Practical Linear Algebra: A GEOMETRY TOOLBOX

Third edition

Chapter 14: General Linear Spaces

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- 1 Introduction to General Linear Spaces
- Basic Properties of Linear Spaces
- 3 Linear Maps
- 4 Inner Products
- 5 Gram-Schmidt Orthonormalization
- 6 A Gallery of Spaces
- WYSK

General Linear Spaces

All cubic polynomials over the interval [0,1] form a linear space Some elements illustrated

Linear space = vector space Chapters 4 and 9: examined properties in 2D and 3D

Here: higher dimensions

- Spaces can be abstract
- Powerful concept in dealing with real-life problems
 - car crash simulations
 - weather forecasts
 - computer games

"General" refers to the dimension and abstraction

 \mathcal{L}_n : linear space of dimension n

Elements of \mathcal{L}_n are vectors

— Denoted by boldface letters such as ${\bf u}$

Two operations defined on the elements of \mathcal{L}_n :

- Addition
- Multiplication by a scalar

Linearity property

Any linear combination of vectors results in a vector in the same space

$$\mathbf{w} = s\mathbf{u} + t\mathbf{v}$$

Both s and t may be zero \Rightarrow every linear space has a zero vector in it

- Generalize linear spaces: include new kinds of vectors
- Objects in the linear space are not always in traditional vector format
- Key: the linearity property

Example: \mathbb{R}^2

Elements of space:
$$\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ $\Rightarrow \mathbf{w} = 2\mathbf{u} + \mathbf{v} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$ is also in \mathbb{R}^2

- **Example:** Linear space $\mathcal{M}_{2\times 2}$ the set of all 2×2 matrices Rules of matrix arithmetic guarantee the linearity property
- **Example:** V_2 all vectors **w** in \mathbb{R}^2 that satisfy $w_2 \geq 0$
- \mathbf{e}_1 and \mathbf{e}_2 live in \mathcal{V}_2 Is this a linear space?

No:
$$\mathbf{v} = 0 \times \mathbf{e}_1 + -1 \times \mathbf{e}_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 which is not $\mathrm{in} \mathcal{V}_2$

In \mathcal{L}_n define a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_r$ where $1 \leq r \leq n$

Vectors are linearly independent means

$$\mathbf{v}_1 = s_2 \mathbf{v}_2 + s_3 \mathbf{v}_3 + \ldots + s_r \mathbf{v}_r$$

Will *not* have a solution set s_2, \ldots, s_r

⇒ Zero vector can only be expressed in a trivial manner:

If
$$\mathbf{0} = s_1 \mathbf{v}_1 + \ldots + s_r \mathbf{v}_r$$
 then $s_1 = \ldots = s_r = 0$

If the zero vector can be expressed as a nontrivial combination of r vectors then these vectors are linearly dependent

Subspace of \mathcal{L}_n of dimension r:

Formed from all *linear combinations* of linearly independent $\mathbf{v}_1, \dots, \mathbf{v}_r$ \Rightarrow Subspace is spanned by $\mathbf{v}_1, \dots, \mathbf{v}_r$

If this subspace equals whole space \mathcal{L}_n then $\mathbf{v}_1,\dots,\mathbf{v}_n$ a basis for \mathcal{L}_n

If \mathcal{L}_n is a linear space of dimension n then any n+1 vectors in it are linearly dependent

Example: \mathbb{R}^3 and basis vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$

$$\mathbf{v} = \begin{bmatrix} 3 \\ 4 \\ 7 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 is also in \mathbb{R}^3

The four vectors $\mathbf{v}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly dependent

Any one of four vectors forms a *one-dimensional subspace* of \mathbb{R}^3 Any two vectors here form a *two-dimensional subspace* of \mathbb{R}^3

マロトマラ・マラトマラトマラー マクスで Farin & Hansford Practical Linear Algebra 7 / 34

Example: \mathbb{R}^4

$$\mathbf{v}_1 = \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 5\\0\\-3\\1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 3\\0\\-3\\0 \end{bmatrix}$$

These vectors are linearly dependent since

$$\mathbf{v}_2 = \mathbf{v}_1 + 2\mathbf{v}_3$$
 or $\mathbf{0} = \mathbf{v}_1 - \mathbf{v}_2 + 2\mathbf{v}_3$

Set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ contains only two linearly independent vectors \Rightarrow Any two of them spans a subspace of \mathbb{R}^4 of dimension two

