# Practical Linear Algebra: A GEOMETRY TOOLBOX

Fourth Edition

**Chapter 19: Conics** 

#### Gerald Farin & Dianne Hansford

A K Peters/CRC Press www.farinhansford.com/books/pla

©2021

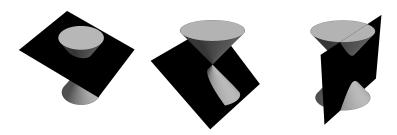


# Outline

- Introduction to Conics
- 2 The General Conic
- Analyzing Conics
- 4 General Conic to Standard Position
- **5** WYSK

#### Introduction to Conics

Left to right: ellipse, parabola, and hyperbola



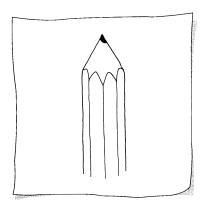
Take a flashlight and shine it straight onto a wall  $\Rightarrow$  circle Tilt the light  $\Rightarrow$  ellipse Tilt further  $\Rightarrow$  parabola  $\Rightarrow$  one branch of a hyperbola

Flashlight beam is a *cone* and wall is a plane

 $\Rightarrow$  cone-plane intersection  $\Rightarrow$  conic section

3/23

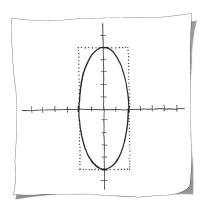
# Introduction to Conics



Some "real-life" occurrences of conic sections

- The paths of the planets around the sun are ellipses
- If you sharpen a pencil you generate hyperbolas
- If you water your lawn the water leaving the hose traces a parabolic arc

An ellipse: 
$$\frac{1}{4}x_1^2 + \frac{1}{25}x_2^2 = 1$$



Circle: 
$$x_1^2 + x_2^2 = r^2$$

Radius r and centered at the origin

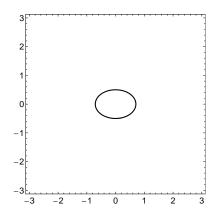
Ellipse: 
$$\lambda_1 x_1^2 + \lambda_2 x_2^2 = c$$

In standard position

- Minor axis and major axis coincident with coordinate axes
- Center at the origin
- $x_1$  extents:  $[-\sqrt{c/\lambda_1}, \sqrt{c/\lambda_1}]$
- $x_2$  extents:  $[-\sqrt{c/\lambda_2}, \sqrt{c/\lambda_2}]$

Rewrite ellipse in matrix form:

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - c = 0$$
$$\mathbf{x}^{\mathrm{T}} D \mathbf{x} - c = 0$$



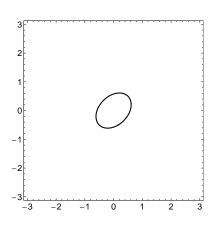
**Example:** Ellipse  $2x_1^2 + 4x_2^2 - 1 = 0$ In matrix form

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 1 = 0$$

Major axis: on the  ${\bf e_1}$ -axis with extents  $[-1/\sqrt{2},1/\sqrt{2}]$ 

Minor axis: on the  $e_2$ -axis with extents [-1/2, 1/2]

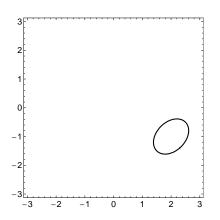
#### Ellipse rotated out of standard position



Point  $\hat{\mathbf{x}}$  on this ellipse  $\hat{\mathbf{x}} = R\mathbf{x} \quad \Rightarrow \quad \mathbf{x} = R^{\mathrm{T}}\hat{\mathbf{x}}$   $[R^{\mathrm{T}}\hat{\mathbf{x}}]^T D[R^{\mathrm{T}}\hat{\mathbf{x}}] - c = 0$   $\hat{\mathbf{x}}^{\mathrm{T}} R D R^{\mathrm{T}} \hat{\mathbf{x}} - c = 0$   $A = R D R^{\mathrm{T}} \qquad (*)$   $\hat{\mathbf{x}}^{\mathrm{T}} A \hat{\mathbf{x}} - c = 0$ 

- Contour of a quadratic form
- A is a symmetric matrix
- (\*) is eigendecompostion of A

#### Ellipse rotated and translated out of standard position



Point  $\hat{\mathbf{x}}$  on this ellipse  $\hat{\mathbf{x}} = R\mathbf{x} + \mathbf{v} \quad \Rightarrow \quad \mathbf{x} = R^{\mathrm{T}}(\hat{\mathbf{x}} - \mathbf{v})$  $[R^{\mathrm{T}}(\hat{\mathbf{x}} - \mathbf{v})]^{T}D[R^{\mathrm{T}}(\hat{\mathbf{x}} - \mathbf{v})] - c = 0$  $[\hat{\mathbf{x}}^{\mathrm{T}} - \mathbf{v}^{\mathrm{T}}]RDR^{\mathrm{T}}[\hat{\mathbf{x}} - \mathbf{v}] - c = 0$  $[\hat{\mathbf{x}}^{\mathrm{T}} - \mathbf{v}^{\mathrm{T}}]A[\hat{\mathbf{x}} - \mathbf{v}] - c = 0$ 

