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Introduction to 2 x 2 Linear Systems

Two families of lines are shown

Intersections of corresponding line

pairs marked

For each intersection:

solve a 2 x 2 linear system

3/50

Practical Linear Algebra

Farin & Hansford



Skew Target Boxes Revisited

Geometry of a 2 X 2 system

Farin & Hansford
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a; and a, define a skew target box
Given b with respect to the

[e1, ez]-system:

What are the components of b with
respect to the [aj, ap]-system?
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Two equations in the two unknowns u; and up

20 +4ur = 4

u1 +6u, =4
Solution: vy =1 and u; =1/2

This chapter dedicated to solving these equations
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Two equations

ai1ul +aiols = by

ac1u1 + azals = by
Also called a linear system

b>

[31,1 31,2] |:U1:| _ [b1:|
a1 dz2| [U2

Au=b
u called the solution of linear system
Previous example:

2 4| (u| |4
1 6 U2_4
«O» «Fr «E>» «E>» E DA
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The Matrix Form

Recall geometric interpretation of Au = b:
Express b as a linear combination of a; and as

tnay+wa,=>b

At least one solution: linear system called
Otherwise: called

Three possibilities for

© Exactly one solution vector u
Al #0
matrix has full rank and is non-singular

@ No solution (system is inconsistent)
© Infinitely many solutions

(Sketches of each case to come)
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A Direct Approach: Cramer’s Rule

area(b, ay) area(az, b)
1=——F——~ W=—"—"F"—"7
area(ag, ay) area(ag, az)

Ratios of areas

Shear parallelogram formed by
— b,a, onto a;

— b,a; onto a;

(Shears preserve areas)

Signed area of a parallelogram given
by determinant
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A Direct Approach: Cramer’s Rule

Example:

4 2 4
a6 8 14 g
TR T T 4 T8

16 16

What if area spanned by a; and as is zero?

Cramer's rule primarily of theoretical importance
For larger systems: expensive and numerically unstable
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Gauss Elimination

Farin & Hansford

Special 2 x 2 linear system:

a a
[ 1,1 1,2} u=b
0 ap
Matrix is called upper tr/angu/ar
Solve with

ur = by/azo
1

up = — (b1 — wpai )
ar1

Diagonal elements key: called

Practical Linear Algebra
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Gauss Elimination

Farin & Hansford

Any linear system with non-singular
matrix may be transformed to upper
triangular via

Process of forward elimination
followed by back substitution is
called

Example:

i +eele = 4

Find vy and u»

Key fact: linear maps do not change
linear combinations
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Gauss Elimination

Apply the same linear map to all
vectors in system
then factors u; and up won't change:

(i) reele]) =<d

Shear parallel to the e-axis so that

2 is mapped to 2
1 PP 0

- _ 1 0
Shear matrix;: S = [_1/2 1]

. applies one

operation
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Gauss Elimination

Transformed system:
2 4 up . 4
0 4 u» o 2
up=2/4=1/2,

L 4 — 4 x L 1
ul1 = — —_ — =
T2 2
2 x 2 linear systems:

only one matrix entry to zero in the forward elimination procedure
(More algorithmic approach in Chapter 12 Gauss for Linear Systems)

Next:

Algebraically: transformed system by modifying the second row only

rowp = —§r0W1 + rows.

Called an
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Pivoting

Farin & Hansford

Example:

01 uq o 1

1 0| |w| |1
Shearing a; onto ej-axis will not

work
Solution: exchange two equations

10 ur| 1

01 u» - 1
Exchanging equations (rows) so pivot
is the largest in absolute value called

Used to improve numerical stability
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Row exchange is a linear map

It is represented by the permutation matrix

01
7= 13 )
operation

Another example of an elementary matrix resulting in an elementary row
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Pivoting

Example:

0.0001 1| |uwg
1 1 u»

1
2
Shear a; onto the ej-axis

00000 1 ][w] [ 1
0 —9999] |up| ~ |—9998

Performing back substitution

u; = 1.0001 (“true” solution)
0.99989

Suppose machine only stores three digits — system stored as

0.0001 1 J[w] [ 1
0  —10000] [up]| ~ |—10000]

u, = [ﬂ (“round-off” solution)

Not very close to the true solution us: |luy — u,|| = 1.0001

Farin & Hansford Practical Linear Algebra
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Pivoting dampers effects of round-off

1 1 Ju| |2
0.0001 1| |w| |1
Forward elimination

o oss0o) |on] = osees
=}

(“pivoting” solution)
Closer to “true” solution: |lus — u,|| = 0.00014



Unsolvable Systems

a; and a, are

Farin & Hansford

] =D

Forward elimination
(shear a; onto e;-axis):

2 1| |u| |1
00 u» a -1
Last equation: 0 = —1

System is inconsistent = no solution

Approximate solution via least
squares methods
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Underdetermined Systems

b a multiple of a; or as

¢ -1

Forward elimination
(shear a; onto e;-axis):