Example: \mathbb{R}^3

$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}$

These four vectors are linearly dependent since

$$\mathbf{v}_3 = -\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4$$

Any set of three of these vectors is a basis for \mathbb{R}^3

Farin & Hansford

 $A:\mathcal{L}_n o\mathcal{L}_m$ — The linear map A that transforms \mathcal{L}_n to \mathcal{L}_m

A preserves linear relationships

Preimage $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathcal{L}_n mapped to image $A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3$ in \mathcal{L}_m

$$\mathbf{v}_1 = \alpha \mathbf{v}_2 + \beta \mathbf{v}_3 \quad \Rightarrow \quad A\mathbf{v}_1 = \alpha A\mathbf{v}_2 + \beta A\mathbf{v}_3$$

Maps without this property: nonlinear maps

Linear map:
$$m \times n$$
 matrix A

$$\mathbf{v}$$
 in $\mathcal{L}_n \to \mathbf{v}'$ in $\mathcal{L}_m \Rightarrow \mathbf{v}' = A\mathbf{v}$

$$A: [\mathbf{e}_1, \dots, \mathbf{e}_n]$$
-system $\rightarrow [\mathbf{a}_1, \dots, \mathbf{a}_n]$ -system \Rightarrow

$$\mathbf{v}' =$$

$$\mathbf{v}' = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots v_n \mathbf{a}_n$$
 is in the column space of A

Example: $A: \mathbb{R}^2 \to \mathbb{R}^3$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$$

Given vectors in \mathbb{R}^2

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

mapped to vectors in \mathbb{R}^3

$$\hat{\mathbf{v}}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \qquad \hat{\mathbf{v}}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \qquad \hat{\mathbf{v}}_3 = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}$$

 \mathbf{v}_i are linearly dependent since $\mathbf{v}_3 = 2\mathbf{v}_1 + \mathbf{v}_2$ Linear maps preserve linear relationships $\Rightarrow \mathbf{v}_3' = 2\mathbf{v}_1' + \mathbf{v}_2' + \mathbf{v}_2' + \mathbf{v}_3' +$

Matrix rank

```
m \times n matrix can be at most of rank k = \min\{m, n\}
Rank equals number of linearly independent column vectors
If \operatorname{rank}(A) = \min\{m, n\} \Rightarrow \text{full rank}
If \operatorname{rank}(A) < \min\{m, n\} \Rightarrow \text{rank deficient}
```

Linear map can never increase dimension

— Possible to map \mathcal{L}_n to higher-dimensional space \mathcal{L}_m Images of \mathcal{L}_n 's n basis vectors will span a subspace of \mathcal{L}_m of dimension at most n (See last Example)

How to identify rank?

Perform forward elimination until matrix in upper triangular form

— k nonzero rows \Rightarrow rank is k

Rank scenarios for an $m \times n$ matrix Matrices in upper triangular form

m > n

m < n m = n

Top row: full rank matrices

Bottom row: rank deficient matrices

Farin & Hansford

Example: Determine the rank of the matrix

$$\begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \\ -1 & 1 & 1 \end{bmatrix} \quad \text{Forward elimination} \quad \Rightarrow \quad \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{bmatrix}$$

One row of zeroes: matrix has rank 3 — full rank since $min\{4,3\}=3$ **Example:** Determine the rank of the matrix

$$\begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \\ 0 & 1 & 2 \end{bmatrix} \quad \text{Forward elimination} \quad \Rightarrow \quad \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matrix has rank 2 — rank deficient

- 4 ロ b 4 個 b 4 差 b 4 差 b 9 Q Q

Review features of linear maps from earlier chapters

- $n \times n$ matrix A that is rank n is invertible
- \Rightarrow inverse matrix A^{-1} exists

If A is invertible then it does not reduce dimension

- ⇒ Determinant is nonzero
- Measures volume of nD parallelepiped defined by columns vectors
- Computed by transforming matrix to upper triangular (via shears/forward elimination)
 - Then the determinant is the product of the diagonal elements (pivoting: careful of sign)

Inner product: a map from \mathcal{L}_n to the reals \mathbb{R} — denoted as $\langle \mathbf{v}, \mathbf{w} \rangle$

Properties:

Symmetry: $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$

Homogeneity: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{w}, \mathbf{v} \rangle$

Additivity: $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all \mathbf{v} $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$

Positivity: $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Homogeneity and additivity properties combined:

$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$$

Example: the dot product $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + \ldots + v_n w_n$