Rotated and translated ellipse:

$$[\hat{\mathbf{x}}^{\mathrm{T}} - \mathbf{v}^{\mathrm{T}}]A[\hat{\mathbf{x}} - \mathbf{v}] - c = 0$$
 (drop "hat" notation)

Symmetry of  $A \Rightarrow \mathbf{x}^{\mathrm{T}} A \mathbf{v} = \mathbf{v}^{\mathrm{T}} A \mathbf{x}$ 

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}A\mathbf{v} + \mathbf{v}^{\mathrm{T}}A\mathbf{v} - c = 0$$

Abbreviate with  $\mathbf{b} = A\mathbf{v}$  and  $d = \mathbf{v}^{\mathrm{T}}A\mathbf{v} - c$ 

Ellipse in general position: 
$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{b} + d = 0$$

Can be written as

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} c_1 & \frac{1}{2}c_3 \\ \frac{1}{2}c_3 & c_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 2 \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}c_4 \\ -\frac{1}{2}c_5 \end{bmatrix} + c_6 = 0$$

Leads to the familiar equation of a conic

$$c_1x_1^2 + c_2x_2^2 + c_3x_1x_2 + c_4x_1 + c_5x_2 + c_6 = 0$$

**Example:** Ellipse in standard position:  $2x_1^2 + 4x_2^2 - 1 = 0$ 

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 1 = 0$$

Rotate by 45° using the rotation matrix

$$R = \begin{bmatrix} s & -s \\ s & s \end{bmatrix}$$
  $s = \sin 45^{\circ} = \cos 45^{\circ} = 1/\sqrt{2}$ 

 $A = RDR^{\mathrm{T}}$  becomes

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$

Expanding:  $3x_1^2 - 2x_1x_2 + 3x_2^2 - 1 = 0$ 

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 Q C

Farin & Hansford

Example: Translate by

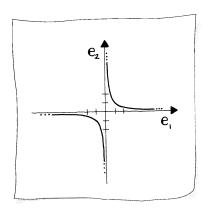
$$\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

the ellipse is now

$$\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \mathbf{x} - 2\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 7 \\ -5 \end{bmatrix} + 18 = 0$$

Expanding:  $3x_1^2 - 2x_1x_2 + 3x_2^2 - 14x_1 + 10x_2 + 18 = 0$ 

Farin & Hansford



Any conic is represented by

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{b} + d = 0$$

Example: Hyperbola

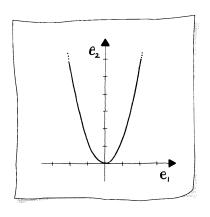
$$x_1x_2-1=0$$

or the more familiar form

$$x_2 = \frac{1}{x_1}$$

In matrix form

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 1 = 0$$



#### Example: Parabola

$$x_1^2 - x_2 = 0$$

or

$$x_2 = x_1^2$$

In matrix form

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$$

# **Analyzing Conics**

**Given:** a conic 
$$c_1x_1^2 + c_2x_2^2 + c_3x_1x_2 + c_4x_1 + c_5x_2 + c_6 = 0$$

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{b} + d = 0$$

Find: the conic type

**Solution:** • 
$$\det A > 0 \Rightarrow \text{ellipse}$$

- $\det A = 0 \Rightarrow \text{parabola}$
- ullet det  $A < 0 \Rightarrow$  hyperbola

If A = zero matrix and  $c_4$  or  $c_5$  non-zero  $\Rightarrow$  straight line

Eigendecomposition  $A = RDR^{\mathrm{T}}$  — eigenvalues are D's diagonal elements

- Two nonzero entries of the same sign: ellipse
- One nonzero entry: parabola
- Two nonzero entries with opposite sign: hyperbola

These conditions are summarized by  $\det D$ 

— Rotations do not change areas  $\Rightarrow$  checking A suffices.

