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Introduction to Gauss for Linear Systems

Linear systems arise in virtually every area of science and engineering
Some as big as 1,000,000 equations in as many unknowns

Triangulation smoothing application
Left: “rough” triangulation Right: smoother triangulation
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The Problem

Linear system: a set of linear equations

3u1 − 2u2 − 10u3 + u4 = 0

u1 − u3 = 4

u1 + u2 − 2u3 + 3u4 = 1

u2 + 2u4 = −4

Unknowns: u1, . . . , u4
Number of equations = number of unknowns
4× 4 linear system in matrix form:









3 −2 −10 1
1 0 −1 0
1 1 −2 3
0 1 0 2

















u1
u2
u3
u4









=









0
4
1
−4








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The Problem

General n × n linear system:

a1,1u1 + a1,2u2 + . . . + a1,nun = b1

a2,1u1 + a2,2u2 + . . . + a2,nun = b2

...

an,1u1 + an,2u2 + . . .+ an,nun = bn

Matrix form:










a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
an,1 an,2 . . . an,n





















u1
u2
...
un











=











b1
b2
...
bn











[

a1 a2 . . . an
]

u = b ⇒ Au = b

A is called the coefficient matrix
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The Problem

Underlying principles with a geometric interpretation

[

a1 a2 a3
]

u = b

Write b as a linear combination of ai

If ai truly 3D (form a tetrahedron)
⇒ unique solution
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The Problem

[

a1 a2 a3
]

u = b

If ai all lie in a plane
then no unique solution

Top: no solution
Bottom: non-unique solution
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The Problem

In general:

If the ai have a nonzero n-dimensional volume
⇒ linear system is uniquely solvable

If ai span a k-dimensional subspace (k < n)
⇒ non-unique solutions only exist if b is itself in that subspace

A linear system is called consistent if at least one solution exits
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The Problem

Example: Polynomial Interpolation Given: observations
p(ti) = 0, 1, 0.5, 0.5, 0
at ti = 0, 0.25, 0.5, 0.75, 1 seconds
Find: a polynomial p(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4

that interpolates data ⇒ estimate values between observations

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0











1 t0 t20 t30 t40
1 t1 t21 t31 t41

...
1 t4 t24 t34 t44





















c0
c1
...
c4











=











p(t0)
p(t1)
...

p(t4)










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The Solution via Gauss Elimination

Gauss elimination = forward elimination + back substitution

Review a 2× 2 example: Au = b

[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]

Forward elimination transform system to upper triangular with a shear

S1Au = S1b S1 =

[

1 0
−1/2 1

]

⇒

[

2 4
0 4

] [

u1
u2

]

=

[

4
2

]

Corresponds to elementary row operations

row1 ← row1 and row2 ← row2 −
1

2
row1
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The Solution via Gauss Elimination

Apply back substitution to upper triangular system

[

2 4
0 4

] [

u1
u2

]

=

[

4
2

]

u2 =
1

4
× 2 =

1

2

u1 =
1

2
(4− 4u2) = 1

Can interpret this step as a scaling:

S2S1Au = S2S1b S2 =

[

1/2 0
0 1/4

]

⇒

[

1 2
0 1

] [

u1
u2

]

=

[

2
1/2

]
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The Solution via Gauss Elimination

Pivoting revisited:

[

1 6
2 4

] [

u1
u2

]

=

[

4
4

]

⇒

[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]

Equations reordered so pivot element a1,1 largest in first column
Row exchange can be represented as a permutation matrix

P1 =

[

0 1
1 0

]

P1Au = P1b

Then – Gauss elimination as before:

S2S1P1Au = S2S1P1b

Farin & Hansford Practical Linear Algebra 12 / 59



The Solution via Gauss Elimination

Example:





2 −2 0
4 0 −2
4 2 −4









u1
u2
u3



 =





4
−2
0





P1 =





0 1 0
1 0 0
0 0 1



 ⇒





4 0 −2
2 −2 0
4 2 −4









u1
u2
u3



 =





−2
4
0





Zero entries in the first column

row2 ← row2 −
1

2
row1 row3 ← row3 − row1

shear G1 =





1 0 0
−1/2 1 0
−1 0 1



 ⇒





4 0 −2
0 −2 1
0 2 −2









u1
u2
u3



 =





−2
5
2





G1 called a Gauss matrix
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The Solution via Gauss Elimination

