1. Introduction to 3D Geometry
2. From 2D to 3D
3. Cross Product
4. Lines
5. Planes
6. Scalar Triple Product
7. Application: Lighting and Shading
8. WYSK
Introduction to 3D Geometry

With 3D geometry concepts we can create and analyze 3D objects.

Guggenheim Museum in Bilbao, Spain. Designed by Frank Gehry.

Introduction to essential building blocks of 3D geometry
— Extend 2D tools
— Encounter concepts without 2D counterparts
From 2D to 3D

$[e_1, e_2, e_3]$-coordinate system

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Vector in 3D: $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

Components of v indicate displacement along each axis

v lives in 3D space \mathbb{R}^3

shorter: $v \in \mathbb{R}^3$
From 2D to 3D

Point \(p = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} \)

Coordinates indicate the point’s location in \([e_1, e_2, e_3]\)-system

\(p \) lives in Euclidean 3D-space \(\mathbb{E}^3 \)

shorter: \(p \in \mathbb{E}^3 \)
Basic 3D vector properties

3D zero vector: \(\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \)

Sketch shows components \(\mathbf{v} \)
Notice the two right triangles
Apply Pythagorean theorem twice
length or Euclidean norm of \(\mathbf{v} \)

\[
\| \mathbf{v} \| = \sqrt{v_1^2 + v_2^2 + v_3^2}
\]

Interpret as distance, speed, or force
Scaling by \(k \): \(\| k \mathbf{v} \| = |k| \| \mathbf{v} \|

Normalized vector: \(\| \mathbf{v} \| = 1 \).
Example:

 Normalize the vector \(\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \)

Calculate \(\| \mathbf{v} \| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \)

Normalized vector \(\mathbf{w} \) is

\[
\mathbf{w} = \frac{\mathbf{v}}{\| \mathbf{v} \|} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \approx \begin{bmatrix} 0.27 \\ 0.53 \\ 0.80 \end{bmatrix}
\]

Check that \(\| \mathbf{w} \| = 1 \)

Scale \(\mathbf{v} \) by \(k = 2 \):

\[
2\mathbf{v} = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix}
\]

\(\| 2\mathbf{v} \| = \sqrt{2^2 + 4^2 + 6^2} = 2\sqrt{14} \)

Verified that \(\| 2\mathbf{v} \| = 2\| \mathbf{v} \| \)
From 2D to 3D

There are infinitely many 3D unit vectors.
Sketch is a *sphere* of radius one.

All the rules for combining points and vectors in 2D carry over to 3D.

Dot product:

\[\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + v_3 w_3 \]

Cosine of the angle \(\theta \) between two vectors:

\[\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \]
Cross Product

Multiplication for two vectors

Dot product reveals angle between vectors

Cross product reveals orientation in \mathbb{R}^3

- Two vectors define a plane
- Cross product defines a 3rd vector to complete a 3D coordinate system *embedded* in the $[e_1, e_2, e_3]$-system

$$u = v \wedge w = \begin{bmatrix} v_2 w_3 - w_2 v_3 \\ v_3 w_1 - w_3 v_1 \\ v_1 w_2 - w_1 v_2 \end{bmatrix}$$
Cross Product

\[\mathbf{u} = \mathbf{v} \wedge \mathbf{w} \]

Produces vector \(\mathbf{u} \) that satisfies:

1. \(\mathbf{u} \) is perpendicular to \(\mathbf{v} \) and \(\mathbf{w} \)

 \[\mathbf{u} \cdot \mathbf{v} = 0 \quad \text{and} \quad \mathbf{u} \cdot \mathbf{w} = 0 \]

2. Orientation of \(\mathbf{u} \) follows the \textit{right-hand rule} (see Sketch)

3. Magnitude of \(\mathbf{u} \) is area of parallelogram defined by \(\mathbf{v} \) and \(\mathbf{w} \)

Cross product produces a vector — also called a \textit{vector product}

\(\mathbf{v} \) and \(\mathbf{w} \) orthogonal and unit length \(\Rightarrow \) \textit{orthonormal} \(\mathbf{u}, \mathbf{v}, \mathbf{w} \)
Cross Product

\[\mathbf{u} = \mathbf{v} \wedge \mathbf{w} = \begin{bmatrix} v_2 w_3 - w_2 v_3 \\ v_3 w_1 - w_3 v_1 \\ v_1 w_2 - w_1 v_2 \end{bmatrix} \]

