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Introduction to 2 × 2 Linear Systems

Two families of lines are shown

Intersections of corresponding line
pairs marked

For each intersection:
solve a 2 × 2 linear system
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Skew Target Boxes Revisited

Geometry of a 2 × 2 system
a1 and a2 define a skew target box

Given b with respect to the
[e1, e2]-system:
What are the components of b with
respect to the [a1, a2]-system?

a1 =

[

2
1

]

, a2 =

[

4
6

]

, b =

[

4
4

]

1×
[

2
1

]

+
1

2
×

[

4
6

]

=

[

4
4

]
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Skew Target Boxes Revisited

Two equations in the two unknowns u1 and u2

2u1 + 4u2 = 4

u1 + 6u2 = 4

Solution: u1 = 1 and u2 = 1/2

This chapter dedicated to solving these equations
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The Matrix Form

Two equations

a1,1u1 + a1,2u2 = b1

a2,1u1 + a2,2u2 = b2

Also called a linear system

[

a1,1 a1,2
a2,1 a2,2

] [

u1
u2

]

=

[

b1
b2

]

Au = b

u called the solution of linear system

Previous example:
[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]
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The Matrix Form

Recall geometric interpretation of Au = b:
Express b as a linear combination of a1 and a2

u1a1 + u2a2 = b

At least one solution: linear system called consistent
Otherwise: called inconsistent

Three possibilities for solution space:

1 Exactly one solution vector u
|A| 6= 0
matrix has full rank and is non-singular

2 No solution (system is inconsistent)

3 Infinitely many solutions

(Sketches of each case to come)
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A Direct Approach: Cramer’s Rule

u1 =
area(b, a2)

area(a1, a2)
u2 =

area(a1,b)

area(a1, a2)

Ratios of areas

Shear parallelogram formed by
— b, a2 onto a1
— b, a1 onto a2
(Shears preserve areas)

Signed area of a parallelogram given
by determinant
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A Direct Approach: Cramer’s Rule

Example:
[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]

u1 =

∣

∣

∣

∣

4 4
4 6

∣

∣

∣

∣

∣

∣

∣

∣

2 4
1 6

∣

∣

∣

∣

=
8

8
u2 =

∣

∣

∣

∣

2 4
1 4

∣

∣

∣

∣

∣

∣

∣

∣

2 4
1 6

∣

∣

∣

∣

=
4

8

What if area spanned by a1 and a2 is zero?

Cramer’s rule primarily of theoretical importance
For larger systems: expensive and numerically unstable
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Gauss Elimination

Special 2× 2 linear system:

[

a1,1 a1,2
0 a2,2

]

u = b

Matrix is called upper triangular

Solve with back substitution:

u2 = b2/a2,2

u1 =
1

a1,1
(b1 − u2a1,2)

Diagonal elements key: called pivots
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Gauss Elimination

Any linear system with non-singular
matrix may be transformed to upper
triangular via forward elimination

Process of forward elimination
followed by back substitution is
called Gauss elimination

Example:

u1

[

2
1

]

+ u2

[

4
6

]

=

[

4
4

]

Find u1 and u2

Key fact: linear maps do not change

linear combinations
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Gauss Elimination

Apply the same linear map to all
vectors in system
then factors u1 and u2 won’t change:

S

(

u1

[

2
1

]

+ u2

[

4
6

])

= S

[

4
4

]

Shear parallel to the e2-axis so that

[

2
1

]

is mapped to

[

2
0

]

Shear matrix: S =

[

1 0
−1/2 1

]

elementary matrix: applies one
operation
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Gauss Elimination

Transformed system:
[

2 4
0 4

] [

u1
u2

]

=

[

4
2

]

Next: back substitution

u2 = 2/4 = 1/2,

u1 =
1

2

(

4− 4× 1

2

)

= 1

2× 2 linear systems:
only one matrix entry to zero in the forward elimination procedure
(More algorithmic approach in Chapter 12 Gauss for Linear Systems)

Algebraically: transformed system by modifying the second row only

row2 = −1

2
row1 + row2.

