Practical Linear Algebra: A GEOMETRY TOOLBOX

Fourth Edition

Chapter 7: Eigen Things

Gerald Farin & Dianne Hansford

A K Peters/CRC Press www.farinhansford.com/books/pla

©2021

Outline

- Introduction to Eigen Things
- Pixed Directions
- 3 Eigenvalues
- 4 Eigenvectors
- **6** Striving for More Generality
- **6** The Geometry of Symmetric Matrices
- Quadratic Forms
- Repeating Maps
- WYSK

Introduction to Eigen Things

Tacoma Narrows Bridge:

Nov 1940 – swayed violently during mere 42-mile-per-hour winds It collapsed seconds later

Linear map described by a matrix Geometric properties?

— Phoenix figures showed circle mapped to ellipse: *action ellipse*

This stretching and rotating is the geometry of a linear map

Captured by its eigen things: eigenvectors and eigenvalues

Introduction to Eigen Things

Tacoma Narrows Bridge: view from shore shortly before collapsing Careful eigenvalue analysis carried-out before any bridge is built!

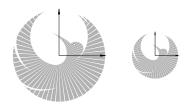
Eigenvalues and eigenvectors play important role in analysis of mechanical structures

Essentials of eigen-theory present in 2D case — topic of this chapter

Higher-dimensional case covered in Chapter 15

Fixed Directions

Uniform scaling: \mathbf{e}_1 -axis is mapped to itself; \mathbf{e}_2 -axis mapped to itself \Rightarrow Any vector $c\mathbf{e}_1$ or $d\mathbf{e}_2$ mapped to multiple of itself



Shear in e_1 : any vector ce_1 mapped to multiple of itself

Fixed Directions

Fixed directions: directions not changed by the map

All vectors in fixed directions change only in length

Given matrix A: which vectors \mathbf{r} mapped to a multiple of itself?

$$A\mathbf{r} = \lambda \mathbf{r} \qquad \lambda \in \mathbb{R}$$

Disregard the trivial solution $\mathbf{r} = \mathbf{0}$

In 2D: at most two directions

Symmetric matrices: directions orthogonal (more on that later)

Fixed directions called the eigenvectors

— from the German word "eigen" meaning special or proper Factor λ called its eigenvalue

Eigen things are key to understanding geometry of a matrix

Eigenvalues

How to find the eigenvalues of a 2×2 matrix A?

$$A\mathbf{r} = \lambda \mathbf{r} = \lambda I \mathbf{r}$$

$$[A - \lambda I]\mathbf{r} = \mathbf{0}$$

Matrix $[A - \lambda I]$ maps a nonzero vector \mathbf{r} to the zero vector $\Rightarrow [A - \lambda I]$ rank deficient matrix

$$\Rightarrow p(\lambda) = \det[A - \lambda I] = 0$$

This is called the characteristic equation

- 2D: characteristic equation is quadratic
- $p(\lambda)$ called the characteristic polynomial

Eigenvalues

Example:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$p(\lambda) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$

$$p(\lambda) = \lambda^2 - 4\lambda + 3 = 0$$

$$\lambda_1 = 3 \qquad \lambda_2 = 1$$

Recall quadratic equation: $a\lambda^2 + b\lambda + c = 0$ has the solutions

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Eigenvalues

Eigenvalues of a 2×2 matrix:

Find the zeroes of the quadratic equation

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = 0$$

Convention: eigenvalues ordered $|\lambda_1| \ge |\lambda_2|$

 λ_1 called the dominant eigenvalue

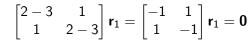
$$p(\lambda) = \det[A - \lambda I]$$
 then $p(0) = \det[A] = \lambda_1 \cdot \lambda_2$

Brings together concepts of the determinant and eigenvalues:

- Determinant measures change in area (unit square mapped to parallelogram)
- Eigenvalues indicate a scaling of fixed directions

Eigenvectors

Example continued: Find \mathbf{r}_1 corresponding to $\lambda_1 = 3$



Rank 1 homogeneous system
⇒ infinitely many solutions
Forward elimination results in

$$\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \textbf{r}_1 = \textbf{0}$$

Assign $r_{2,1}=1$, then $\mathbf{r}_1=c \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

One-parameter family of eigenvectors forms the eigenspace for $\lambda_1=3$

Eigenvectors

Example continued: Find ${f r}_2$ corresponding to $\lambda_2=1$

$$\begin{bmatrix} 2-1 & 1 \\ 1 & 2-1 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{r}_2 = \mathbf{0}$$
$$\mathbf{r}_2 = c \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Eigenspace corresponding to $\lambda_2=1$