Example continued:

No pivoting necessary: P2 = I

Zero last element in second column:

row3 ← row3 + row2

G2 =





1 0 0
0 1 0
0 1 1



 ⇒





4 0 −2
0 −2 1
0 0 −1









u1
u2
u3



 =





−2
5
7




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The Solution via Gauss Elimination

Example continued:
Matrix in upper triangular form — ready for back substitution:

u3 =
1

−1
(7) u2 =

1

−2
(5− u3) u1 =

1

4
(−2 + 2u3)

(Implicitly incorporates a scaling matrix)
Solution





u1
u2
u3



 =





−4
−6
−7





Original equations:





2 −2 0
4 0 −2
4 2 −4









−4
−6
−7



 =





4
−2
0




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The Solution via Gauss Elimination

Summary:

Gauss elimination =
forward elimination (pivoting and shears)
+ back substitution (scaling)

Elementary row operations of Gauss elimination:

Pivoting results in the exchange of two rows

Shears result in adding a multiple of one row to another

Scaling results in multiplying a row by a scalar
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The Solution via Gauss Elimination

Algorithm: Gauss Elimination with Pivoting

Given: n × n coefficient matrix A and n × 1 vector b

Au = b

Find: unknowns u1, . . . , un of n × 1 vector u
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The Solution via Gauss Elimination

Initialize the n × n matrix G = I

For j = 1, . . . , n− 1 (j counts columns)

Pivoting step:
Find element in largest absolute value in column j

from aj,j to an,j ; this is element ar ,j
If r > j , exchange equations r and j

If aj,j = 0, the system is not solvable

Forward elimination step for column j :
For i = j + 1, . . . , n (elements below diagonal of column j)

Construct the multiplier gi ,j = ai ,j/aj,j
ai ,j = 0
For k = j + 1, . . . , n (each element in row i after column j)

ai ,k = ai ,k − gi ,jaj,k
bi = bi − gi ,jbj

All elements below diagonal set to zero ⇒ matrix is upper triangular

Farin & Hansford Practical Linear Algebra 18 / 59



The Solution via Gauss Elimination

Back substitution:
un = bn/an,n
For j = n− 1, . . . , 1

uj =
1
aj,j

[bj − aj,j+1uj+1 − . . .− aj,nun]

Programming environment: convenient to form augmented matrix

A augmented with the vector b





a1,1 a1,2 a1,3 b1
a2,1 a2,2 a2,3 b2
a3,1 a3,2 a3,3 b3





Then the k steps run to n + 1
— no need for the extra line for the bi element
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The Solution via Gauss Elimination

Forward elimination steps written in matrix form:
To produce zeroes under aj ,j use

Gj =

























1
. . .

1
1

−gj+1,j 1
...

. . .

−gn,j 1

























Elements −gi ,j of Gj are multipliers
Gj is called a Gauss matrix

G = Gn−1Pn−1 · . . . · G2 · P2 · G1 · P1 then GAu = Gb

If no pivoting is required: possible to store gi ,j in the zero elements of A
For efficiency: do not to (explicitly) multiply A and b by G
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The Solution via Gauss Elimination

Scaling to achieve row echelon form





2 2 0
0 −1 1
0 0 2









u1
u2
u3



 =





6
1
6



 ⇒





1 1 0
0 1 −1
0 0 1









u1
u2
u3



 =





3
−1
3





If matrix is rank deficient (rank < n)
⇒ rows with all zeroes should be the last rows

More efficient to do the scaling as part of back substitution
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The Solution via Gauss Elimination

Gauss elimination requires O(n3) operations
⇒ an estimated number of n3 operations

Algorithm is suitable for a system with thousands of equations
Not suitable for a system with millions of equations

When the system is very large
often times many matrix elements are zero — sparse linear system
Iterative methods are a better approach (discussed in next chapter)
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Homogeneous Linear Systems

Au = 0

Trivial solution is always an option — but of little interest

How do we use Gauss elimination to find a nontrivial solution if it exists?

