to image quality
Principal Components Analysis

Scatter plot: data pairs recorded in Cartesian coordinates

Each circle represents a coordinate pair (point) in the \([\mathbf{e}_1, \mathbf{e}_2]\)-system

Example: Gross Domestic Product and poverty rate pairs

How might we reveal trends in this data set?
Principal Components Analysis

Given: 2D data set \(x_1, \ldots, x_n \) such that \(x_1 + \ldots + x_n = 0 \)

Let \(d \) be a unit vector

Project \(x_i \) onto line containing \(d \)

Result:

vector with (signed) length \(x_i \cdot d \)

\[
I(d) = [x_1 \cdot d]^2 + \ldots + [x_n \cdot d]^2
\]

Rotate \(d \) around the origin

For each position compute \(I(d) \)

Directions corresponding to largest and smallest \(I(d) \) are orthogonal

⇒ indicates variation in data
Principal Components Analysis

Arrange data x_i in a matrix

$$X = \begin{bmatrix}
 x_1^T \\
 x_2^T \\
 \vdots \\
 x_n^T
\end{bmatrix}$$

then

$$l(d) = \|Xd\|^2 = (Xd) \cdot (Xd) = d^T X^T X d \quad (*)$$

Let $C = X^T X$

C is a symmetric positive definite 2×2 matrix

$\Rightarrow \ (*) \text{ is a } \textit{quadratic form} \quad \text{— See Figure}$
For which \(d \) is \(l(d) \) maximal?

Answer: \(d \) that corresponds to \(C \)'s dominant eigenvector
And: \(l(d) \) is minimal for \(d \) being the eigenvector corresponding to \(C \)'s smallest eigenvalue

These eigenvectors form the major and minor axis of the action ellipse of \(C \) (Thick lines in Figure)
— Eigenvectors orthogonal because \(C \) is symmetric
Principal Components Analysis

Look more closely at C

$$
c_{1,1} = x_{1,1}^2 + x_{2,1}^2 + \ldots + x_{n,1}^2
$$

$$
c_{1,2} = c_{2,1} = x_{1,1}x_{1,2} + x_{2,1}x_{2,2} + \ldots + x_{n,1}x_{n,2}
$$

$$
c_{2,2} = x_{1,2}^2 + x_{2,2}^2 + \ldots + x_{n,2}^2.
$$

If each element of C is divided by n it is called the covariance matrix
— Summary of the variation in each coordinate and between coordinates
— Dividing by n will result in scaled eigenvalues
eigenvectors will not change
Principal Components Analysis

Eigenvectors provide a convenient *local coordinate frame* for the data set
— Idea behind the principle of the *eigendecomposition*
— This frame is commonly called the *principal axes*

Let \(V = [v_1 \ v_2] \) hold the normalized eigenvectors as column vectors
— \(v_1 \) is the dominant eigenvector

Orthogonal transformation of the data \(X \)
— aligns \(v_1 \) with \(e_1 \) and \(v_2 \) with \(e_2 \)

\[
\hat{X} = XV \quad \Rightarrow \quad \hat{x}_i = \begin{bmatrix} x_i \cdot v_1 \\ x_i \cdot v_2 \end{bmatrix}
\]
Summary:

- Established a **principal components coordinate system**
 - Defined by the eigenvectors of the covariance matrix
 - Greatest variance corresponds to the first coordinate

- Data coordinates are now in terms of the trend lines
 - Coordinates directly measure the distance from each trend line

⇒ Name of this method: **Principal Components Analysis (PCA)**
Principal Components Analysis

PCA can also be used for *data compression* by reducing dimensionality.

Let V hold only some eigenvectors.
- Example: most significant then $V = v_1$ (left Figure).
- Example: $V = v_2$ (right Figure).

Greater spread of the data corresponds to higher variance.

Here 2D data but the real power of PCA comes with higher dimensional data.
- Difficult to visualize and understand relationships between dimensions.
Singular Value Decomposition (SVD)
- singular values
- right singular vector
- left singular vector
- SVD matrix dimensions
- SVD column, row, and null spaces
- SVD steps
- volume in terms of singular values
- eigendecomposition
- matrix decomposition

- action ellipse axes length
- pseudoinverse
- generalized inverse
- least squares solution via the pseudoinverse
- quadratic form
- contour ellipse
- Principal Components Analysis (PCA)
- covariance matrix