Practical Linear Algebra: A GEOMETRY TOOLBOX

Third edition

Chapter 11: Interactions in 3D

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- Introduction to Interactions in 3D
- Distance Between a Point and a Plane
- Oistance Between Two Lines
- 4 Lines and Planes: Intersections
- 5 Intersecting a Triangle and a Line
- 6 Reflections
- Intersecting Three Planes
- Intersecting Two Planes
- Oreating Orthonormal Coordinate Systems
- **WYSK**

Introduction to Interactions in 3D

Ray tracing: 3D intersections key for rendering a raytraced image

Points, lines, and planes: basic 3D geometry building blocks

Build real objects

- ⇒ compute with these building blocks
- Example: intersection

(Description of the ray tracing technique is in this chapter)

Given:

- Plane $\mathbf{n} \cdot \mathbf{x} + c = 0$
- Point **p**

What is \mathbf{p} 's distance d to the plane?

What is **p**'s closest point **q** on the plane?

Similar to the *foot of a point* from Chapter 3 2D Lines

Farin & Hansford

Vector $\mathbf{p} - \mathbf{q}$ must be perpendicular to the plane

 \Rightarrow parallel to the plane's normal $\bf n$

$$\mathbf{p} = \mathbf{q} + t\mathbf{n}$$
;

Goal: find t

q satisfies the plane equation:

$$\mathbf{n} \cdot [\mathbf{p} - t\mathbf{n}] + c = 0$$
$$t = \frac{c + \mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{n}}$$

 $t = 0 \Rightarrow \mathbf{p}$ is on the plane

Example: point and a plane

Plane

$$x_1 + x_2 + x_3 - 1 = 0$$

and the point

$$\mathbf{p} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$$

$$t = \frac{c + \mathbf{n} \cdot \mathbf{p}}{\mathbf{n} \cdot \mathbf{n}} = 2$$

$$\mathbf{q} = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} - 2 \times \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Distance of **p** to the plane:

$$d = \|\mathbf{p} - \mathbf{q}\| = \|t\mathbf{n}\| = t\|\mathbf{n}\|$$

If \mathbf{n} normalized: $\|\mathbf{p} - \mathbf{q}\| = t$ and

$$d = c + \mathbf{n} \cdot \mathbf{p}$$

If t > 0 then **n** points towards **p**

If t < 0 then **n** points away from **p**

If a point is very close to a plane can be numerically hard to decide which side it is on

Distance Between Two Lines

Two 3D lines typically do not meet — such lines are called *skew* What is the *distance* between the lines?

$$\mathbf{I}_1 : \mathbf{x}_1(s_1) = \mathbf{p}_1 + s_1 \mathbf{v}_1 \qquad \mathbf{I}_2 : \mathbf{x}_2(s_2) = \mathbf{p}_2 + s_2 \mathbf{v}_2$$

 \mathbf{x}_1 : the point on \mathbf{I}_1 closest to \mathbf{I}_2 \mathbf{x}_2 : the point on \mathbf{I}_2 closest to \mathbf{I}_1

Vesterness is seemed in least

Vector $\mathbf{x}_2 - \mathbf{x}_1$ is perpendicular to both \mathbf{I}_1 and \mathbf{I}_2 :

$$[\mathbf{x}_2 - \mathbf{x}_1]\mathbf{v}_1 = 0$$
$$[\mathbf{x}_2 - \mathbf{x}_1]\mathbf{v}_2 = 0$$

or

$$[\mathbf{p}_2 - \mathbf{p}_1]\mathbf{v}_1 = s_1\mathbf{v}_1 \cdot \mathbf{v}_1 - s_2\mathbf{v}_1 \cdot \mathbf{v}_2$$

$$[\mathbf{p}_2 - \mathbf{p}_1]\mathbf{v}_2 = s_1\mathbf{v}_1 \cdot \mathbf{v}_2 - s_2\mathbf{v}_2 \cdot \mathbf{v}_2$$