Called an elementary row operation
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Pivoting

Example:
[

0 1
1 0

] [

u1
u2

]

=

[

1
1

]

Shearing a1 onto e1-axis will not
work
Solution: exchange two equations

[

1 0
0 1

] [

u1
u2

]

=

[

1
1

]

Exchanging equations (rows) so pivot
is the largest in absolute value called
row or partial pivoting
Used to improve numerical stability
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Pivoting

Row exchange is a linear map

It is represented by the permutation matrix

P =

[

0 1
1 0

]

Another example of an elementary matrix resulting in an elementary row
operation
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Pivoting

Example:
[

0.0001 1
1 1

] [

u1
u2

]

=

[

1
2

]

Shear a1 onto the e1-axis
[

0.0001 1
0 −9999

] [

u1
u2

]

=

[

1
−9998

]

Performing back substitution

ut =

[

1.0001
0.99989̄

]

(“true” solution)

Suppose machine only stores three digits — system stored as
[

0.0001 1
0 −10000

] [

u1
u2

]

=

[

1
−10000

]

,

ur =

[

0
1

]

(“round-off” solution)

Not very close to the true solution ut : ‖ut − ur‖ = 1.0001
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Pivoting

Pivoting dampers effects of round-off

[

1 1
0.0001 1

] [

u1
u2

]

=

[

2
1

]

Forward elimination
[

1 1
0 0.9999

] [

u1
u2

]

=

[

2
0.9998

]

up =

[

1
1

]

(“pivoting” solution)

Closer to “true” solution: ‖ut − up‖ = 0.00014
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Unsolvable Systems

a1 and a2 are linearly dependent
[

2 1
4 2

] [

u1
u2

]

=

[

1
1

]

Forward elimination
(shear a1 onto e1-axis):

[

2 1
0 0

] [

u1
u2

]

=

[

1
−1

]

Last equation: 0 = −1
System is inconsistent ⇒ no solution

Approximate solution via least
squares methods
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Underdetermined Systems

b a multiple of a1 or a2
[

2 1
4 2

] [

u1
u2

]

=

[

3
6

]

Forward elimination
(shear a1 onto e1-axis):

[

2 1
0 0

] [

u1
u2

]

=

[

3
0

]

Last equation: 0 = 0
true, but a bit trivial
• This is one equation written twice
• System is underdetermined
• System consistent: at least one
solution exists
Example: set u2 = 1 then u1 = 1
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Homogeneous Systems

Au = 0

Homogeneous: Right-hand side
consists of zero vector

Trivial solution: u = 0

— usually of little interest

If solution u 6= 0 exists
then all cu are solutions
⇒ infinite number of solutions

Vectors u that satisfy the
homogeneous system are orthogonal
to the row vectors

Not all homogeneous systems have a
non-trivial solution
— 2× 2 matrices: only rank 1 maps
⇒ a1 and a2 linearly dependent

If only trivial solution exist ⇒ A

invertible
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Homogeneous Systems

[

1 2
2 4

]

u =

[

0
0

]

a2 = 2a1 ⇒ A maps all vectors onto
line defined by 0, a1
Forward elimination:

[

1 2
0 0

]

u =

[

0
0

]

Pick u2 = 1 then
back substitution gives u1 = −2

Any cu perpendicular to a1 is a
solution: a1 · u = 0
— all such u make up kernel or null
space of A
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Homogeneous Systems

Example: only the trivial solution

[

1 2
2 1

]

u =

[

0
0

]

Columns of A are linearly independent
A does not reduce dimensionality ⇒ cannot map u 6= 0 to 0

Forward elimination:
[

1 2
0 −3

]

u =

[

0
0

]

Back substitution: u =

[

0
0

]
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Homogeneous Systems

Example: row pivoting not helpful – need column pivoting

[

0 1/2
0 0

]

u = 0.

Column pivoting:
[

1/2 0
0 0

] [

u2
u1

]

= 0.

(Exchange unknowns too)
Set u1 = 1 and back substitution results in u2 = 0

Solutions: u = c

[

1
0

]
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Kernel

All vectors u that satisfy a homogeneous system

Au = 0

make up the kernel or null space of the matrix

Vectors u in the kernel are orthogonal to the row space of A

The dimension of the kernel is called the nullity of A

For 2× 2 matrices:
rank + nullity = 2
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Kernel

Example: Homogeneous system with non-trivial solution
Rank = 1 Nullity = 1 Notice that a2 = 2a1

[

1 2
2 4

]

u =

[

0
0

]

Example: Homogeneous system with only trivial solution
Rank = 2 Nullity = 0 a1 and a2 linearly independent

[

1 2
2 1

]

u =

[

0
0

]
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Kernel

Kernel = the central, most important part of something

In linear algebra, it reveals information about a linear map (matrix) and
also the solution to a linear system.

The kernel is a subspace of the domain with the following properties

1 Always contains the zero vector since A0 = 0

2 If u is in the kernel, then cu is in the kernel:
c(Au) = c0, thus A(cu) = 0

3 If u and v are in the kernel, then u+ v is in the kernel
(distributive law)
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Kernel

Why is knowledge of the kernel useful?