Each component is a 2 × 2 determinant

For the \(i^{th} \) component, omit the \(i^{th} \) component of \(\mathbf{v} \) and \(\mathbf{w} \) and negate the middle determinant:

\[\mathbf{v} \wedge \mathbf{w} = \begin{bmatrix} v_2 & w_2 \\ v_3 & w_3 \end{bmatrix} - \begin{bmatrix} v_1 & w_1 \\ v_3 & w_3 \end{bmatrix} \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \]
Cross Product

Example:

Compute the cross product of

\[\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix} \]

\[\mathbf{u} = \mathbf{v} \wedge \mathbf{w} = \begin{bmatrix} 0 \times 4 - 3 \times 2 \\ 2 \times 0 - 4 \times 1 \\ 1 \times 3 - 0 \times 0 \end{bmatrix} = \begin{bmatrix} -6 \\ -4 \\ 3 \end{bmatrix} \]
Cross Product

Area of a parallelogram defined by two vectors

\[P = \|v \wedge w\| \]

(Alogous to 2D)
\(P \) also defined by measuring a height and side length of the parallelogram
Height \(h = \|w\| \sin \theta \)
Side length is \(\|v\| \)
Resulting in

\[P = \|v\| \|w\| \sin \theta \]

Equating two expressions:

\[\|v \wedge w\| = \|v\| \|w\| \sin \theta \]
Cross Product

Example:
Compute the area of the parallelogram formed by

\[
\mathbf{v} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

\[
\mathbf{v} \wedge \mathbf{w} = \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}
\]
then area \(P = \| \mathbf{v} \wedge \mathbf{w} \| = 2\sqrt{2} \)

(Verify: parallelogram is a rectangle \(\Rightarrow \) area is product of edge lengths)

Also: \(P = 2\sqrt{2} \sin 90^\circ = 2\sqrt{2} \)
Cross Product

Lagrange’s identity

Start with \(|v \wedge w| = |v||w| \sin \theta|

Square both sides

\[|v \wedge w|^2 = |v|^2 |w|^2 \sin^2 \theta \]

\[= |v|^2 |w|^2 (1 - \cos^2 \theta) \]

\[= |v|^2 |w|^2 - |v|^2 |w|^2 \cos^2 \theta \]

\[= |v|^2 |w|^2 - (v \cdot w)^2 \]

An expression for the area of a parallelogram in terms of a dot product
Cross Product

Properties

- Parallel vectors result in the zero vector: \(\mathbf{v} \wedge c\mathbf{v} = 0 \)
- Homogeneous: \(c\mathbf{v} \wedge \mathbf{w} = c(\mathbf{v} \wedge \mathbf{w}) \)
- Anti-symmetric: \(\mathbf{v} \wedge \mathbf{w} = - (\mathbf{w} \wedge \mathbf{v}) \)
- Non-associative: \(\mathbf{u} \wedge (\mathbf{v} \wedge \mathbf{w}) \neq (\mathbf{u} \wedge \mathbf{v}) \wedge \mathbf{w} \), in general
- Distributive: \(\mathbf{u} \wedge (\mathbf{v} + \mathbf{w}) = \mathbf{u} \wedge \mathbf{v} + \mathbf{u} \wedge \mathbf{w} \)
- Right-hand rule:
 \[\mathbf{e}_1 \wedge \mathbf{e}_2 = \mathbf{e}_3, \quad \mathbf{e}_2 \wedge \mathbf{e}_3 = \mathbf{e}_1, \quad \mathbf{e}_3 \wedge \mathbf{e}_1 = \mathbf{e}_2 \]
- Orthogonality:
 \[\mathbf{v} \cdot (\mathbf{v} \wedge \mathbf{w}) = 0 \quad \mathbf{v} \wedge \mathbf{w} \text{ is orthogonal to } \mathbf{v} \]
 \[\mathbf{w} \cdot (\mathbf{v} \wedge \mathbf{w}) = 0 \quad \mathbf{v} \wedge \mathbf{w} \text{ is orthogonal to } \mathbf{w} \]
Cross Product