Inner product space: a linear space with an inner product

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ 夕 Q ②

Example: Define a "test" inner product in \mathbb{R}^2

$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$$

Compare it to the dot product:

$$\langle \mathbf{e}_1, \mathbf{e}_2 \rangle = 4(1)(0) + 2(0)(1) = 0$$
 $\mathbf{e}_1 \cdot \mathbf{e}_2 = 0$

Let
$$\mathbf{r} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 (unit vector)

$$\langle {\bf e}_1, {\bf r} \rangle = 4(1)(\frac{1}{\sqrt{2}}) + 2(0)(\frac{1}{\sqrt{2}}) = \frac{4}{\sqrt{2}} \qquad \qquad {\bf e}_1 \cdot {\bf r} = \frac{1}{\sqrt{2}}$$

Farin & Hansford

Does the test inner product satisfy the necessary properties?

Symmetry:
$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2 = 4w_1v_1 + 2w_2v_2 = \langle \mathbf{w}, \mathbf{v} \rangle$$

Homogeneity: $\langle \alpha \mathbf{v}, \mathbf{w} \rangle = 4(\alpha v_1)w_1 + 2(\alpha v_2)w_2 = \alpha(4v_1w_1 + 2v_2w_2) = \alpha\langle \mathbf{v}, \mathbf{w} \rangle$

Additivity:
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 4(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$$

= $(4u_1w_1 + 2u_2w_2) + (4v_1w_1 + 2v_2w_2)$
= $\langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$

Positivity:
$$\langle \mathbf{v}, \mathbf{v} \rangle = 4v_1^2 + 2v_2^2 \ge 0$$
 and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = \mathbf{0}$

Usefulness of this inner product? But it does satisfy the properties!

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 夕 Q ()

Length

2-norm or Euclidean norm: $\|\mathbf{v}\|_2 = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$ ("Usual" norm \Rightarrow subscript typically omitted)

Distance between two vectors

$$\mathsf{dist}(\mathbf{u},\mathbf{v}) = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle} = \|\mathbf{u} - \mathbf{v}\|$$

Example: the dot product in \mathbb{R}^n

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

$$\operatorname{dist}(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \ldots + (u_n - v_n)^2}$$

Norm and distance for two inner products

Test inner product

$$\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$$

$$\|\mathbf{e}_1\| = \sqrt{\langle \mathbf{e}_1, \mathbf{e}_1 \rangle} = 4(1)^2 + 2(0)^2 = 4$$

$$dist(\mathbf{e}_1, \mathbf{e}_2) = \sqrt{4(1-0)^2 + 2(0-1)^2} = \sqrt{6} \quad dist(\mathbf{e}_1, \mathbf{e}_2) = \sqrt{2}$$

Dot product

$$\langle \mathbf{v}, \mathbf{w} \rangle = v_1 w_1 + v_2 w_2$$

$$\|\mathbf{e}_1\|=1$$

$$\mathsf{dist}(\mathbf{e}_1,\mathbf{e}_2) = \sqrt{2}$$

Black: dot product Gray: test inner product $\langle \mathbf{v}, \mathbf{w} \rangle = 4v_1w_1 + 2v_2w_2$

Unit vector \mathbf{r} rotated $[0, 2\pi]$

Left: inner product $\mathbf{e}_1 \cdot \mathbf{r}$ and $\langle \mathbf{e}_1, \mathbf{r} \rangle$

Middle: length $\sqrt{\mathbf{r} \cdot \mathbf{r}}$ and $\sqrt{\langle \mathbf{r}, \mathbf{r} \rangle}$

Right: distance
$$\sqrt{(e_1-r)\cdot(e_1-r)}$$
 and $\sqrt{\langle(e_1-r),(e_1-r)\rangle}$

Farin & Hansford Practical Linear Algebra 21 / 34

```
Orthogonality: \langle \mathbf{v}, \mathbf{w} \rangle = 0 for \mathbf{v}, \mathbf{w} in \mathcal{L}_n
```

Orthogonal basis: $\mathbf{v}_1, \dots, \mathbf{v}_n$ form a basis for \mathcal{L}_n and all \mathbf{v}_i are mutually orthogonal: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$

And if all \mathbf{v}_i are unit length: $\|\mathbf{v}_i\| = 1$ they form an orthonormal basis

The Gram-Schmidt method:

- Basis of a linear space \Rightarrow an orthonormal basis
- See the next Section

Cauchy-Schwartz inequality — in the context of inner product spaces

$$\langle \mathbf{v}, \mathbf{w} \rangle^2 \le \langle \mathbf{v}, \mathbf{v} \rangle \langle \mathbf{w}, \mathbf{w} \rangle$$