2 1 ur| 3
o of [o]= L]
Last equation: 0 =10
true, but a bit trivial
e This is one equation written twice
e System is
e System . at least one

solution exists
Example: set up =1 then u; =1
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Homogeneous Systems

Au=20
. Right-hand side
consists of zero vector

cu=0
— usually of little interest
If solution u # 0 exists

then all cu are solutions
= infinite number of solutions

Vectors u that satisfy the
homogeneous system are orthogonal
to the row vectors

Not all homogeneous systems have a
non-trivial solution

— 2 X 2 matrices: only rank 1 maps
= a; and as linearly dependent

If only trivial solution exist = A
invertible
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Homogeneous Systems

A

a» = 2a; = A maps all vectors onto
line defined by 0, a;
Forward elimination:

HEH

Pick up = 1 then
back substitution gives u; = —2

Any cu perpendicular to a; is a

solution: a;-u=20

— all such u make up or
of A
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Homogeneous Systems

Example: only the trivial solution

kil

Columns of A are linearly independent
A does not reduce dimensionality = cannot map u # 0 to 0

Forward elimination:
1 2 u— 0
0 -3/ |0

Back substitution: u = [8}
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Homogeneous Systems

Example: row pivoting not helpful — need column pivoting

v

Column pivoting:

03

(Exchange unknowns too)

Set u; = 1 and back substitution results in up = 0

.o
Solutions: u=c [O]

Farin & Hansford
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All vectors u that satisfy a homogeneous system
Au=0

make up the kernel or null space of the matrix
Vectors u in the kernel are orthogonal to the row space of A

The dimension of the kernel is called the nullity of A
For 2 x 2 matrices:

rank + nullity = 2

«O> «4F>r «=Zr «=)» = o>



Kernel

Example: Homogeneous system with non-trivial solution
Rank =1 Nullity =1 Notice that a, = 2a;

kil

Example: Homogeneous system with only trivial solution
Rank =2 Nullity =0 a3 and a; linearly independent

kil

Farin & Hansford Practical Linear Algebra
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Kernel

Kernel = the central, most important part of something

In linear algebra, it reveals information about a linear map (matrix) and
also the solution to a linear system.
The kernel is a subspace of the domain with the following properties
© Always contains the zero vector since A0 =0
@ If uis in the kernel, then cu is in the kernel:
c(Au) = c0, thus A(cu) =0
© If u and v are in the kernel, then u + v is in the kernel
(distributive law)
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Why is knowledge of the kernel useful?
Reveals the existence and uniqueness of a solution

If the nullity = 0, then the solution is unique.

If the nullity > 1, then the solution is not unique

and the nullity reveals the number of parameters available to specify a
solution
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Kernel
Example: Rank 1, Nullity 1

2 1) fu] _[3 with specific solution us = |-
4 2 0 — _6 p u s — 1

Homogeneous linear system

2 1] [wm] _ [0] _ . 1
[4 2] [UJ = [O_ with a kernel solution uy, = [ ) ]

Then all vectors
u = us + cuy

are solutions to the linear system since
A(us + cug) = Aug + Acuy, = Aug

= there is a one parameter family of solutions

Check an example with ¢ =2
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Undoing Maps: Inverse Matrices

How to undo a linear map

Given Au=b
What matrix B maps b back to u: u = Bb?
B is the

Recall: shears can be used to zero matrix elements

SlAu = Slb.

Example:

Farin & Hansford Practical Linear Algebra 29 /50



Undoing Maps: Inverse Matrices
Second shear: $5,51Au = 5,51b (map new a to the ex-axis)
1 -1 2 0] [wm] ]2
S5 = [0 1] results in [0 4} [UJ = [2]
Non-uniform scaling S3 (map aj, az onto ey, €3)

I I AR A

All together:

535251Au = 535251b

Jlu=A"'b
| called the
A~ called the and A called
Farin & Hansford Practical Linear Algebra
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AlA=1] and AAl=1] 71 =1

Inverse of a scaling:
-1
s 0 ° _[1/s O
0 t|] |0 1/t
Example:
1 0
0 05

Top: original Phoenix, scale, inverse
scale

Bottom: original Phoenix, inverse
scale, original scale

«O> < Fr «=)r «=)»
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Top: original Phoenix, shear, inverse shear

Bottom: original Phoenix, inverse shear, original shear

«O>» <Fr «=» «=>» A



Rotation matrices:
_ p-1_ pT
R..=R,"=R,
Rotation matrix is an orthogonal matrix:
Al =AT

Column vectors satisfy ||la1]| = 1,

ay]=1anda;-a, =0
= vectors called orthonormal

=> these linear maps called rigid body motions
Characterized by determinant = +1

«O> «4F>r «=Zr «=)» = o>



and A—lT

= AT_].
Example:

1 0
A_[l 0.5]

Top: 1, AL, Pt

Bottom: /, AT, AT

(O B < =»
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Undoing Maps: Inverse Matrices

How to compute A’s inverse?
Start with
AATL = |

Denote two (unknown) columns of A=! by a; and @,
Denote columns of / by e; and e»

A [51 52] = [el e2}

Short for two linear systems
A51 =e; and A52 = e

Both systems have the same matrix A

Farin & Hansford Practical Linear Algebra
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Defining a Map

Matrices map vectors to vectors

If vi and v, mapped to v} and vj, what matrix A did it?