Example: test these properties of the cross product

\[u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, \quad w = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \]

Parallel vectors:

\[v \wedge 3v = \begin{bmatrix} 0 \times 0 - 0 \times 0 \\ 0 \times 6 - 0 \times 2 \\ 2 \times 0 - 6 \times 0 \end{bmatrix} = 0 \]

Homogeneous:

\[4v \wedge w = \begin{bmatrix} 0 \times 0 - 3 \times 0 \\ 0 \times 0 - 0 \times 8 \\ 8 \times 3 - 0 \times 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 24 \end{bmatrix} \]

\[4(v \wedge w) = 4 \begin{bmatrix} 0 \times 0 - 3 \times 0 \\ 0 \times 0 - 0 \times 2 \\ 2 \times 3 - 0 \times 0 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 24 \end{bmatrix} \]
Cross Product

Anti-symmetric:

\[
\mathbf{v} \wedge \mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} \quad \text{and} \quad -(\mathbf{w} \wedge \mathbf{v}) = -\begin{bmatrix} 0 \\ 0 \\ -6 \end{bmatrix}
\]

Non-associative:

\[
\mathbf{u} \wedge (\mathbf{v} \wedge \mathbf{w}) = \begin{bmatrix} 1 \times 6 - 0 \times 1 \\ 1 \times 0 - 6 \times 1 \\ 1 \times 0 - 0 \times 1 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 0 \end{bmatrix}
\]

which is not the same as

\[
(u \wedge v) \wedge \mathbf{w} = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \wedge \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}
\]
Cross Product

Distributive:

\[\mathbf{u} \wedge (\mathbf{v} + \mathbf{w}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \wedge \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} \]

which is equal to

\[(\mathbf{u} \wedge \mathbf{v}) + (\mathbf{u} \wedge \mathbf{w}) = \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} + \begin{bmatrix} -3 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix} \]
Specifying a line with 3D geometry differs a bit from 2D

Restricted to specifying
 - two points or
 - a point and a vector parallel to the line

The 2D geometry item
 - a point and a vector perpendicular to the line

no longer works
An entire family of lines satisfies this — this family lies in a plane
⇒ concept of a *normal* to a 3D line
does not exist
⇒ no 3D implicit form
Parametric form of a 3D line

\[l(t) = p + tv \]

where \(p \in \mathbb{E}^3 \) and \(v \in \mathbb{R}^3 \)

— same 2D line except 3D info

Points generated on line as parameter \(t \) varies

2D: two lines either intersect or they are parallel
3D: third possibility — lines are skew
Intersection of two lines given in parametric form

\[l_1 : l_1(t) = p + tv \]
\[l_2 : l_2(s) = q + sw \]

where \(p, q \in \mathbb{E}^3 \) and \(v, w \in \mathbb{R}^3 \)

Solve for \(t \) or \(s \)

Linear system

\[\hat{t}v - \hat{s}w = q - p \]

Three equations and two unknowns — overdetermined system

No solution exists when the lines are skew

Can find a best approximation — the least squares solution
— topic of Chapter 12

Still have concepts of perpendicular and parallel lines in 3D
Point normal plane equation

Given information:
point \(p \) and vector \(n \) bound to \(p \)

Implicit form of a plane:
Locus of all points \(x \) that satisfy

\[
\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0
\]

if \(\|\mathbf{n}\| = 1 \)

\(\mathbf{n} \) called the normal to the plane
Planes

Expanding \(\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0 \)

\[
n_1 x_1 + n_2 x_2 + n_3 x_3 - (n_1 p_1 + n_2 p_2 + n_3 p_3) = 0
\]

Typically written as \(A x_1 + B x_2 + C x_3 + D = 0 \) where

\[
A = n_1 \quad B = n_2 \quad C = n_3 \quad D = -(n_1 p_1 + n_2 p_2 + n_3 p_3)
\]

Example: Find implicit form of plane through the point

\[
\mathbf{p} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} \quad \text{that is perpendicular to vector } \mathbf{n} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

