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Preface

Just about everyone has watched animated movies, such as Toy Story
or Shrek, or is familiar with the latest three-dimensional computer
games. Enjoying 3D entertainment sounds like more fun than study-
ing a linear algebra book. But it is because of linear algebra that
those movies and games can be brought to a TV or computer screen.
When you see a character move on the screen, it’s animated using
some equation straight out of this book. In this sense, linear algebra
is a driving force of our new digital world: it is powering the software
behind modern visual entertainment and communication.

But this is not a book on entertainment. We start with the funda-
mentals of linear algebra and proceed to various applications. So it
doesn’t become too dry, we replaced mathematical proofs with mo-
tivations, examples, or graphics. For a beginning student, this will
result in a deeper level of understanding than standard theorem-proof
approaches. The book covers all of undergraduate-level linear alge-
bra in the classical sense—except it is not delivered in a classical way.
Since it relies heavily on examples and pointers to applications, we
chose the title Practical Linear Algebra, or PLA for short.

The subtitle of this book is A Geometry Toolbox; this is meant
to emphasize that we approach linear algebra in a geometric and
algorithmic way. Our goal is to bring the material of this book to
a broader audience, motivated in a large part by our observations
of how little engineers and scientists (non-math majors) retain from
classical linear algebra classes. Thus, we set out to fill a void in the
linear algebra textbook market. We feel that we have achieved this,
presenting the material in an intuitive, geometric manner that will
lend itself to retention of the ideas and methods.

xiii
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Review of Contents

As stated previously, one clear motivation we had for writing PLA
was to present the material so that the reader would retain the in-
formation. In our experience, approaching the material first in two
and then in three dimensions lends itself to visualizing and then to
understanding. Incorporating many illustrations, Chapters 1-7 in-
troduce the fundamentals of linear algebra in a 2D setting. These
same concepts are revisited in Chapters 8-11 in a 3D setting. The
3D world lends itself to concepts that do not exist in 2D, and these
are explored there too.

Higher dimensions, necessary for many real-life applications and the
development of abstract thought, are visited in Chapters 12-16. The
focus of these chapters includes linear system solvers (Gauss elim-
ination, LU decomposition, the Householder method, and iterative
methods), determinants, inverse matrices, revisiting “eigen things,”
linear spaces, inner products, and the Gram-Schmidt process. Singu-
lar value decomposition, the pseudoinverse, and principal components
analysis are new additions.

Conics, discussed in Chapter 19, are a fundamental geometric en-
tity, and since their development provides a wonderful application
for affine maps, “eigen things,” and symmetric matrices, they really
shouldn’t be missed. Triangles in Chapter 17 and polygons in Chap-
ter 18 are discussed because they are fundamental geometric entities
and are important in generating computer images.

Several of the chapters have an “Application” section, giving a real-
world use of the tools developed thus far. We have made an effort to
choose applications that many readers will enjoy by staying away from
in-depth domain-specific language. Chapter 20 may be viewed as an
application chapter as a whole. Various linear algebra ingredients are
applied to the techniques of curve design and analysis.

The illustrations in the book come in two forms: figures and sketches.
The figures are computer generated and tend to be complex. The
sketches are hand-drawn and illustrate the core of a concept. Both are
great teaching and learning tools! We made all of them available on
the book’s website http://www.farinhansford.com/books/pla/. Many
of the figures were generated using PostScript, an easy-to-use geomet-
ric language, or Mathematica.

At the end of each chapter, we have included a list of topics, What
You Should Know (WYSK), marked by the icon on the left. This list
is intended to encapsulate the main points of each chapter. It is not
uncommon for a topic to appear in more than one chapter. We have
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XV

made an effort to revisit some key ideas more than once. Repetition
is useful for retention!

Exercises are listed at the end of each chapter. Solutions to selected
exercises are given in Appendix B. All solutions are available to
instructors and instructions for accessing these may be found on the
book’s website.

Appendix A provides an extensive glossary that can serve as a
review tool. We give brief definitions without equations so as to
present a different presentation than that in the text. Also notable
is the robust index, which we hope will be very helpful, particularly
since we revisit topics throughout the text.

Classroom Use

PLA is meant to be used at the undergraduate level. It serves as an
introduction to linear algebra for engineers or computer scientists, as
well as a general introduction to geometry. It is also an ideal prepara-
tion for computer graphics and geometric modeling. We would argue
that it is also a perfect linear algebra entry point for mathematics
majors.

As a one-semester course, we recommend choosing a subset of the
material that meets the needs of the students. In the table below,
LA refers to an introductory linear algebra course and CG refers to
a course tailored to those planning to work in computer graphics or
geometric modeling.

Chapter LA CG

1 Descartes’ Discovery ° °
2 Here and There: Points and Vectors in 2D ° °
3 Lining Up: 2D Lines °
4 Changing Shapes: Linear Maps in 2D ° °
5  2x2 Linear Systems ° °
6  Moving Things Around: Affine Maps in 2D ° °
7  Eigen Things °

8 3D Geometry ° °
9  Linear Maps in 3D ° °
10 Affine Maps in 3D ° °
11  Interactions in 3D °
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Chapter LA CG
12 Gauss for Linear Systems ° °
13 Alternative System Solvers °
14  General Linear Spaces °
15 Eigen Things Revisited °
16 The Singular Value Decomposition °
17 Breaking It Up: Triangles °
18 Putting Lines Together: Polylines and Polygons °
19  Conics °
20 Curves °
Website

Practical Linear Algebra, A Geometry Toolbox has a website:
http://www.farinhansford.com/books/pla/

This website provides:

teaching materials,

additional material,

the PostScript files illustrated in the book,

Mathematica code,
e crrata,

e and more!

Gerald Farin March, 2013
Dianne Hansford Arizona State University