Recheck Figure: $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is not stretched — it is mapped to itself

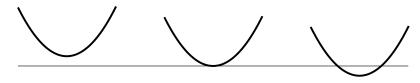
Often eigenvectors normalized for degree of uniqueness

$$\mathbf{r}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{r}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Dominant eigenvector: eigenvector corresponding to dominant eigenvalue

Farin & Hansford Practical Linear Algebra 11 / 36

Quadratic polynomials have either no, one, or two real zeroes



If there are no zeroes: then A has no fixed directions Example: rotations — rotate every vector; no direction unchanged Rotation by -90°

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Characteristic equation

$$\begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad \lambda^2 + 1 = 0$$

No real solutions

◆□▶◆□▶◆□▶◆□▶□□○○</li

If there is one double root: then A has only one fixed direction Example: A shear in the \mathbf{e}_1 -direction

$$A = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix}$$

Characteristic equation

$$\begin{vmatrix} 1-\lambda & 1/2 \\ 0 & 1-\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad (1-\lambda)^2 = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = 1$$

To find the eigenvectors — solve

$$\begin{bmatrix} 0 & 1/2 \\ 0 & 0 \end{bmatrix} \mathbf{r} = \mathbf{0} \quad \Rightarrow \quad \text{(Column pivoting)} \quad \begin{bmatrix} 1/2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r_2 \\ r_1 \end{bmatrix} = \mathbf{0}$$

Set
$$r_1=1$$
, then $\mathbf{r}=c\begin{bmatrix}1\\0\end{bmatrix}$

If one eigenvalue is zero: Example: projection matrix

$$A = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

Characteristic equation: $\lambda(\lambda-1)=0 \Rightarrow \lambda_1=1, \ \lambda_2=0$ Eigenvector corresponding to λ_2 :

$$\begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Forward elimination
$$\Rightarrow$$

Forward elimination
$$\Rightarrow$$
 $\begin{bmatrix} 0.5 & 0.5 \\ 0.0 & 0.0 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{r}_2 = c \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Matrix maps multiples of \mathbf{r}_2 to the zero vector

 \Rightarrow reduces dimensionality \Rightarrow rank one

Eigenvector corresponding to zero eigenvalue is in the kernel or null space

Projection matrix and eigenvalues:

Rank one matrices are idempotent: $A^2 = A$

One eigenvalue is zero – let $\lambda \neq 0$ with eigenvector ${\bf r}$

$$A\mathbf{r} = \lambda \mathbf{r}$$

$$A^2$$
r = λA **r**

$$\lambda \mathbf{r} = \lambda^2 \mathbf{r}$$

$$\Rightarrow \lambda = 1$$

A 2D projection matrix always has eigenvalues 0 and 1

General statement: a 2×2 matrix with one zero eigenvalue is rank 1

Symmetric matrices: $A = A^{T}$

Arise often in practical problems
— examples: conics and least squares approximation
Many more practical examples in classical mechanics, elasticity theory,
quantum mechanics, and thermodynamics

Real symmetric matrices advantages:

- eigenvalues are real
- interesting geometric interpretation (eigendecomposition next)
- structure allows for stable and efficient numerical algorithms

Two basic equations for eigenvalues and eigenvectors:

$$A\mathbf{r}_1 = \lambda_1 \mathbf{r}_1 \quad (*) \qquad \qquad A\mathbf{r}_2 = \lambda_2 \mathbf{r}_2 \quad (**)$$

Since *A* is symmetric

$$(A\mathbf{r}_1)^{\mathrm{T}} = (\lambda_1\mathbf{r}_1)^{\mathrm{T}}$$
$$\mathbf{r}_1^{\mathrm{T}}A^{\mathrm{T}} = \mathbf{r}_1^{\mathrm{T}}\lambda_1$$
$$\mathbf{r}_1^{\mathrm{T}}A = \lambda_1\mathbf{r}_1^{\mathrm{T}}$$

Multiply both sides by \mathbf{r}_2

$$\mathbf{r}_1^{\mathrm{T}} A \mathbf{r}_2 = \lambda_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2$$

Multiply both sides of (**) by $\mathbf{r}_1^{\mathrm{T}}$

$$\mathbf{r}_1^{\mathrm{T}} A \mathbf{r}_2 = \lambda_2 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2$$