Compute \(D = -(1 \times 4 + 1 \times 0 + 1 \times 0) = -4 \)

Plane equation is \(x_1 + x_2 + x_3 - 4 = 0 \)
Planes

Origin to plane distance D

If coefficients A, B, C correspond to the normal to the plane then $|D|$ describes the distance of the plane to the origin — *perpendicular distance*

Equate

$$\cos(\theta) = \frac{D}{\|p\|} \quad \text{and} \quad \cos(\theta) = \frac{n \cdot p}{\|n\| \|p\|}$$

Since normal is unit length:

$$D = n \cdot p$$
Planes

Point \(\hat{x} \) to plane distance \(d \)

\[
d = A\hat{x}_1 + B\hat{x}_2 + C\hat{x}_3 + D
\]

Convert a plane to point normal form:
Normalize \(\mathbf{n} \) and divide the implicit equation by this factor

\[
\frac{\mathbf{n} \cdot (\mathbf{x} - \mathbf{p})}{\|\mathbf{n}\|} = \frac{\mathbf{n} \cdot \mathbf{x}}{\|\mathbf{n}\|} - \frac{\mathbf{n} \cdot \mathbf{p}}{\|\mathbf{n}\|} = 0
\]

Resulting in

\[
A' = \frac{A}{\|\mathbf{n}\|}, \quad B' = \frac{B}{\|\mathbf{n}\|}, \quad C' = \frac{C}{\|\mathbf{n}\|}, \quad D' = \frac{D}{\|\mathbf{n}\|}
\]
Planes

Example: Plane \(x_1 + x_2 + x_3 - 4 = 0 \)

Not in point normal form: \(\mathbf{n} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) and \(\|\mathbf{n}\| = 1/\sqrt{3} \)

New coefficients of the plane equation:

\[
A' = B' = C' = \frac{1}{\sqrt{3}} \quad D' = \frac{-4}{\sqrt{3}}
\]

Resulting in point normal plane equation

\[
\frac{1}{\sqrt{3}} x_1 + \frac{1}{\sqrt{3}} x_2 + \frac{1}{\sqrt{3}} x_3 - \frac{4}{\sqrt{3}} = 0
\]

Distance \(d \) of the point \(\mathbf{q} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} \) from the plane:

\[
d = \frac{1}{\sqrt{3}} \times 4 + \frac{1}{\sqrt{3}} \times 4 + \frac{1}{\sqrt{3}} \times 4 - \frac{4}{\sqrt{3}} = \frac{8}{\sqrt{3}} \approx 4.6
\]

\(d > 0 \) \(\Rightarrow \) \(\mathbf{q} \) is on same side of plane as normal direction.
Planes

Parametric plane

Given:
- three points, or
- a point and two vectors

If start with points \(p, q, r \), then form

\[
\mathbf{v} = \mathbf{q} - \mathbf{p} \quad \text{and} \quad \mathbf{w} = \mathbf{r} - \mathbf{p}
\]

\[
\mathbf{P}(s, t) = \mathbf{p} + s\mathbf{v} + t\mathbf{w}
\]

In terms of *barycentric coordinates*

\[
\mathbf{P}(s, t) = \mathbf{p} + s(\mathbf{q} - \mathbf{p}) + t(\mathbf{r} - \mathbf{p})
\]

\[
= (1 - s - t)\mathbf{p} + s\mathbf{q} + t\mathbf{r}
\]

Strength: create points in a plane
Planes

Family of planes through a point and vector

Cannot define plane with one point and a vector in the plane (analogous to implicit form of a plane)

Not enough information to uniquely define a plane
— Many planes fit that data
Planes

A plane defined as the *bisector* of two points

Euclidean geometry definition: locus of points equidistant from two points

Line between two given points defines the normal to the plane
The midpoint of this line segment defines a point in the plane

With this information — implicit form most natural
Scalar Triple Product

Volume of a parallelepiped

Area P of a parallelogram formed by \mathbf{v} and \mathbf{w}

$$P = \|\mathbf{v} \wedge \mathbf{w}\|$$

Volume is a product of a face area height $\|\mathbf{u}\| \cos \theta$

$$V = \|\mathbf{u}\| \|\mathbf{v} \wedge \mathbf{w}\| \cos \theta$$

Substitute a dot product for $\cos \theta$

$$V = \mathbf{u} \cdot (\mathbf{v} \wedge \mathbf{w})$$

This is called the **scalar triple product** — signed volume
Scalar Triple Product