Nontrivial solution u ⇒ cu are solutions as well

The answer: slightly modify the back substitution step
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Homogeneous Linear Systems

Example: rank one matrix





1 2 3
1 2 3
1 2 3



u =





0
0
0



 ⇒





1 2 3
0 0 0
0 0 0



 u =





0
0
0





For each zero row of the transformed system
set the corresponding ui — the free variables — to one:

u =





−5
1
1





All vectors cu are solutions
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Homogeneous Linear Systems

Previous example: 3× 3 rank one matrix
— Two dimensional null space
— Number of free variables = dimension of the null space
Systematically construct two vectors u1,u2 that span the null space
— Set one of the free variables to one and the other to zero

u1 =





−3
0
1



 and u2 =





−2
1
0





All linear combinations of elements of null space are also in null space
Example: u = 1u1 + 1u2
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Homogeneous Linear Systems

Column pivoting
Example: homogeneous system from an eigenvector problem





0 6 3
0 0 2
0 0 0



 u =





0
0
0





Leads to 0u3 = 0 and 2u3 = 0 — instead apply column exchanges:




6 3 0
0 2 0
0 0 0









u2
u3
u1



 =





0
0
0





Set the free variable: u1 = 1 — then back substitution

Solution: all vectors c





1
0
0




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Inverse Matrices

Inverse of a square matrix A “undoes” A’s action

AA−1 = I

1 0 −1
3 1 −3
1 2 −2

−4 2 −1
−3 1 0
−5 2 −1

1 0 0
0 1 0
0 0 1
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Inverse Matrices

How to compute the inverse of an n × n matrix A?

Vectors ai and ei are n× 1
Vector ei : zero entries except ith component equals 1

A
[

a1 . . . an
]

=
[

e1 . . . en
]

n linear systems:
Aa1 = e1, . . . , Aan = en

Solve with with Gauss elimination:
— Apply forward elimination to A and to each of the ei
— Back substitution to solve for each ai ⇒ A−1

— More economical to use LU decomposition – next section
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Inverse Matrices

Inverse matrices are primarily a theoretical concept

Inverse suggests to solve Av = b via v = A−1b

Don’t do that! – very expensive

Gauss elimination or LU decomposition is much cheaper:
— Explicitly forming inverse:

forward elimination

n back substitution algorithms

matrix-vector multiplication

— Gauss elimination:

forward elimination

1 back substitution algorithm
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Inverse Matrices

Inverse exists if matrix is n × n and rank n — full rank

⇒ Action of A does not reduce dimensionality
⇒ All columns are linearly independent

Is A invertible?
Perform Gauss elimination
— A upper triangular with all nonzero diagonal elements ⇒ invertible
— Otherwise: A is singular

Matrix rank review:
— Matrix does not reduce dimensionality ⇒ rank n or full rank
— Matrix reduces dimensionality by k ⇒ rank n − k

— n × n identity matrix has rank n

— Zero matrix has rank 0
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Inverse Matrices

Apply forward elimination to achieve row echelon form:

M1 =









1 3 −3 0
0 3 3 1
0 0 0 0
0 0 0 0









rank 2

M2 =









1 3 −3 0
0 3 3 1
0 0 −1 0
0 0 0 0









rank 3

M3 =









1 3 −3 0
0 3 3 1
0 0 −1 0
0 0 0 2









rank 4
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Inverse Matrices

Compute the inverse of the n × n Gauss matrix Gj

Gj =





























1

.
.
.

1
1

−gj+1,j 1

.

.

.
.
.
.

−gn,j 1





























G
−1
j

=





























1

.
.
.

1
1

gj+1,j 1

.

.

.
.
.
.

gn,j 1





























Gj is a shear ⇒ G−1
j “undoes” Gj

Suppose k 6= 0 and kA is an invertible matrix: (kA)−1 = 1
k
A−1

A and B are invertible then AB is invertible
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LU Decomposition

Forward elimination (no pivoting) in terms of Gauss matrices:

Gn−1 · . . . · G1 · A = U

A = G−1
1 · . . . · G−1

n−1U

Lower triangular matrix with elements gi ,j :

L = G−1
1 · . . . · G−1

n−1 =











1
g2,1 1
...

