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Introduction to Eigen Things

Tacoma Narrows Bridge:

Nov 1940 – swayed violently during mere 42-mile-per-hour winds
It collapsed seconds later

Linear map described by a matrix
Geometric properties?
— Phoenix figures showed circle
mapped to ellipse: action ellipse

This stretching and rotating is the
geometry of a linear map

Captured by its eigen things:
eigenvectors and eigenvalues
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Introduction to Eigen Things

Tacoma Narrows Bridge: view from shore shortly before collapsing

Careful eigenvalue analysis carried-out before any bridge is built!

Eigenvalues and eigenvectors play
important role in analysis of
mechanical structures

Essentials of eigen-theory present in
2D case — topic of this chapter

Higher-dimensional case covered in
Chapter 15
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Fixed Directions

Uniform scaling: e1-axis is mapped to itself; e2-axis mapped to itself
⇒ Any vector ce1 or de2 mapped to multiple of itself

Shear in e1: any vector ce1 mapped to multiple of itself
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Fixed Directions

Fixed directions: directions not changed by the map

All vectors in fixed directions change only in length

Given matrix A: which vectors r mapped to a multiple of itself?

Ar = λr λ ∈ R

Disregard the trivial solution r = 0

In 2D: at most two directions
Symmetric matrices: directions orthogonal (more on that later)

Fixed directions called the eigenvectors
— from the German word “eigen” meaning special or proper

Factor λ called its eigenvalue

Eigen things are key to understanding geometry of a matrix
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Eigenvalues

How to find the eigenvalues of a 2× 2 matrix A?

Ar = λr = λI r

[A− λI ]r = 0

Matrix [A− λI ] maps a nonzero vector r to the zero vector
⇒ [A− λI ] rank deficient matrix

⇒ p(λ) = det[A− λI ] = 0

This is called the characteristic equation
— 2D: characteristic equation is quadratic

p(λ) called the characteristic polynomial
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Eigenvalues

Example:

A =

[

2 1
1 2

]

p(λ) =

∣

∣

∣

∣

2− λ 1
1 2− λ

∣

∣

∣

∣

= 0

p(λ) = λ2 − 4λ+ 3 = 0

λ1 = 3 λ2 = 1

Recall quadratic equation:
aλ2 + bλ+ c = 0 has the solutions

λ1,2 =
−b ±

√
b2 − 4ac

2a
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Eigenvalues

Eigenvalues of a 2× 2 matrix:

Find the zeroes of the quadratic equation

p(λ) = (λ− λ1)(λ− λ2) = 0

Convention: eigenvalues ordered |λ1| ≥ |λ2|
λ1 called the dominant eigenvalue

p(λ) = det[A− λI ] then p(0) = det[A] = λ1 · λ2

Brings together concepts of the determinant and eigenvalues:
— Determinant measures change in area

(unit square mapped to parallelogram)
— Eigenvalues indicate a scaling of fixed directions
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Eigenvectors

Example continued: Find r1 corresponding to λ1 = 3

[

2− 3 1
1 2− 3

]

r1 =

[

−1 1
1 −1

]

r1 = 0

Rank 1 homogeneous system
⇒ infinitely many solutions
Forward elimination results in

[

−1 1
0 0

]

r1 = 0

Assign r2,1 = 1, then r1 = c

[

1
1

]

One-parameter family of eigenvectors
forms the eigenspace for λ1 = 3
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Eigenvectors

Example continued: Find r2 corresponding to λ2 = 1

[

2− 1 1
1 2− 1

]

r2 =

[

1 1
1 1

]

r2 = 0

r2 = c

[

−1
1

]

Eigenspace corresponding to λ2 = 1

Recheck Figure:

[

1
−1

]

is not stretched — it is mapped to itself

Often eigenvectors normalized for degree of uniqueness

r1 =
1√
2

[

1
1

]

r2 =
1√
2

[

−1
1

]

Dominant eigenvector: eigenvector corresponding to dominant eigenvalue
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Striving for More Generality