Equality holds if and only if **v** and **w** linearly dependent

Restate the Cauchy-Schwartz inequality

$$\begin{split} \langle \mathbf{v}, \mathbf{w} \rangle^2 &\leq \|\mathbf{v}\|^2 \|\mathbf{w}\|^2 \\ &\left(\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}\right)^2 \leq 1 \\ &-1 \leq \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|} \leq 1 \end{split}$$

Angle θ between ${\bf v}$ and ${\bf w}$

$$\cos \theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

Inner product properties suggest

$$\|\mathbf{v}\| \ge 0$$

 $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$
 $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$

A fourth property is the triangle inequality:

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$

(derived from the Cauchy-Schwartz inequality in Chapter 2)

General definition of a projection

Let $\mathbf{u}_1, \dots, \mathbf{u}_k$ span a subspace \mathcal{L}_k of \mathcal{L} If \mathbf{v} is a vector not in \mathcal{L}_k then

$$P\mathbf{v} = \langle \mathbf{v}, \mathbf{u}_1 \rangle \mathbf{u}_1 + \ldots + \langle \mathbf{v}, \mathbf{u}_k \rangle \mathbf{u}_k$$

is ${f v}$'s orthogonal projection into ${\cal L}_k$

Gram-Schmidt Orthonormalization

Every inner product space has an orthonormal basis

Given: orthonormal vectors $\mathbf{b}_1, \dots, \mathbf{b}_r$

— Form basis of subspace S_r of \mathcal{L}_n where n > r

Find: b_{r+1} orthogonal to the given \mathbf{b}_i

Let **u** be an arbitrary vector in \mathcal{L}_n , but not in \mathcal{S}_r **u**'s orthogonal projection into \mathcal{S}_r :

$$\hat{\mathbf{u}} = \mathsf{proj}_{\mathcal{S}_r} \mathbf{u} = \langle \mathbf{u}, \mathbf{b}_1 \rangle \mathbf{b}_1 + \ldots + \langle \mathbf{u}, \mathbf{b}_r \rangle \mathbf{b}_r$$

Check orthogonality: for example $\langle \textbf{u} - \hat{\textbf{u}}, \textbf{b}_1 \rangle = 0$

$$\langle u - \hat{u}, b_1 \rangle = \langle u, b_1 \rangle - \langle u, b_1 \rangle \langle b_1, b_1 \rangle - \ldots - \langle u, b_r \rangle \langle b_1, b_r \rangle$$

 \Rightarrow

$$\mathbf{b}_{r+1} = \frac{\mathbf{u} - \mathsf{proj}_{\mathcal{S}_r} \mathbf{u}}{\|\cdot\|}$$

Repeat to form an orthonormal basis for all of \mathcal{L}_n

Gram-Schmidt Orthonormalization

\mathcal{S}_2 is depicted as \mathbb{R}^2

Build the orthonormal basis: Given basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ of \mathcal{L}_n

$$\begin{split} \mathbf{b}_1 &= \frac{\mathbf{v}_1}{\| \cdot \|} \\ \mathbf{b}_2 &= \frac{\mathbf{v}_2 - \mathsf{proj}_{\mathcal{S}_1} \mathbf{v}_2}{\| \cdot \|} = \frac{\mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{b}_1 \rangle \mathbf{b}_2}{\| \cdot \|} \\ \mathbf{b}_3 &= \frac{\mathbf{v}_3 - \mathsf{proj}_{\mathcal{S}_2} \mathbf{v}_3}{\| \cdot \|} \\ &= \frac{\mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{b}_1 \rangle \mathbf{b}_1 - \langle \mathbf{v}_3, \mathbf{b}_2 \rangle \mathbf{b}_2}{\| \cdot \|} \end{split}$$

◆ロト ◆昼ト ◆昼ト ■ かへで

Gram-Schmidt Orthonormalization

Example:
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ $\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

Form an orthonormal basis $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4$

$$\mathbf{b}_1 = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix} \quad \mathbf{b}_2 = egin{bmatrix} 0 \ 1/\sqrt{3} \ 1/\sqrt{3} \end{bmatrix} \quad \mathbf{b}_3 = egin{bmatrix} 0 \ 2/\sqrt{6} \ -1/\sqrt{6} \ -1/\sqrt{6} \end{bmatrix}$$

$$\mathbf{b}_4 = \frac{\mathbf{v}_4 - \langle \mathbf{v}_4, \mathbf{b}_1 \rangle \mathbf{b}_1 - \langle \mathbf{v}_4, \mathbf{b}_2 \rangle \mathbf{b}_2 - \langle \mathbf{v}_4, \mathbf{b}_3 \rangle \mathbf{b}_3}{\|\cdot\|} = \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

Check: $|\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 \ \mathbf{b}_4| = 1$

◆ロト ◆園 > ◆夏 > ◆夏 > 夏 の 9 0 0

Let's highlight some special linear spaces—but there are many more!