Equating last two equations

$$\lambda_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2 = \lambda_2 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2$$
 or $(\lambda_1 - \lambda_2) \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2 = 0$

$$(\lambda_1 - \lambda_2)\mathbf{r}_1^{\mathrm{T}}\mathbf{r}_2 = 0$$

If $\lambda_1 \neq \lambda_2$ (the standard case): $\mathbf{r}_1^\mathrm{T} \mathbf{r}_2 = 0 \Rightarrow \textit{orthogonal}$ Condense (*) and (**) into one matrix equation

$$\begin{bmatrix} A\mathbf{r}_1 & A\mathbf{r}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{r}_1 & \lambda_2\mathbf{r}_2 \end{bmatrix}$$

Define

$$R = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix}$$
 and $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$

then

$$AR = R\Lambda$$

Revisit Example:

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

←□▶←□▶←□▶←□▶ □ ♥♀○

Assume eigenvectors are normalized: $\mathbf{r}_1^{\mathrm{T}}\mathbf{r}_1=1$ and $\mathbf{r}_2^{\mathrm{T}}\mathbf{r}_2=1$

They are orthogonal: $\mathbf{r}_1^{\mathrm{T}}\mathbf{r}_2 = \mathbf{r}_2^{\mathrm{T}}\mathbf{r}_1 = 0$

Two conditions \Rightarrow \mathbf{r}_1 and \mathbf{r}_2 are orthonormal

These four equations written in matrix form

$$R^{\mathrm{T}}R = I \implies R^{-1} = R^{\mathrm{T}}$$
 R is an orthogonal matrix

Now $AR = R\Lambda$ becomes

$$A = R\Lambda R^{\mathrm{T}}$$

The eigendecomposition of A

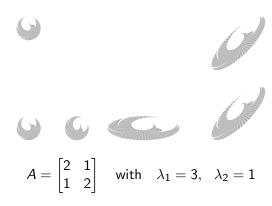
May transform A to diagonal matrix $\Lambda = R^{-1}AR$: A is diagonalizable Matrix decomposition: fundamental tool in linear algebra

- gives insight into the action of a matrix
- for building stable and efficient methods to solve linear systems

- 4ロト4部ト4ミト4ミト ミ めへぐ

19 / 36

Geometric meaning of the eigendecomposition $A = R\Lambda R^{T}$



Top: *I*, *A*

Bottom: I, $R^{\rm T}$ (rotate -45°), $\Lambda R^{\rm T}$ (scale), $R\Lambda R^{\rm T}$ (rotate 45°) R: rotation, a reflection, or combination $\Rightarrow R^{\rm T}$: reversal of R

These linear maps preserve lengths and angles

Diagonal matrix Λ is a scaling along each of the coordinate axes

Farin & Hansford Practical Linear Algebra 20 / 36

Another look at the action of the map A on a vector \mathbf{x} :

$$A\mathbf{x} = R\Lambda R^{\mathrm{T}}\mathbf{x}$$

$$= \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} \Lambda \begin{bmatrix} \mathbf{r}_1^{\mathrm{T}} \\ \mathbf{r}_2^{\mathrm{T}} \end{bmatrix} \mathbf{x}$$

$$= \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{x} \\ \lambda_2 \mathbf{r}_2^{\mathrm{T}} \mathbf{x} \end{bmatrix}$$

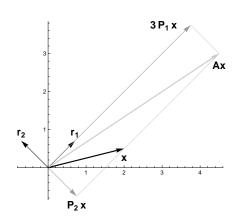
$$= \lambda_1 \mathbf{r}_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{x} + \lambda_2 \mathbf{r}_2 \mathbf{r}_2^{\mathrm{T}} \mathbf{x}$$

Each matrix $\mathbf{r}_k \mathbf{r}_k^{\mathrm{T}}$ is a projection onto \mathbf{r}_k

Action of A can be interpreted as a linear combination of projections onto the orthogonal eigenvectors

Farin & Hansford

Example: action of A on x as a linear combination of projections



$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$$

Projection matrices:

$$P_1 = \mathbf{r}_1 \mathbf{r}_1^{\mathrm{T}} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 $P_2 = \mathbf{r}_2 \mathbf{r}_2^{\mathrm{T}} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$

Action of the map:

$$A\mathbf{x} = 3P_1\mathbf{x} + P_2\mathbf{x}$$

$$= \begin{bmatrix} 15/4 \\ 15/4 \end{bmatrix} + \begin{bmatrix} 3/4 \\ -3/4 \end{bmatrix} = \begin{bmatrix} 9/2 \\ 3 \end{bmatrix}$$

Bivariate function: a function f with two arguments $f(v_1, v_2)$ or $f(\mathbf{v})$ Special bivariate functions defined in terms of a 2×2 symmetric matrix C:

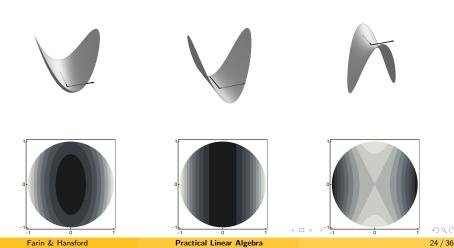
$$f(\mathbf{v}) = \mathbf{v}^{\mathrm{T}} C \mathbf{v}$$

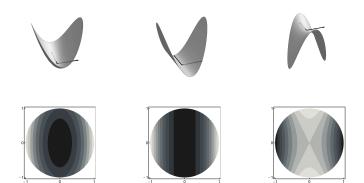
Such functions are called quadratic forms — all terms are quadratic:

$$f(\mathbf{v}) = c_{1,1}v_1^2 + 2c_{2,1}v_1v_2 + c_{2,2}v_2^2$$

Graph of a quadratic form is a 3D point set $[v_1, v_2, f(v_1, v_2)]^T$ forming a quadratic surface

Ellipsoid, paraboloid, hyperboloid evaluated over the unit circle Contour plot communicates additional shape information Color map extents: $\min f(\mathbf{v})$ colored black and $\max f(\mathbf{v})$ colored white





Corresponding matrices and quadratic forms are

$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix} \qquad C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \qquad C_3 = \begin{bmatrix} -2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$f_1(\mathbf{v}) = 2v_1^2 + 0.5v_2^2 \qquad f_2(\mathbf{v}) = 2v_1^2 \qquad f_3(\mathbf{v}) = -2v_1^2 + 0.5v_2^2$$

$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix} \quad C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \quad C_3 = \begin{bmatrix} -2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

Determinant and eigenvalues:

$$|C_1| = 1$$
 $\lambda_1 = 2$, $\lambda_2 = 0.5$
 $|C_2| = 0$ $\lambda_1 = 2$, $\lambda_2 = 0$
 $|C_3| = -1$ $\lambda_1 = -2$, $\lambda_2 = 0.5$

Positive definite matrix:

$$f(\mathbf{v}) = \mathbf{v}^{\mathrm{T}} A \mathbf{v} > 0 \quad \text{for } \mathbf{v} \neq \mathbf{0} \in \mathbb{R}^2$$

Quadratic form is positive everywhere except for ${f v}={f 0}$

Example: ellipsoid
$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$
 $f_1(\mathbf{v}) = 2v_1^2 + 0.5v_2^2$

Positive definite symmetric matrices: special class of matrices

- arise in a number of applications
- lend themselves to numerically stable and efficient algorithms

Farin & Hansford

Suppose A is not necessarily symmetric

 $A^{\mathrm{T}}A$ and AA^{T} are symmetric and positive definite

$$\boldsymbol{v}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{v}=(\boldsymbol{A}\boldsymbol{v})^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{v})=\boldsymbol{y}^{\mathrm{T}}\boldsymbol{y}=||\boldsymbol{y}||^{2}>0$$

These matrices at the heart the singular value decomposition (SVD) — topic of Chapter 16

Determinant of a positive definite 2×2 matrix is always positive

— This matrix is always nonsingular

These concepts apply to $n \times n$ matrices, however there are additional requirements on the determinant

- More detail in Chapters 12 and 15

Examine quadratic forms where C is positive definite: $C = A^{T}A$

Contour: all v for which

$$\mathbf{v}^{\mathrm{T}} C \mathbf{v} = 1$$

Example: contour for C_1 is an ellipse $2v_1^2 + 0.5v_2^2 = 1$

Set $v_1=0$ \Rightarrow \mathbf{e}_2 -axis extents of the ellipse: $\pm 1/\sqrt{0.5}$

Set $v_2 = 0 \Rightarrow \mathbf{e}_1$ -axis extents: $\pm 1/\sqrt{2}$

Major axis is the longest — here: e_2 -direction

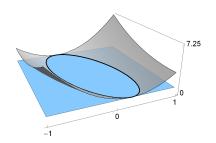
Eigenvalues: $\lambda_1 = 2$, $\lambda_2 = 0.5$

Eigenvectors $\mathbf{r}_1 = [1 \ 0]^{\mathrm{T}}, \ \mathbf{r}_2 = [0 \ 1]^{\mathrm{T}}$