Avi =v] and Avy =V,
Combining into a matrix equation:
Alvi vo] = [v] V)] oo  AV=V

Solution: find V~I, then A= V/V—1
vi and v, must be linearly independent for V1 to exist
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Example:

1 -1
V1—|:1:| and V2—|:1:|
v, = [:ﬂ and Vv, = [_11]

vi= [ v 1/2]

~1/2 1/2

A=V'vl= [j _11] [—11//22 1%]
1



Basics of coordinate systems

a;

Figure (left): V= [1{2} v=er + le
Basis vectors and the origin establish a grid for navigating 2D space
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Choose any set of linearly independent vectors

Figure (right): [a1,az]-system

a

ar= 2| a=|2 v
In the [a;, ap]-system

1

0

] [1] defined as a; = la; +0a, and a; = 0a; + las

«O>» «Fr « =

« =
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a; and ay play the same role in the [a;, ay]-system
as do e; and ey in the [e;, ep]-system

Basis vector must not be orthogonal nor unit length but sometimes
desirable

«40O>» «Fr « =)
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Change of Basis

Change of basis problems

Q Given v}, = [1{2} in the [a1, ap]-system, what are the components
a

of this vector in the [e;, ex]-system, referred to as v.?

Q Given ve = [1{2] in the [e1, e;]-system, what are the components of

e
this vector in the [a1,az]-system, referred to as v,?

— Subscripts have been added to the vectors to make clear their defining
basis vectors.
— Extra square brackets are added when needed to improve readability.
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Change of Basis

Question 1:

Write [a1, az]-system vectors in terms of the [e1, ep]-system vectors
[a1]e = 2e1 + le; and [az]e = —2e; + 4e;
Vector v/ with respect to the [e;, ep]-system
v, = sfaile + 1fasle

In matrix form

R Y s

A maps a vector in the [a1,az]-system to one in the [e;, e;]-system
Called a

Farin & Hansford Practical Linear Algebra 42 /50



Change of Basis

Question 2:

Apply the inverse map to the matrix in Question 1

A1 -1 _ 1/2 Al 2/5 1/5
9/2 . I —-1/10 1/5
Components of e; and e; in the [a1, ap]-system are revealed in AL
2a a d 1a + -a
e; = -a; — — and e, = - —ao.
1= 531~ 75 2= g T 5@

We could have constructed A~! by solving two 2 x 2 linear systems
A[el]a =e and A[ez]a =e then A_l = [[el]a [ez]a]

The answer to Question 2:

_ -1, _ |4/10
Va = A "e_[s/zo
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Change of Basis

Application: coordinate system axes rotation
Given: u,

Find: the matrix for a 90° in the [a1, a2]-system
Solution:

© construct change of basis matrix A: map u, into the [e;, ep]-system
© apply the “usual” rotation R
© transform back to the [a1, @s]-system with A~}

u, = A" RAu,

Farin & Hansford Practical Linear Algebra 44 /50



Change of Basis

Application: coordinate system axes rotation

Example:

Rotate v} by 90° in the
[a1, @2]-system

!/ -1 _ 0 _2
R=A RA—[1/2 0

vl =R, = | 4]

R and R’ describe the same linear
map, but with respect to different
bases

They are

90° rotation of Vv, into [v}]*
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Change of Basis

Application: projecting a point onto a line

Project point p onto line defined by v
resulting in g closest to p

Farin & Hansford

Let v form angle 6 with e;

M = RyPR_¢
where

R [cos@ —sin 9}

sinf cosf

-} ]

P and M are similar matrices
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Application: projecting a point onto a line

Example:

015 v [}V

e Pl
w=lo3 o8

Projection of p onto v:
v is not drawn normalized

DA

5 o
v Il
o <
- o
. Il
!
v —
NN
a |
it
it



Application: Intersecting Lines

Two interpretations of of a linear system

© ‘“column view": coordinate system or linear combination approach

g - " -
© ‘“row view": focus on the row equations

Line intersection problems provide examples of both:
— parametric/parametric line = column view
— implicit/implicit line = row view

Choose the view that best suits given information
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Linear systems from this chapter interpreted as line intersection

1

Left to right: unique solution, inconsistent, underdetermined

«40O>» «Fr « =) <
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WYSK

linear system
solution spaces
consistent linear system
Cramer’s rule
upper triangular
Gauss elimination
forward elimination
back substitution
linear combination
inverse matrix
orthogonal matrix
orthonormal

rigid body motion

Farin & Hansford

@ inconsistent system of equations

underdetermined system of
equations

homogeneous system
kernel

null space

row pivoting

column pivoting
complete pivoting

change of basis

systems

Practical Linear Algebra

column and row views of linear
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