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General Linear Spaces

All cubic polynomials over the interval [0,1] form a linear space
Some elements illustrated

Linear space = vector space
Chapters 4 and 9: examined
properties in 2D and 3D

Here: higher dimensions
— Spaces can be abstract
— Powerful concept in dealing with
real-life problems

• car crash simulations
• weather forecasts
• computer games

“General” refers to the dimension
and abstraction
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Basic Properties of Linear Spaces

Ln: linear space of dimension n

Elements of Ln are vectors
— Denoted by boldface letters such as u

Two operations defined on the elements of Ln:
— Addition
— Multiplication by a scalar

Linearity property
Any linear combination of vectors results in a vector in the same space

w = su+ tv

Both s and t may be zero ⇒ every linear space has a zero vector in it
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Basic Properties of Linear Spaces

Generalize linear spaces: include new kinds of vectors
— Objects in the linear space are not always in traditional vector format
— Key: the linearity property

Example: R
2

Elements of space: u =

[

1
1

]

and v =

[

−2
3

]

⇒ w = 2u+ v =

[

0
5

]

is also in R
2

Example: Linear space M2×2 – the set of all 2× 2 matrices
— Rules of matrix arithmetic guarantee the linearity property

Example: V2 – all vectors w in R
2 that satisfy w2 ≥ 0

— e1 and e2 live in V2 — Is this a linear space?

No: v = 0× e1 +−1× e2 =

[

0
−1

]

which is not inV2
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Basic Properties of Linear Spaces

In Ln define a set of vectors v1, . . . , vr where 1 ≤ r ≤ n

Vectors are linearly independent means

v1 = s2v2 + s3v3 + . . .+ srvr

Will not have a solution set s2, . . . , sr

⇒ Zero vector can only be expressed in a trivial manner:

If 0 = s1v1 + . . .+ srvr then s1 = . . . = sr = 0

If the zero vector can be expressed as a nontrivial combination of r vectors
then these vectors are linearly dependent
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Basic Properties of Linear Spaces

Subspace of Ln of dimension r :
Formed from all linear combinations of linearly independent v1, . . . , vr
⇒ Subspace is spanned by v1, . . . , vr

If this subspace equals whole space Ln then v1, . . . , vn a basis for Ln

If Ln is a linear space of dimension n

then any n + 1 vectors in it are linearly dependent

Example: R
3 and basis vectors e1, e2, e3

v =





3
4
7



 = 3





1
0
0



+ 4





0
1
0



+ 7





0
0
1



 is also in R
3

The four vectors v, e1, e2, e3 are linearly dependent

Any one of four vectors forms a one-dimensional subspace of R3

Any two vectors here form a two-dimensional subspace of R3
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Basic Properties of Linear Spaces

Example: R
4

v1 =









−1
0
0
1









v2 =









5
0
−3
1









v3 =









3
0
−3
0









These vectors are linearly dependent since

v2 = v1 + 2v3 or 0 = v1 − v2 + 2v3

Set {v1, v2, v3} contains only two linearly independent vectors
⇒ Any two of them spans a subspace of R4 of dimension two
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Basic Properties of Linear Spaces

Example: R
3

v1 =





−1
0
0



 v2 =





1
2
0



 v3 =





1
2
−3



 v4 =





0
0
−3





These four vectors are linearly dependent since

v3 = −v1 + 2v2 + v4

Any set of three of these vectors is a basis for R3
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Linear Maps

A : Ln → Lm — The linear map A that transforms Ln to Lm

A preserves linear relationships
Preimage v1, v2, v3 in Ln mapped to image Av1,Av2,Av3 in Lm

v1 = αv2 + βv3 ⇒ Av1 = αAv2 + βAv3

Maps without this property: nonlinear maps

Linear map: m × n matrix A

v in Ln → v′ in Lm ⇒ v′ = Av

A : [e1, . . . , en]-system → [a1, . . . , an]-system
⇒

v′ = v1a1 + v2a2 + . . . vnan is in the column space of A
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Linear Maps

Example: A : R2 → R
3

A =





1 0
0 1
2 2





Given vectors in R
2

v1 =

[

1
0

]

v2 =

[

0
1

]

v3 =

[

2
1

]

mapped to vectors in R
3

v̂1 =





1
0
2



 v̂2 =





0
1
2



 v̂3 =





2
1
6





vi are linearly dependent since v3 = 2v1 + v2
Linear maps preserve linear relationships ⇒ v′3 = 2v′1 + v′2
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Linear Maps

Matrix rank

m × n matrix can be at most of rank k = min{m, n}
Rank equals number of linearly independent column vectors
If rank(A) = min{m, n} ⇒ full rank
If rank(A) < min{m, n} ⇒ rank deficient

Linear map can never increase dimension
— Possible to map Ln to higher-dimensional space Lm

Images of Ln’s n basis vectors will span
a subspace of Lm of dimension at most n
(See last Example)

How to identify rank?
Perform forward elimination until matrix in upper triangular form
— k nonzero rows ⇒ rank is k
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Linear Maps