Two equations in the two unknowns s_1 and s_2

Distance Between Two Lines

Example: distance between two lines

$$egin{aligned} \mathbf{I_1}: & \mathbf{x_1}(s_1) = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} + s_1 egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix} \ \mathbf{I_2}: & \mathbf{x_2}(s_2) = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix} + s_2 egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix} \end{aligned}$$

Linear system

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Solution $s_1=0$ and $s_2=-1\Rightarrow$

$$\mathbf{x}_1(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ and } \mathbf{x}_2(-1) = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Distance Between Two Lines

Two 3D lines intersect if $\mathbf{x}_1 = \mathbf{x}_2$ Floating point calculations \Rightarrow round-off error \Rightarrow accept closeness within a tolerance: $\|\mathbf{x}_1 - \mathbf{x}_2\|^2 <$ tolerance

A condition for two 3D lines to intersect:

 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{p}_2 - \mathbf{p}_1$ must be coplanar or linearly dependent

$$\text{det}[\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{p}_2-\boldsymbol{p}_1]=0$$

Numerical viewpoint: safer to compare the distance between \mathbf{x}_1 and \mathbf{x}_2

— Distance tolerance easier to prescribed than volume tolerance

Farin & Hansford

Ray tracing: basic techniques in computer graphics for creating an image

Scene given as an assembly of planes

Lighting computed by tracing light rays through the scene

Ray intersects a plane, it is reflected, then it intersects the next plane, etc.

Given:

— Plane \mathbf{P} (point \mathbf{q} and normal \mathbf{n})

— Line I (point **p** and vector **v**)

What is their *intersection point* **x**?

On plane:
$$[\mathbf{x} - \mathbf{q}] \cdot \mathbf{n} = 0$$

On line: $\mathbf{x} = \mathbf{p} + t\mathbf{v}$
Find t

$$[\mathbf{p} + t\mathbf{v} - \mathbf{q}] \cdot \mathbf{n} = 0$$
$$[\mathbf{p} - \mathbf{q}] \cdot \mathbf{n} + t\mathbf{v} \cdot \mathbf{n} = 0$$
$$t = \frac{[\mathbf{q} - \mathbf{p}] \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}}$$
$$\mathbf{x} = \mathbf{p} + \frac{[\mathbf{q} - \mathbf{p}] \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} \mathbf{v}$$

Caution: $\mathbf{v} \cdot \mathbf{n}$ might be small or zero

— Geometric interpretation?

Example: Intersecting a line and a plane

Plane
$$x_1 + x_2 + x_3 - 1 = 0$$

Line

$$\mathbf{p}(t) = egin{bmatrix} 1 \ 1 \ 2 \end{bmatrix} + t egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

Need a point \mathbf{q} on the plane: set $x_1 = x_2 = 0$ and solve for x_3 — resulting in $x_3 = 1$

$$t = \frac{[\mathbf{q} - \mathbf{p}] \cdot \mathbf{n}}{\mathbf{v} \cdot \mathbf{n}} = -3$$

Intersection point:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Intersecting a plane with a line when given plane is in parametric form Unknown intersection point \mathbf{x} must satisfy

$$\mathbf{x} = \mathbf{q} + u_1 \mathbf{r}_1 + u_2 \mathbf{r}_2$$

x is also on the line **l**:

$$\mathbf{p} + t\mathbf{v} = \mathbf{q} + u_1\mathbf{r}_1 + u_2\mathbf{r}_2$$

Three equations in three unknowns

$$\begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 & -\mathbf{v} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ t \end{bmatrix} = \begin{bmatrix} \mathbf{p} - \mathbf{q} \end{bmatrix}$$

Farin & Hansford

Intersecting a Triangle and a Line

Ray and 3D triangle intersection: record intersection interior to triangle

Triangle: $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ Ray: \mathbf{p}, \mathbf{v} Find intersection \Rightarrow find t to satisfy

$$\mathbf{p} + t\mathbf{v} = \mathbf{p}_1 + u_1(\mathbf{p}_2 - \mathbf{p}_1) + u_2(\mathbf{p}_3 - \mathbf{p}_1)$$

Linear system:

3 equations, 3 unknowns t, u_1 , u_2 Intersection point = $u_1\mathbf{p}_2 + u_2\mathbf{p}_3 + (1 - u_1 - u_2)\mathbf{p}_1$

$$0 \le u_1, u_2 \le 1$$

 $u_1 + u_2 \le 1$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

15 / 29

Reflections

Given: point x on a plane P and an "incoming" direction v

What is the reflected or "outgoing" direction \mathbf{v}' ?