. . .
. . .

gn,1 · · · gn,n−1 1











A = LU ⇒ LU decomposition of A

Also called the triangular factorization of A

Every invertible matrix has such a decomposition
— pivoting might be necessary
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LU Decomposition

A = LU for 3× 3 matrix:

u1,1 u1,2 u1,3
0 u2,2 u2,3
0 0 u3,3

1 0 0
l2,1 1 0
l3,1 l3,2 1

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3
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LU Decomposition

Given: ai ,j Find: li ,j and ui ,j

Elements of A below diagonal:

ai ,j = li ,1u1,j + . . .+ li ,j−1uj−1,j + li ,juj ,j ; j < i

Elements of A on or above diagonal:

ai ,j = li ,1u1,j + . . .+ li ,i−1ui−1,j + li ,iui ,j ; j ≥ i

=⇒

li ,j =
1

uj ,j
(ai ,j − li ,1u1,j − . . .− li ,j−1uj−1,j); j < i

ui ,j = ai ,j − li ,1u1,j − . . .− li ,i−1ui−1,j ; j ≥ i
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LU Decomposition

If A has a decomposition A = LU then system can be written

LUu = b

Solving linear system is a two-step procedure:

Ly = b where y = Uu

Uu = y

The two systems are triangular and easy to solve:
— Forward substitution applied to L

— Back substitution applied to U
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LU Decomposition

Given: Coefficient matrix A and right-hand side b of Au = b

Find: The unknowns u1, . . . , un of u
Algorithm:

Initialize L as the identity matrix and U as the zero matrix
Calculate the nonzero elements of L and U:
For k = 1, . . . , n

uk,k = ak,k − lk,1u1,k − . . .− lk,k−1uk−1,k

For i = k + 1, . . . , n
li ,k = 1

uk,k
[ai ,k − li ,1u1,k − . . .− li ,k−1uk−1,k ]

For j = k + 1, . . . , n
uk,j = ak,j − lk,1u1,j − . . .− lk,k−1uk−1,j

Using forward substitution solve Ly = b.
Using back substitution solve Uu= y

The uk,k term must not be zero ⇒ requires pivoting or matrix is singular
L being filled column by column and U being filled row by row
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LU Decomposition

Example: A =





2 2 4
−1 2 −3
1 2 2



 u =





1
1
1





First step: decompose A

k = 1 :

u1,1 = a1,1 = 2

l2,1 = a2,1/u1,1 = −1/2

l3,1 = a3,1/u1,1 = 1/2

u1,2 = a1,2 = 2

u1,3 = a1,3 = 4

k = 2 :

u2,2 = a2,2 − l2,1u1,2 = 2 + 1 = 3

l3,2 =
1

u2,2
[a3,2 − l3,1u1,2] =

1

3
[2− 1] = 1/3

u2,3 = a2,3 − l2,1u1,3 = −3 + 2 = −1

k = 3 : u3,3 = a3,3 − l3,1u1,3 − l3,2u2,3 = 2− 2 + 1/3 = 1/3

Farin & Hansford Practical Linear Algebra 38 / 59



LU Decomposition

Check decomposition:

2 2 4
0 3 −1
0 0 1/3

1 0 0
−1/2 1 0
1/2 1/3 1

2 2 4
−1 2 − 3
1 2 2
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LU Decomposition

Next: solve Ly = b with forward substitution
— solving for y1, then y2, and then y3

y =





1
3/2
0





Last step: solve Uu = y with back substitution

u =





0
1/2
0





Simple to check that solution correct: a2 is a multiple of b
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LU Decomposition

Suppose A is nonsingular, but in need of pivoting
— Permutation matrix P used to exchange row(s)
— System becomes PAu = Pb and find PA = LU

Major benefit of the LU decomposition: speed
Solving multiple linear systems with the same coefficient matrix
— Construct decomposition
— Perform the forward and backward substitutions for each right-hand side
Example: finding the inverse of a matrix
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Determinants

Chapter 8 3D Geometry: scalar triple product to measure volume in 3D
— Provided a geometric derivation of 3× 3 determinants

Now: n × n determinants

Matrix A transformed to upper triangular U via forward elimination
— Sequence of shears and row exchanges
— Shears do not change volumes
— Row exchange changes the sign of the determinant
⇒ column vectors of U span same volume as A

detA = (−1)k(u1,1 × . . .× un,n)

where k is the number of row exchanges

One of the best (and most stable) methods for computing the determinant
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Determinants