A linear space \mathcal{P}_n whose elements are all polynomials of a fixed degree n

$$p(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n$$

where t is the independent variable of p(t)

- Addition in this space is coefficient by coefficient
- Multiplication in this space: polynomial times a real number

Check linearity property: $p(t) = 3 - 2t + 3t^2$ and $q(t) = -1 + t + 2t^2$ then $2p(t) + 3q(t) = 3 - t + 12t^2$ is yet another polynomial of the same degree

 \Rightarrow Linear map: derivative p' of a degree n polynomial p

$$p'(t) = a_1 + 2a_2t + \ldots + na_nt^{n-1}$$

Rank of this map is n-1

Example: Two cubic polynomials

$$p(t) = 3 - t + 2t^2 + 3t^3$$
 and $q(t) = 1 + t - t^3$

in the linear space of cubic polynomials \mathcal{P}_3

Let
$$r(t) = 2p(t) - q(t) = 5 - 3t + 4t^2 + 7t^3$$

$$r'(t) = -3 + 8t + 21t^{2}$$

$$p'(t) = -1 + 4t + 9t^{2}$$

$$q'(t) = 1 - 3t^{2}$$

 $r'(t) = 2p'(t) - q'(t) \Rightarrow$ linearity of the derivative map

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● 9 Q (°

A linear space given by the set of all real-valued continuous functions over the interval $\left[0,1\right]$

- This space is typically named C[0,1]
- The linearity condition is met: If f and g are elements of C[0,1] then $\alpha f + \beta g$ is also in C[0,1]
- This is an *infinite-dimensional* linear space No finite set of functions forms a basis for C[0,1]

The set of all 3×3 matrices form a linear space

- This space consists of matrices
- Linear combinations formed using standard matrix addition and multiplication with a scalar

A more abstract example:

The linear space formed from

the set of all linear maps from a linear space \mathcal{L}_n into the reals

- Called the dual space \mathcal{L}_n^* of \mathcal{L}_n
- Its dimension equals that of \mathcal{L}_n
- The linear maps in \mathcal{L}_n^* are known as linear functionals

Let a fixed vector \mathbf{v} and an variable vector \mathbf{u} be in \mathcal{L}_n . The linear functionals defined by $\Phi_{\mathbf{v}}(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v} \rangle$ are in \mathcal{L}_n^* . For any basis $\mathbf{b}_1, \dots, \mathbf{b}_n$ of \mathcal{L}_n define linear functionals

$$\Phi_{\mathbf{b}_i}(\mathbf{u}) = \langle \mathbf{u}, \mathbf{b}_i \rangle$$
 for $i = 1, \dots, n$

These functionals form a basis for \mathcal{L}_n^*

Example: In \mathbb{R}^2 consider the fixed vector

$$\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Then $\Phi_{\mathbf{v}}(\mathbf{u}) = \langle \mathbf{u}, \mathbf{v} \rangle = u_1 - 2u_2$ for all vectors \mathbf{u} where $\langle \cdot, \cdot \rangle$ is the dot product

Example: Pick $\mathbf{e}_1, \mathbf{e}_2$ for a basis in \mathbb{R}^2 The associated linear functionals are

$$\Phi_{\mathbf{e}_1}(\mathbf{u}) = u_1, \quad \Phi_{\mathbf{e}_2}(\mathbf{u}) = u_2$$

Any linear functional Φ can now be defined as

$$\Phi(\mathbf{u}) = r_1 \Phi_{\mathbf{e}_1}(\mathbf{u}) + r_2 \Phi_{\mathbf{e}_2}(\mathbf{u})$$

where r_1 and r_2 are scalars

WYSK

- linear space
- vector space
- dimension
- linear combination
- linearity property
- linearly independent
- subspace
- span
- linear map
- image
- preimage
- domain

- range
- rank
- full rank
- rank deficient
- inverse
- determinant
- inner product
- inner product space
- distance in an inner product space
- length in an inner product space

- orthogonal
- Gram-Schmidt method
- projection
- basis
- orthonormal
- orthogonal decomposition
- best approximation
- dual space
- linear functional