(Assume \mathbf{v} , \mathbf{v}' , \mathbf{n} unit length)

 \boldsymbol{n} is the *angle bisector* of \boldsymbol{v} and \boldsymbol{v}'

$$-\mathbf{v}\cdot\mathbf{n}=\mathbf{v}'\cdot\mathbf{n}$$

Symmetry property: $c\mathbf{n} = \mathbf{v}' - \mathbf{v}$

$$-\mathbf{v}\cdot\mathbf{n}=[c\mathbf{n}+\mathbf{v}]\cdot\mathbf{n}$$

Solve for $c = -2\mathbf{v} \cdot \mathbf{n}$

$$\mathbf{v}' = \mathbf{v} - [2\mathbf{v} \cdot \mathbf{n}]\mathbf{n}$$

Reflections

$$\mathbf{v}' = \mathbf{v} - [2\mathbf{v} \cdot \mathbf{n}]\mathbf{n}$$

= $\mathbf{v} - 2[\mathbf{v}^{\mathrm{T}}\mathbf{n}]\mathbf{n}$
= $\mathbf{v} - 2[\mathbf{n}\mathbf{n}^{\mathrm{T}}]\mathbf{v}$

 $\boldsymbol{n}\boldsymbol{n}^{\mathrm{T}}$ is a projection matrix

- orthogonal
- symmetric
- dyadic (rank one)

Reflection as a linear map: $\mathbf{v}' = H\mathbf{v}$

$$H = I - 2\mathbf{n}\mathbf{n}^{\mathrm{T}}$$

Householder matrix H

Chapter 13 — The Householder Method

Farin & Hansford Practical Linear Algebra 17 / 29

Intersecting Three Planes

Given: three planes

$$\mathbf{n}_1 \cdot \mathbf{x} + c_1 = 0$$

$$\mathbf{n}_2 \cdot \mathbf{x} + c_2 = 0$$

$$\mathbf{n}_3 \cdot \mathbf{x} + c_3 = 0$$

Where do they intersect?

Plane equations into matrix form:

$$\begin{bmatrix} \mathbf{n}_1^{\mathrm{T}} \\ \mathbf{n}_2^{\mathrm{T}} \\ \mathbf{n}_3^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -c_1 \\ -c_2 \\ -c_3 \end{bmatrix}$$

Solve three equations in the three unknowns x_1, x_2, x_3 for point \mathbf{x} that lies on each of the planes

Intersecting Three Planes

Given: three planes

$$x_1 + x_3 = 1$$
 $x_3 = 1$ $x_2 = 2$

The linear system is

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

Solving it by Gauss elimination:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Intersecting Three Planes

Given: three planes with normal vectors

$$\mathbf{n}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{n}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{n}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{n}_2 = \mathbf{n}_1 + \mathbf{n}_3$$

- ⇒ planes are linearly dependent
- \Rightarrow do not intersect in one point

Intersecting Two Planes

Intersecting two planes is harder than intersecting three planes

Given: two planes

$$\mathbf{n} \cdot \mathbf{x} + c = 0$$

$$\mathbf{m} \cdot \mathbf{x} + d = 0$$

Find their intersection — a line Solution of the form

$$\mathbf{x}(t) = \mathbf{p} + t\mathbf{v}$$

Intersecting Two Planes

v lies in both planes ⇒ perpendicular to both normals:

$$\mathbf{v} = \mathbf{n} \wedge \mathbf{m}$$

Construct an auxiliary plane that intersects both given planes:

$$\mathbf{v} \cdot \mathbf{x} = 0$$

Passes through origin; normal \mathbf{v} \Rightarrow perpendicular to intersection line