Quadratic polynomials have either no, one, or two real zeroes

If there are no zeroes: then A has no fixed directions
Example: rotations — rotate every vector; no direction unchanged
Rotation by −90◦

[

0 1
−1 0

]

Characteristic equation
∣

∣

∣

∣

−λ 1
−1 −λ

∣

∣

∣

∣

= 0 ⇒ λ2 + 1 = 0

No real solutions
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Striving for More Generality

If there is one double root: then A has only one fixed direction
Example: A shear in the e1-direction

A =

[

1 1/2
0 1

]

Characteristic equation

∣

∣

∣

∣

1− λ 1/2
0 1− λ

∣

∣

∣

∣

= 0 ⇒ (1− λ)2 = 0 ⇒ λ1 = λ2 = 1

To find the eigenvectors — solve

[

0 1/2
0 0

]

r = 0 ⇒ (Column pivoting)

[

1/2 0
0 0

] [

r2
r1

]

= 0

Set r1 = 1, then r = c

[

1
0

]
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Striving for More Generality

If one eigenvalue is zero: Example: projection matrix

A =

[

0.5 0.5
0.5 0.5

]

Characteristic equation: λ(λ− 1) = 0 ⇒ λ1 = 1, λ2 = 0
Eigenvector corresponding to λ2:

[

0.5 0.5
0.5 0.5

]

r2 =

[

0
0

]

Forward elimination ⇒
[

0.5 0.5
0.0 0.0

]

r2 =

[

0
0

]

⇒ r2 = c

[

−1
1

]

Matrix maps multiples of r2 to the zero vector
⇒ reduces dimensionality ⇒ rank one

Eigenvector corresponding to zero eigenvalue is in the kernel or null space
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Striving for More Generality

Projection matrix and eigenvalues:

Rank one matrices are idempotent: A2 = A

One eigenvalue is zero – let λ 6= 0 with eigenvector r

Ar = λr

A2r = λAr

λr = λ2r

⇒ λ = 1

A 2D projection matrix always has eigenvalues 0 and 1

General statement: a 2× 2 matrix with one zero eigenvalue is rank 1
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The Geometry of Symmetric Matrices

Symmetric matrices: A = AT

Arise often in practical problems
— examples: conics and least squares approximation
Many more practical examples in classical mechanics, elasticity theory,
quantum mechanics, and thermodynamics

Real symmetric matrices advantages:

eigenvalues are real

interesting geometric interpretation (eigendecomposition — next)

structure allows for stable and efficient numerical algorithms
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The Geometry of Symmetric Matrices

Two basic equations for eigenvalues and eigenvectors:

Ar1 = λ1r1 (∗) Ar2 = λ2r2 (∗∗)
Since A is symmetric

(Ar1)
T = (λ1r1)

T

rT1 A
T = rT1 λ1

rT1 A = λ1r
T

1

Multiply both sides by r2

rT1 Ar2 = λ1r
T

1 r2

Multiply both sides of (**) by rT1

rT1 Ar2 = λ2r
T

1 r2

Equating last two equations

λ1r
T

1 r2 = λ2r
T

1 r2 or (λ1 − λ2)r
T

1 r2 = 0
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The Geometry of Symmetric Matrices

(λ1 − λ2)r
T

1 r2 = 0

If λ1 6= λ2 (the standard case): rT1 r2 = 0 ⇒ orthogonal

Condense (∗) and (∗∗) into one matrix equation

[

Ar1 Ar2
]

=
[

λ1r1 λ2r2
]

Define

R =
[

r1 r2
]

and Λ =

[

λ1 0
0 λ2

]

then
AR = RΛ

Revisit Example:

[

2 1
1 2

] [

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

]

=

[

1/
√
2 −1/

√
2

1/
√
2 1/

√
2

] [

3 0
0 1

]
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The Geometry of Symmetric Matrices

Assume eigenvectors are normalized: rT1 r1 = 1 and rT2 r2 = 1
They are orthogonal: rT1 r2 = rT2 r1 = 0