 \Rightarrow Minor axis corresponds to the dominant eigenvector – steeper ascent

Farin & Hansford

Example:



$$A = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix} \qquad C_4 = A^{\mathrm{T}}A = \begin{bmatrix} 4 & 1 \\ 1 & 1.25 \end{bmatrix}$$

Eigendecomposition $C_4 = R\Lambda R^{\mathrm{T}}$

$$R = \begin{bmatrix} -0.95 & 0.30 \\ -0.30 & -0.95 \end{bmatrix} \qquad \Lambda = \begin{bmatrix} 4.3 & 0 \\ 0 & 0.92 \end{bmatrix}$$

Ellipse defined by $\mathbf{v}^{\mathrm{T}}C_4\mathbf{v} = 4v_1^2 + 2v_1v_2 + 1.25v_2^2 = 1_{100}$

Example continued:

Ellipse
$$\mathbf{v}^{\mathrm{T}} C_4 \mathbf{v} = 4v_1^2 + 2v_1v_2 + 1.25v_2^2 = 1$$

Major and minor axis not aligned with coordinate axes

Fnd major and minor axis lengths:

- use eigendecomposition to perform a coordinate transformation
- align ellipse with the coordinate axes

$$\mathbf{v}^{\mathrm{T}}R\mathbf{\Lambda}R^{\mathrm{T}}\mathbf{v}=1$$
 $\hat{\mathbf{v}}^{\mathrm{T}}\mathbf{\Lambda}\hat{\mathbf{v}}=1$ $\lambda_{1}\hat{v}_{1}^{2}+\lambda_{2}\hat{v}_{2}^{2}=1$

Minor axis: length $1/\sqrt{\lambda_1}=0.48$ on \mathbf{e}_1 axis

Major axis: length $1/\sqrt{\lambda_2} = 1.04$ on \mathbf{e}_2 axis

Quadratic form for a symmetric matrix may also be written as

$$q(\mathbf{v}) = rac{\mathbf{v}^{\mathrm{T}} C \mathbf{v}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}$$

Called the Rayleigh quotient

Quotient reaches a maximum in the dominant eigenvector direction

$$q(\mathbf{r}_1) = \frac{\mathbf{r}_1^{\mathrm{T}} C \mathbf{r}_1}{\mathbf{r}_1^{\mathrm{T}} \mathbf{r}_1} = \frac{\mathbf{r}_1^{\mathrm{T}} \lambda_1 \mathbf{r}_1}{\mathbf{r}_1^{\mathrm{T}} \mathbf{r}_1} = \lambda_1$$

and a minimum in the direction corresponding to the smallest eigenvalue

$$q(\mathbf{r}_2) = \frac{\mathbf{r}_2^{\mathrm{T}} C \mathbf{r}_2}{\mathbf{r}_2^{\mathrm{T}} \mathbf{r}_2} = \frac{\mathbf{r}_2^{\mathrm{T}} \lambda_2 \mathbf{r}_2}{\mathbf{r}_2^{\mathrm{T}} \mathbf{r}_2} = \lambda_2$$

Algebraic confirmation of the steepest ascent observation

Repeating Maps

Matrices map the unit circle to an ellipse

Map the ellipse using the same map — Repeat

$$A = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}$$

Repeating Maps

$$A = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}$$

Symmetric \Rightarrow two real eigenvalues and orthogonal eigenvectors

As map repeated resulting ellipses stretched:

- elongated in direction \mathbf{r}_1 by $\lambda_1=1.3$
- compacted in the direction of \mathbf{r}_2 by a factor of $\lambda_2 = 0.7$

$$\mathbf{r}_1 = egin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 $\mathbf{r}_2 = egin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ $AA\mathbf{r}_1 = A\lambda_1\mathbf{r}_1 = \lambda_1^2\mathbf{r}_1$ $A^n\mathbf{r}_1 = \lambda_1^n\mathbf{r}_1$

Same holds for \mathbf{r}_2 and λ_2

Repeating Maps

$$A = \begin{bmatrix} 0.7 & 0.3 \\ -1 & 1 \end{bmatrix}$$

Matrix does not have real eigenvalues — related to a rotation matrix — figures do not line up along any (real) fixed directions

Power method: apply idea of repeating a map to find the dominant eigenvector (Chapter 15)

WYSK

- fixed direction
- eigenvalue
- eigenvector
- characteristic equation
- dominant eigenvalue
- dominant eigenvector
- homogeneous system
- kernel or null space
- orthogonal matrix
- eigen-theory of a symmetric matrix
- matrix with real eigenvalues

- diagonalizable matrix
- eigendecomposition
- quadratic form
- contour plot
- positive definite matrix
- repeated linear map