Next: solve the three-plane intersection problem for \mathbf{p}

Given: three linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$

Find: a close *orthonormal* set of vectors $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$

Solution: Gram-Schmidt method

Key: Orthogonal projections and orthogonal components

 V_i : subspace formed by \mathbf{v}_i

 V_{12} : subspace formed by $\mathbf{v}_1, \mathbf{v}_2$

Notational shorthand: normalize a vector \mathbf{w} write $\mathbf{w}/\|\cdot\|$

$$\mathbf{b}_1 = \frac{\mathbf{v}_1}{\|\cdot\|}$$

Create \mathbf{b}_2 from component of \mathbf{v}_2 that is orthogonal to the subspace V_1 \Rightarrow normalize $(\mathbf{v}_2 - \operatorname{proj}_{V_1} \mathbf{v}_2)$:

$$\mathbf{b}_2 = \frac{\mathbf{v}_2 - (\mathbf{v}_2 \cdot \mathbf{b}_1)\mathbf{b}_1}{\|\cdot\|}$$

Create \mathbf{b}_3 from component of \mathbf{v}_3 that is orthogonal to the subspace V_{12} \Rightarrow normalize $(\mathbf{v}_3 - \operatorname{proj}_{V_{12}} \mathbf{v}_3)$

Separate the projection into the sum of a projection onto V_1 and onto V_2 :

$$\mathbf{b}_3 = \frac{\mathbf{v}_3 - (\mathbf{v}_3 \cdot \mathbf{b}_1)\mathbf{b}_1 - (\mathbf{v}_3 \cdot \mathbf{b}_2)\mathbf{b}_2}{\|\cdot\|}$$

Example: Given:

$$\mathbf{v}_1 = \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$$

$$\mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$\mathbf{v}_3 = \begin{bmatrix} 2 \\ -0.5 \\ 2 \end{bmatrix}$$

$$\mathbf{b}_1 = \frac{\begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}}{\| \cdot \|} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$

Projection of \mathbf{v}_2 into subspace V_1 :

$$\mathbf{u} = \operatorname{proj}_{V_1} \mathbf{v}_2$$

$$= \left(\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \right) \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$

 ${f b}_2$: component of ${f v}_2$ orthogonal to ${f u}$

$$\mathbf{b}_2 = \frac{\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}}{\|\cdot\|} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Projection of \mathbf{v}_3 into subspace V_{12}

$$\begin{aligned} \mathbf{w} &= \operatorname{proj}_{V_{12}} \mathbf{v}_{3} \\ &= \operatorname{proj}_{V_{1}} \mathbf{v}_{3} + \operatorname{proj}_{V_{2}} \mathbf{v}_{3} \\ &= \left(\begin{bmatrix} 2 \\ -0.5 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \right) \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} + \left(\begin{bmatrix} 2 \\ -0.5 \\ 2 \end{bmatrix} \right) \\ &= \begin{bmatrix} 2 \\ -0.5 \\ 0 \end{bmatrix} \end{aligned}$$

 $\boldsymbol{b}_3 \colon$ component of \boldsymbol{v}_3 orthogonal to \boldsymbol{w}

$$\mathbf{b}_{3} = \frac{\begin{bmatrix} 2.0 \\ -0.5 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ -0.5 \\ 0 \end{bmatrix}}{\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

In 3D: Gram-Schmidt method requires more multiplications and additions than simply applying the cross product repeatedly

Example: $\mathbf{b}_3 = \mathbf{b}_1 \wedge \mathbf{b}_2$ — and get a normalized vector for free

Real advantage of the Gram-Schmidt method is for dimensions higher than three

- where we don't have cross products
- Understanding the process in 3D makes the *n*-dimensional formulas easier to follow

WYSK

- distance between a point and plane
- distance between two lines
- plane and line intersection
- triangle and line intersection
- reflection vector
- Householder matrix
- intersection of three planes
- intersection of two planes
- Gram-Schmidt orthonormalization