Reveals the existence and uniqueness of a solution

If the nullity = 0, then the solution is unique.

If the nullity ≥ 1, then the solution is not unique
and the nullity reveals the number of parameters available to specify a
solution
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Kernel

Example: Rank 1, Nullity 1

[

2 1
4 2

] [

u1
u2

]

=

[

3
6

]

with specific solution us =

[

1
1

]

Homogeneous linear system

[

2 1
4 2

] [

u1
u2

]

=

[

0
0

]

with a kernel solution uk =

[

−1/2
1

]

Then all vectors
u = us + cuk

are solutions to the linear system since

A(us + cuk) = Aus + Acuk = Aus

⇒ there is a one parameter family of solutions

Check an example with c = 2
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Undoing Maps: Inverse Matrices

How to undo a linear map

Given Au = b

What matrix B maps b back to u: u = Bb?
B is the inverse map

Recall: shears can be used to zero matrix elements

S1Au = S1b.

Example:

[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]

⇒
[

2 4
0 4

] [

u1
u2

]

=

[

4
2

]
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Undoing Maps: Inverse Matrices

Second shear: S2S1Au = S2S1b (map new a2 to the e2-axis)

S2 =

[

1 −1
0 1

]

results in

[

2 0
0 4

] [

u1
u2

]

=

[

2
2

]

Non-uniform scaling S3 (map a1, a2 onto e1, e2)

S3 =

[

1/2 0
0 1/4

]

results in

[

1 0
0 1

] [

u1
u2

]

=

[

1
1/2

]

All together:

S3S2S1Au = S3S2S1b

Iu = A−1b

I called the identity matrix
A−1 called the inverse matrix and A called invertible
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Undoing Maps: Inverse Matrices

A−1A = I and AA−1 = I I−1 = I

Inverse of a scaling:

[

s 0
0 t

]−1

=

[

1/s 0
0 1/t

]

Example:

[

1 0
0 0.5

]

Top: original Phoenix, scale, inverse
scale
Bottom: original Phoenix, inverse
scale, original scale
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Undoing Maps: Inverse Matrices

Top: original Phoenix, shear, inverse shear
Bottom: original Phoenix, inverse shear, original shear
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Undoing Maps: Inverse Matrices

Rotation matrices:
R−α = R−1

α = RT

α

Rotation matrix is an orthogonal matrix:

A−1 = AT

Column vectors satisfy ‖a1‖ = 1, ‖a2‖ = 1 and a1 · a2 = 0

⇒ vectors called orthonormal

⇒ these linear maps called rigid body motions

Characterized by determinant = ±1
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Undoing Maps: Inverse Matrices

A−1−1
= A and A−1T = AT−1

Example:

A =

[

1 0
1 0.5

]

Top: I , A−1, A−1T

Bottom: I , AT, AT−1
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Undoing Maps: Inverse Matrices

How to compute A’s inverse?
Start with

AA−1 = I

Denote two (unknown) columns of A−1 by a1 and a2
Denote columns of I by e1 and e2

A
[

a1 a2
]

=
[

e1 e2
]

Short for two linear systems

Aa1 = e1 and Aa2 = e2

Both systems have the same matrix A
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Defining a Map

Matrices map vectors to vectors

If v1 and v2 mapped to v′1 and v′2, what matrix A did it?

Av1 = v′1 and Av2 = v′2

Combining into a matrix equation:

A[v1 v2] = [v′1 v′2] or AV = V ′

Solution: find V−1, then A = V ′V−1

v1 and v2 must be linearly independent for V−1 to exist

Farin & Hansford Practical Linear Algebra 36 / 50



Defining a Map

Example:

v1 =

[

1
1

]

and v2 =

[

−1
1

]

v′1 =

[

−1
−1

]

and v′2 =

[

1
−1

]

V−1 =

[

1/2 1/2
−1/2 1/2

]

A = V ′V−1 =

[

−1 1
−1 −1

] [

1/2 1/2
−1/2 1/2

]

=

[

−1 0
0 −1

]
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Change of Basis

Basics of coordinate systems

e1

e2 v

v ′

a

a

1

2

Figure (left): v =

[

1/2
1

]

⇒ v =
1

2
e1 + 1e2

Basis vectors and the origin establish a grid for navigating 2D space
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Change of Basis

Choose any set of linearly independent vectors
Figure (right): [a1, a2]-system

e1

e2 v

v ′

a

a

1

2

a1 =

[

2
1

]

a2 =

[

−2
4

]

v′ =
1

2
a1 + a2

In the [a1, a2]-system
[

1
0

] [

0
1

]

defined as a1 = 1a1 + 0a2 and a2 = 0a1 + 1a2
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Change of Basis

a1 and a2 play the same role in the [a1, a2]-system
as do e1 and e2 in the [e1, e2]-system

Basis vector must not be orthogonal nor unit length but sometimes
desirable
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Change of Basis

Change of basis problems

1 Given v′a =

[

1/2
1

]

a

in the [a1, a2]-system, what are the components

of this vector in the [e1, e2]-system, referred to as v′e?