Signed volume $V = \mathbf{u} \cdot (\mathbf{v} \wedge \mathbf{w})$

Sign and orientation of the three vectors:
Let \mathcal{P} be the plane formed by \mathbf{v} and \mathbf{w}

- $\cos \theta > 0$: positive volume — \mathbf{u} is on the same side of \mathcal{P} as $\mathbf{v} \wedge \mathbf{w}$
- $\cos \theta < 0$: negative volume — \mathbf{u} is on the opposite side of \mathcal{P} as $\mathbf{v} \wedge \mathbf{w}$
- $\cos \theta = 0$: zero volume — \mathbf{u} lies in \mathcal{P}—the vectors are coplanar

Invariant under cyclic permutations

$$V = \mathbf{u} \cdot (\mathbf{v} \wedge \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \wedge \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \wedge \mathbf{u})$$

Scalar triple product a fancy name for a 3×3 determinant

— Get to that in Chapter 9
Scalar Triple Product

Example: compute volume for a parallelepiped defined by

\[
\mathbf{v} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}
\]

Compute \(\mathbf{y} = \mathbf{v} \wedge \mathbf{w} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \) then volume \(V = \mathbf{u} \cdot \mathbf{y} = 6 \)

Notice that if \(u_3 = -3 \), then \(V = -6 \)
— Sign reveals information about the orientation

Given parallelepiped is simply a \(2 \times 1 \times 3 \) rectangular box
that has been sheared — Shears preserve volumes: confirms volume 6
Application: Lighting and Shading

Hedgehog plot: the normal of each facet is drawn at the centroid

The normal to a planar facet: basic element needed to calculate lighting of a 3D object (model)

Normal + light source location + our eye location \(\Rightarrow \) lighting (color) of each vertex

Determining the color of a facet is called shading
Flat shading: normal to each planar facets used to calculate the color of each facet

Triangle defined by points \(p, q, r \)

Form vectors \(\mathbf{v} \) and \(\mathbf{w} \) from points

Normal

\[
\mathbf{n} = \frac{\mathbf{v} \wedge \mathbf{w}}{\|\mathbf{v} \wedge \mathbf{w}\|}
\]

By convention: unit length

Consistent orientation of vectors (right-hand rule)

- \(\mathbf{v} \wedge \mathbf{w} \) versus \(\mathbf{w} \wedge \mathbf{v} \)
- Outside versus inside
Application: Lighting and Shading

Smooth shading: a normal at each vertex is used to calculate the illumination over each facet
Left: zoomed-in and displayed with triangles; Right: smooth shaded bugle

At each vertex lighting is calculated: Lighting vectors i_p, i_q, i_r
— Each vector indicating red, green, and blue components of light
At point $x = up + vq + wr$ assign color

$$i_x = ui_p + vi_q + wi_r$$

Application of barycentric coordinates
Application: Lighting and Shading

Normals for smooth shading: *vertex normals*
— Simple method: average of the triangle normals around the vertex

Direction of the normal \mathbf{n} relative to our eye’s position can be used to eliminate facets from the rendering pipeline
Process called *culling* \(\Rightarrow\) Great savings in rendering time
c: centroid of triangle \quad e: eye’s position

\[
\mathbf{v} = (\mathbf{e} - \mathbf{c}) / \|\mathbf{e} - \mathbf{c}\|
\]

If $\mathbf{n} \cdot \mathbf{v} < 0$ then triangle is back-facing
- 3D vector
- 3D point
- vector length
- unit vector
- dot product
- cross product
- right-hand rule
- orthonormal
- area
- Lagrange’s identity
- 3D line
- implicit form of a plane
- parametric form of a plane
- normal
- point-normal plane equation
- point-plane distance
- plane-origin distance
- barycentric coordinates
- scalar triple product
- volume
- cyclic permutations of vectors
- triangle normal
- back-facing triangle
- lighting model
- flat and Gouraud shading
- vertex normal
- culling