Example from the Gauss Elimination Section – one row exchange (k = 1):

A =





2 2 0
1 1 2
2 1 1









u1
u2
u3



 =





6
9
7



 → U =





2 2 0
0 −1 1
0 0 2









u1
u2
u3



 =





6
1
6





Method 1: Cofactor expansion

detA = 2

∣

∣

∣

∣

1 2
1 1

∣

∣

∣

∣

− 2

∣

∣

∣

∣

1 2
2 1

∣

∣

∣

∣

= 4

Method 2: Product of diagonal elements of U

detA = (−1)1[2×−1× 2] = 4
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Determinants

Cofactor expansion for n × n matrices

Choose any column or row of the matrix – for example entries a1,j

detA = a1,1C1,1 + a1,2C1,2 + . . .+ a1,nC1,n

where each cofactor is defined as

Ci ,j = (−1)i+jMi ,j

Mi ,j are called the minors
— Each is determinant with i th row and jth column removed
— Each is an (n − 1)× (n − 1) determinant
— Each computed by yet another cofactor expansion
Process repeated until reduced to 2× 2 determinants
Technique also known as expansion by minors
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Determinants

Example:

A =









2 2 0 4
0 −1 1 3
0 0 2 0
0 0 0 5









Choose the first column to form the cofactors
— Minimize number of non-zero cofactors

detA = 2

∣

∣

∣

∣

∣

∣

−1 1 3
0 2 0
0 0 5

∣

∣

∣

∣

∣

∣

= 2(−1)

∣

∣

∣

∣

2 0
0 5

∣

∣

∣

∣

= 2(−1)(10) = −20

Since matrix is in upper triangular form — could also compute as

detA = (−1)0(2×−1× 2× 5) = −20
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Determinants

Cofactor expansion is more a theoretical tool than a computational one
— Important theoretical role in the analysis of linear systems
— Advanced theorems involving cofactor expansion and the inverse
Computationally: Gauss elimination and the calculation of detU is
superior

Revisit Cramer’s rule – solution to n × n Au = b:
— Necessary that detA 6= 0

u1 =
detA1

detA
u2 =

detA2

detA
. . . un =

detAn

detA

where Ai is matrix obtained by replacing entries in the i th column by b

Cramer’s rule is an important theoretical tool
— Only use it for 2× 2 or 3× 3 linear systems
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Determinants

Example of Cramer’s rule:

A =





2 2 0
1 1 2
2 1 1









u1
u2
u3



 =





6
9
7





u1 =

∣

∣

∣

∣

∣

∣

6 2 0
9 1 2
7 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 2 0
1 1 2
2 1 1

∣

∣

∣

∣

∣

∣

u2 =

∣

∣

∣

∣

∣

∣

2 6 0
1 9 2
2 7 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 2 0
1 1 2
2 1 1

∣

∣

∣

∣

∣

∣

u3 =

∣

∣

∣

∣

∣

∣

2 2 6
1 1 9
2 1 7

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 2 0
1 1 2
2 1 1

∣

∣

∣

∣

∣

∣

u1 =
4

4
= 1 u2 =

8

4
= 2 u3 =

12

4
= 3

Identical to solution found with Gauss elimination
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Determinants

Determinant of a positive definite matrix is always positive
⇒ matrix is always nonsingular

Upper-left submatrices of an n × n matrix A are

A1 =
[

a1,1
]

A2 =

[

a1,1 a1,2
a2,1 a2, 2

]

. . . An = A

(Different from Ai in Cramer’s rule)
If A is positive definite then the determinants of all Ai are positive

Rules for working with determinants: see Chapter 9 Linear Maps in 3D
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Least Squares

Presented with large amounts of data
— Need method to create a simpler view or synopsis of the data
— Example: graph of AIG’s monthly average stock price over twelve years

A lot of activity in the price, but a clear declining trend

2000 2005 2010

0

500

1000

1500

Mathematical tool to capture this: linear least squares approximation
— “Best fit” line or best approximating line
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Least Squares