2 Given ve =

[

1/2
1

]

e

in the [e1, e2]-system, what are the components of

this vector in the [a1, a2]-system, referred to as va?

– Subscripts have been added to the vectors to make clear their defining
basis vectors.
– Extra square brackets are added when needed to improve readability.
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Change of Basis

Question 1:

Write [a1, a2]-system vectors in terms of the [e1, e2]-system vectors

[a1]e = 2e1 + 1e2 and [a2]e = −2e1 + 4e2

Vector v′ with respect to the [e1, e2]-system

v′e =
1

2
[a1]e + 1[a2]e

In matrix form

v′e = A

[

1/2
1

]

a

=

[

−1
9/2

]

e

where A =
[

[a1]e [a2]e
]

=

[

2 −2
1 4

]

A maps a vector in the [a1, a2]-system to one in the [e1, e2]-system
Called a change of basis matrix
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Change of Basis

Question 2:

Apply the inverse map to the matrix in Question 1

A−1

[

−1
9/2

]

e

=

[

1/2
1

]

a

A−1 =

[

2/5 1/5
−1/10 1/5

]

Components of e1 and e2 in the [a1, a2]-system are revealed in A−1

e1 =
2

5
a1 −

1

10
a2 and e2 =

1

5
a1 +

1

5
a2.

We could have constructed A−1 by solving two 2× 2 linear systems

A[e1]a = e1 and A[e2]a = e2 then A−1 = [[e1]a [e2]a]

The answer to Question 2:

va = A−1ve =

[

4/10
3/20

]
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Change of Basis

Application: coordinate system axes rotation

Given: ua

Find: the matrix for a 90◦ in the [a1, a2]-system

Solution:

1 construct change of basis matrix A: map ua into the [e1, e2]-system

2 apply the “usual” rotation R

3 transform back to the [a1, a2]-system with A−1

u′a = A−1RAua
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Change of Basis

Application: coordinate system axes rotation

v ′

a

a

1

2

[v′ ]⊥

90◦ rotation of v′a into [v′a]
⊥

Example:

Rotate v′a by 90◦ in the
[a1, a2]-system

R ′ = A−1RA =

[

0 −2
1/2 0

]

[v′a]
⊥ = R ′v′a =

[

−2
1/4

]

R and R ′ describe the same linear
map, but with respect to different
bases
They are similar matrices
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Change of Basis

Application: projecting a point onto a line

v

p

q

Project point p onto line defined by v

resulting in q closest to p

Let v form angle θ with e1

M = RθPR−θ

where

R =

[

cos θ − sin θ
sin θ cos θ

]

P =

[

1 0
0 0

]

P and M are similar matrices
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Change of Basis

Application: projecting a point onto a line

v

p

q

v is not drawn normalized

Example:

θ = 45◦ v =

[

1/
√
2

1/
√
2

]

p =

[

1
3

]

M =

[

0.5 0.5
0.5 0.5

]

Projection of p onto v:

q = Mp =

[

2
2

]
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Application: Intersecting Lines

Two interpretations of of a linear system

1 “column view”: coordinate system or linear combination approach

2 “row view”: focus on the row equations

Line intersection problems provide examples of both:
— parametric/parametric line ⇒ column view
— implicit/implicit line ⇒ row view

Choose the view that best suits given information
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Application: Intersecting Lines

Linear systems from this chapter interpreted as line intersection

-3 -2 -1 1 2 3
-1

1

2

-

1

2

1

2

1

2

-1 1 2

-1

1

2

3

4

5

Left to right: unique solution, inconsistent, underdetermined
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WYSK

linear system

solution spaces

consistent linear system

Cramer’s rule

upper triangular

Gauss elimination

forward elimination

back substitution

linear combination

inverse matrix

orthogonal matrix

orthonormal

rigid body motion

inconsistent system of equations

underdetermined system of
equations

homogeneous system

kernel

null space

row pivoting

column pivoting

complete pivoting

change of basis

column and row views of linear
systems
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