# **Analyzing Conics**

Revisit previous examples

**Example:** An ellipse in two forms — in standard position and rotated

$$\begin{vmatrix} 2 & 0 \\ 0 & 4 \end{vmatrix} = \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} = 8$$

Determinant is positive ⇒ ellipse

**Example:** Hyperbola

$$\begin{vmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{vmatrix} = -\frac{1}{4}$$

Determinant is negative  $\Rightarrow$  hyperbola

The characteristic equation is  $(\lambda + 1/2)(\lambda - 1/2) = 0$  — eigenvalues have opposite sign  $\Rightarrow$  hyperbola

# **Analyzing Conics**

Example: Parabola

$$\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0$$

Determinant is zero  $\Rightarrow$  parbola

The characteristic equation is  $\lambda(\lambda+1)=0$  — one eigenvalue is zero  $\Rightarrow$  parabola

The conic type is determined by the sign of the determinant of A — it is unchanged by (invertible) affine maps

**Given:** 
$$c_1x_1^2 + c_2x_2^2 + c_3x_1x_2 + c_4x_1 + c_5x_2 + c_6 = 0$$

Find: conic's equation in standard position

— Degree of freedom: major axis can coincide with  $e_1$ - or  $e_2$ -axis

Recall matrix form

$$\mathbf{x}^{\mathrm{T}}A\mathbf{x} - 2\mathbf{x}^{\mathrm{T}}\mathbf{b} + d = 0$$
 where  $\mathbf{b} = A\mathbf{v}$  and  $d = \mathbf{v}^{\mathrm{T}}A\mathbf{v} - c$ 

Demonstrate the solution with ellipse from previous slides:

$$3x_1^2 - 2x_1x_2 + 3x_2^2 - 14x_1 + 10x_2 + 18 = 0$$

Matrix form: 
$$\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \mathbf{x} - 2\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 7 \\ -5 \end{bmatrix} + 18 = 0$$

Find translation  $\mathbf{v}$  found by solving  $A\mathbf{v} = \mathbf{b} \quad \Rightarrow \quad \mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ 

Can solve  $A\mathbf{v} = \mathbf{b}$  if A full rank

 $\Rightarrow$  two nonzero eigenvalues  $\Rightarrow$  ellipse or hyperbola  $\bigcirc$ 

Next: remove the translation

Calculate  $c = \mathbf{v}^T A \mathbf{v} - d = 1 \quad \Rightarrow \quad$  ellipse with center at the origin

$$\mathbf{x}^{\mathrm{T}} egin{bmatrix} 3 & -1 \ -1 & 3 \end{bmatrix} \mathbf{x} - 1 = 0$$

Characteristic equation:

$$\lambda^2 - 6\lambda + 8 = 0 \quad \Rightarrow \quad \lambda_1 = 4, \quad \lambda_2 = 2$$

Resulting in

$$\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \mathbf{x} - 1 = 0$$

(Major axis aligned with the  $e_2$ -axis)

Farin & Hansford

Next: find the rotation

$$A = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix} \qquad \lambda_1 = 4, \quad \lambda_2 = 2$$

leads to the eigenvectors that form the columns of

$$R = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

This is a  $-45^{\circ}$  rotation

Farin & Hansford

**Example:** Find the type and equation in standard position of

$$\begin{aligned} x_1^2 + 2x_2^2 + 8x_1x_2 - 4x_1 - 16x_2 + 3 &= 0 \\ \text{Matrix form:} \qquad \mathbf{x}^{\mathrm{T}} \begin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix} \mathbf{x} - 2\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 2 \\ 8 \end{bmatrix} + 3 &= 0 \end{aligned}$$

Matrix determinant negative ⇒ hyperbola Recover the translation

$$\begin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix} \mathbf{v} = \begin{bmatrix} 2 \\ 8 \end{bmatrix} \quad \Rightarrow \quad \mathbf{v} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Calculate  $c = \mathbf{v}^{\mathrm{T}} A \mathbf{v} - 3 = 1 \implies$  conic without the translation

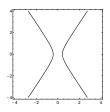
$$\mathbf{x}^{\mathrm{T}} egin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix} \mathbf{x} - 1 = 0$$

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 夕 Q (C)

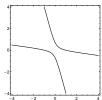
$$\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 1 & 4 \\ 4 & 2 \end{bmatrix} \mathbf{x} - 1 = 0$$

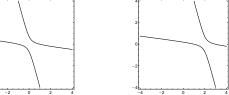
Characteristic equation:  $\lambda^2 - 3\lambda - 14 = 0 \Rightarrow \lambda_1 = 5.53$  and  $\lambda_2 = -2.53$ The hyperbola in standard position

$$\mathbf{x}^{\mathrm{T}} \begin{bmatrix} 5.53 & 0 \\ 0 & -2.53 \end{bmatrix} \mathbf{x} - 1 = 0$$



standard position





with rotation

with rotation and translation

# **WYSK**

- conic section
- implicit equation
- circle
- quadratic form
- ellipse
- minor axis
- semi-minor axis
- major axis
- semi-major axis
- center
- standard position
- conic type

- hyperbola
- parabola
- straight line
- eigenvalues
- eigenvectors
- eigendecomposition
- affine invariance