Linear least squares approximation also useful when analyzing experimental
data
— Data can be “noisy”

data capture method encounters error

observation method lapse

round-off from computations that generated the data

— Might want to

make summary statements about data

estimate values where data missing

predict future values
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Least Squares

Example: Experimental data of temperature (Celsius) over time (seconds)

[

time

temperature

] [

0
30

] [

10
25

] [

20
40

] [

30
40

] [

40
30

] [

50
5

] [

60
25

]

10 20 30 40 50 60

10

20

30

40
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Least Squares

Want to establish a simple linear relationship between the variables

temperature = a × time + b

Write down relationships between knowns and unknowns:





















0 1
10 1
20 1
30 1
40 1
50 1
60 1





















[

a

b

]

=





















30
25
40
40
30
5
25





















Au = b

Overdetermined system of 7 equations in 2 unknowns
— In general: will not have solutions; it is inconsistent

Unlikely that b lives in subspace V formed by columns of A
⇒ Find an approximate solution
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Least Squares

Derivation of the least squares solution

Let b′ be a vector in V (subspace
formed by columns of A)

Au = b′

System is solvable (consistent)
— still overdetermined (7 equations
in 2 unknowns)

b = b′ + b⊥

b′ is closest to b and in V
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Least Squares

b⊥ is orthogonal to V

aT1 b
⊥ = 0 and aT2 b

⊥ = 0 ⇒ ATb⊥ = 0

b⊥ = b− b′ then AT(b− b′) = 0

AT(b− Au) = 0

ATb− ATAu = 0

Rearranging results in the normal equations

ATAu = ATb

Linear system with a square, symmetric matrix ATA

Solution to the new system minimizes the error

‖Au− b‖2 ⇒ least squares solution

Recall: b′ is closest to b in V ⇒ minimizes ‖b′ − b‖
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Least Squares

Continue Example — Form the normal equations




















0 1
10 1
20 1
30 1
40 1
50 1
60 1





















[

a

b

]

=





















30
25
40
40
30
5
25





















→

[

9100 210
210 7

] [

a

b

]

=

[

5200
195

]

Least squares solution

[

a

b

]

=

[

−0.23
34.8

]

line x2 = −0.23x1 + 34.8

10 20 30 40 50 60

10

20

30

40
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Least Squares

Real-world problem:
Data capture method fails due to some environmental condition
Want to remove data points if they seem outside the norm
— Such data called outliers
— Point six in Figure looks to be an outlier
— Least squares line provides a means for finding outliers

Least squares approximation can be used for data compression

Numerical problems can creep into the normal equations
— Particularly so when the n≫ m in n×m matrix A

— Other methods to find least squares solution
Chapter 13: the Householder method
Chapter 16: SVD
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Application: Fitting Data to a Femoral Head

Hip bone replacement:
— Remove an existing femoral head and replace it by a transplant
— Consists of new head and shaft for attaching to existing femur
— Data points collected from existing femoral head with MRI or PET
— Spherical fit is obtained
— Transplant is manufactured
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Application: Fitting Data to a Femoral Head

Given: a set of 3D vectors v1, . . . , vL
— approximately of equal length: ρ1, . . . , ρL
Find: a sphere (centered at the origin) with radius r closely fitting the vi

If all vi on the desired sphere r = ρ1, . . . , r = ρL
In matrix form:







1
...
1







[

r
]

=







ρ1
...
ρL







A very overdetermined linear system — L equations in only 1 unknown r

Multiply both sides by [1 . . . 1] gives

Lr = ρ1 + . . .+ ρL ⇒ r =
ρ1 + . . .+ ρL

L

Least squares solution is simply the average of the given radii
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WYSK

n × n linear system

coefficient matrix

consistent system

subspace

solvable system

unsolvable system

Gauss elimination

upper triangular
matrix

forward elimination

back substitution

elementary row
operation

permutation matrix

row echelon form

pivoting

Gauss matrix

multiplier

augmented matrix

singular matrix

matrix rank

full rank

rank deficient

homogeneous linear
system

inverse matrix

LU decomposition

factorization

forward substitution

lower triangular
matrix

determinant

cofactor expansion

expansion by
minors

Cramer’s rule

overdetermined
system

least squares
solution

normal equations
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