Two conditions ⇒ r1 and r2 are orthonormal

These four equations written in matrix form

RTR = I ⇒ R−1 = RT R is an orthogonal matrix

Now AR = RΛ becomes
A = RΛRT

The eigendecomposition of A
May transform A to diagonal matrix Λ = R−1AR : A is diagonalizable
Matrix decomposition: fundamental tool in linear algebra
— gives insight into the action of a matrix
— for building stable and efficient methods to solve linear systems
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The Geometry of Symmetric Matrices

Geometric meaning of the eigendecomposition A = RΛRT

A =

[

2 1
1 2

]

with λ1 = 3, λ2 = 1

Top: I , A
Bottom: I , RT (rotate −45◦), ΛRT (scale), RΛRT (rotate 45◦)
R : rotation, a reflection, or combination ⇒ RT: reversal of R
These linear maps preserve lengths and angles
Diagonal matrix Λ is a scaling along each of the coordinate axes
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The Geometry of Symmetric Matrices

Another look at the action of the map A on a vector x:

Ax = RΛRTx

=
[

r1 r2
]

Λ

[

rT1
rT2

]

x

=
[

r1 r2
]

[

λ1r
T

1 x

λ2r
T

2 x

]

= λ1r1r
T

1 x+ λ2r2r
T

2 x

Each matrix rkr
T

k
is a projection onto rk

Action of A can be interpreted as a linear combination of projections onto
the orthogonal eigenvectors
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The Geometry of Symmetric Matrices

Example: action of A on x as a linear combination of projections

x

r1r2

P2 x

3 P1 x

Ax

1 2 3 4

1

2

3

A =

[

2 1
1 2

]

x =

[

2
1/2

]

Projection matrices:

P1 = r1r
T

1 =

[

1/2 1/2
1/2 1/2

]

P2 = r2r
T

2 =

[

1/2 −1/2
−1/2 1/2

]

Action of the map:

Ax = 3P1x+ P2x

=

[

15/4
15/4

]

+

[

3/4
−3/4

]

=

[

9/2
3

]

Farin & Hansford Practical Linear Algebra 22 / 36



Quadratic Forms

Bivariate function: a function f with two arguments f (v1, v2) or f (v)
Special bivariate functions defined in terms of a 2× 2 symmetric matrix C :

f (v) = vTCv

Such functions are called quadratic forms — all terms are quadratic:

f (v) = c1,1v
2
1 + 2c2,1v1v2 + c2,2v

2
2

Graph of a quadratic form is a 3D point set [v1, v2, f (v1, v2)]
T

forming a quadratic surface
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Quadratic Forms

Ellipsoid, paraboloid, hyperboloid evaluated over the unit circle
Contour plot communicates additional shape information
Color map extents: min f (v) colored black and max f (v) colored white
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Quadratic Forms

Corresponding matrices and quadratic forms are

C1 =

[

2 0
0 0.5

]

C2 =

[

2 0
0 0

]

C3 =

[

−2 0
0 0.5

]

f1(v) = 2v21 + 0.5v22 f2(v) = 2v21 f3(v) = −2v21 + 0.5v22
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Quadratic Forms

C1 =

[

2 0
0 0.5

]

C2 =

[

2 0
0 0

]

C3 =

[

−2 0
0 0.5

]

Determinant and eigenvalues:

|C1| = 1 λ1 = 2, λ2 = 0.5

|C2| = 0 λ1 = 2, λ2 = 0

|C3| = −1 λ1 = −2, λ2 = 0.5
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Quadratic Forms

Positive definite matrix:

f (v) = vTAv > 0 for v 6= 0 ∈ R
2

Quadratic form is positive everywhere except for v = 0

Example: ellipsoid C1 =

[

2 0
0 0.5

]

f1(v) = 2v21 + 0.5v22

Positive definite symmetric matrices: special class of matrices

— arise in a number of applications

— lend themselves to numerically stable and efficient algorithms
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Quadratic Forms

Suppose A is not necessarily symmetric

ATA and AAT are symmetric and positive definite

vTATAv = (Av)T(Av) = yTy = ||y||2 > 0

These matrices at the heart the singular value decomposition (SVD)
— topic of Chapter 16

Determinant of a positive definite 2× 2 matrix is always positive

— This matrix is always nonsingular

These concepts apply to n × n matrices, however there are additional
requirements on the determinant

— More detail in Chapters 12 and 15
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Quadratic Forms

Examine quadratic forms where C is positive definite: C = ATA

Contour: all v for which
vTCv = 1

Example: contour for C1 is an ellipse 2v21 + 0.5v22 = 1

Set v1 = 0 ⇒ e2-axis extents of the ellipse: ±1/
√
0.5

Set v2 = 0 ⇒ e1-axis extents: ±1/
√
2

Major axis is the longest — here: e2-direction

Eigenvalues: λ1 = 2, λ2 = 0.5

Eigenvectors r1 = [1 0]T, r2 = [0 1]T

⇒ Minor axis corresponds to the dominant eigenvector – steeper ascent
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Quadratic Forms

Example:

A =

[

2 0.5
0 1

]

C4 = ATA =

[

4 1
1 1.25

]

Eigendecomposition C4 = RΛRT

R =

[

−0.95 0.30
−0.30 −0.95

]

Λ =

[

4.3 0
0 0.92

]

Ellipse defined by vTC4v = 4v21 + 2v1v2 + 1.25v22 = 1
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Quadratic Forms

Example continued:

Ellipse vTC4v = 4v21 + 2v1v2 + 1.25v22 = 1

Major and minor axis not aligned with coordinate axes

Fnd major and minor axis lengths:
— use eigendecomposition to perform a coordinate transformation
— align ellipse with the coordinate axes

vTRΛRTv = 1

v̂TΛv̂ = 1

λ1v̂
2
1 + λ2v̂

2
2 = 1

Minor axis: length 1/
√
λ1 = 0.48 on e1 axis

Major axis: length 1/
√
λ2 = 1.04 on e2 axis
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Quadratic Forms

Quadratic form for a symmetric matrix may also be written as

q(v) =
vTCv

vTv

Called the Rayleigh quotient

Quotient reaches a maximum in the dominant eigenvector direction

q(r1) =
rT1 C r1

rT1 r1
=

rT1 λ1r1

rT1 r1
= λ1

and a minimum in the direction corresponding to the smallest eigenvalue

q(r2) =
rT2 C r2

rT2 r2
=

rT2 λ2r2

rT2 r2
= λ2

Algebraic confirmation of the steepest ascent observation
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Repeating Maps

Matrices map the unit circle to an ellipse

Map the ellipse using the same map — Repeat

A =

[

1 0.3
0.3 1

]
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Repeating Maps

A =

[

1 0.3
0.3 1

]

Symmetric ⇒ two real eigenvalues and orthogonal eigenvectors

As map repeated resulting ellipses stretched:

— elongated in direction r1 by λ1 = 1.3

— compacted in the direction of r2 by a factor of λ2 = 0.7

r1 =

[

1/
√
2

1/
√
2

]

r2 =

[

−1/
√
2

1/
√
2

]

AAr1 = Aλ1r1 = λ2
1r1

Anr1 = λn

1r1

Same holds for r2 and λ2

Farin & Hansford Practical Linear Algebra 34 / 36



Repeating Maps

A =

[

0.7 0.3
−1 1

]

Matrix does not have real eigenvalues — related to a rotation matrix
— figures do not line up along any (real) fixed directions

Power method: apply idea of repeating a map to find the dominant
eigenvector (Chapter 15)

Farin & Hansford Practical Linear Algebra 35 / 36



WYSK

fixed direction

eigenvalue

eigenvector

characteristic equation

dominant eigenvalue

dominant eigenvector

homogeneous system

kernel or null space

orthogonal matrix

eigen-theory of a symmetric
matrix

matrix with real eigenvalues

diagonalizable matrix

eigendecomposition

quadratic form

contour plot

positive definite matrix

repeated linear map
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