Rank scenarios for an m × n matrix
Matrices in upper triangular form

m < n m = n m > n

Top row: full rank matrices
Bottom row: rank deficient matrices
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Linear Maps

Example: Determine the rank of the matrix









1 3 4
0 1 2
1 2 2
−1 1 1









Forward elimination ⇒









1 3 4
0 1 2
0 0 −3
0 0 0









One row of zeroes: matrix has rank 3 — full rank since min{4, 3} = 3
Example: Determine the rank of the matrix









1 3 4
0 1 2
1 2 2
0 1 2









Forward elimination ⇒









1 3 4
0 1 2
0 0 0
0 0 0









Matrix has rank 2 — rank deficient
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Linear Maps

Review features of linear maps from earlier chapters

n × n matrix A that is rank n is invertible
⇒ inverse matrix A−1 exists

If A is invertible then it does not reduce dimension
⇒ Determinant is nonzero
— Measures volume of nD parallelepiped defined by columns vectors
— Computed by transforming matrix to upper triangular

(via shears/forward elimination)
Then the determinant is the product of the diagonal elements
(pivoting: careful of sign)
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Inner Products

Inner product: a map from Ln to the reals R — denoted as 〈v,w〉
Properties:

Symmetry: 〈v,w〉 = 〈w, v〉
Homogeneity: 〈αv,w〉 = α〈w, v〉
Additivity: 〈u+ v,w〉 = 〈u,w〉+ 〈v,w〉 for all v 〈v, v〉 ≥ 0

Positivity: 〈v, v〉 = 0 if and only if v = 0

Homogeneity and additivity properties combined:

〈αu+ βv,w〉 = α〈u,w〉 + β〈v,w〉

Example: the dot product 〈v,w〉 = v · w = v1w1 + v2w2 + . . .+ vnwn

Inner product space: a linear space with an inner product
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Inner Products

Example: Define a “test” inner product in R
2

〈v,w〉 = 4v1w1 + 2v2w2

Compare it to the dot product:

〈e1, e2〉 = 4(1)(0) + 2(0)(1) = 0 e1 · e2 = 0

Let r =

[

1/
√
2

1/
√
2

]

(unit vector)

〈e1, r〉 = 4(1)(
1√
2
) + 2(0)(

1√
2
) =

4√
2

e1 · r =
1√
2
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Inner Products

Does the test inner product satisfy the necessary properties?

Symmetry: 〈v,w〉 = 4v1w1 + 2v2w2 = 4w1v1 + 2w2v2 = 〈w, v〉
Homogeneity: 〈αv,w〉 = 4(αv1)w1+2(αv2)w2 = α(4v1w1+2v2w2) = α〈v,w〉

Additivity: 〈u+ v,w〉 = 4(u1 + v1)w1 + 2(u2 + v2)w2

= (4u1w1 + 2u2w2) + (4v1w1 + 2v2w2)

= 〈u,w〉 + 〈v,w〉

Positivity: 〈v, v〉 = 4v21 + 2v22 ≥ 0 and 〈v, v〉 = 0 iff v = 0

Usefulness of this inner product? But it does satisfy the properties!
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Inner Products

Length

2-norm or Euclidean norm: ‖v‖2 =
√

〈v, v〉
(“Usual” norm ⇒ subscript typically omitted)

Distance between two vectors

dist(u, v) =
√

〈u− v,u− v〉 = ‖u− v‖

Example: the dot product in R
n

‖v‖ =
√

v21 + v22 + . . .+ v2n

dist(u, v) =
√

(u1 − v1)2 + (u2 − v2)2 + . . . + (un − vn)2
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Inner Products

Norm and distance for two inner products

Test inner product Dot product

〈v,w〉 = 4v1w1 + 2v2w2 〈v,w〉 = v1w1 + v2w2

‖e1‖ =
√

〈e1, e1〉 = 4(1)2 + 2(0)2 = 4 ‖e1‖ = 1

dist(e1, e2) =
√

4(1 − 0)2 + 2(0− 1)2 =
√
6 dist(e1, e2) =

√
2
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Inner Products

Black: dot product Gray: test inner product 〈v,w〉 = 4v1w1 + 2v2w2

Π 2 Π

-4

-2

2

4

Π 2 Π

1

2

Π 2 Π

2

4

Unit vector r rotated [0, 2π]

Left: inner product e1 · r and 〈e1, r〉
Middle: length

√
r · r and

√

〈r, r〉
Right: distance

√

(e1 − r) · (e1 − r) and
√

〈(e1 − r), (e1 − r)〉
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Inner Products

Orthogonality: 〈v,w〉 = 0 for v,w in Ln

Orthogonal basis: v1, . . . , vn form a basis for Ln

and all vi are mutually orthogonal: 〈vi , vj 〉 = 0 for i 6= j

And if all vi are unit length: ‖vi‖ = 1
they form an orthonormal basis

The Gram-Schmidt method:
— Basis of a linear space ⇒ an orthonormal basis
— See the next Section
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Inner Products

Cauchy-Schwartz inequality — in the context of inner product spaces

〈v,w〉2 ≤ 〈v, v〉〈w,w〉

Equality holds if and only if v and w linearly dependent

Restate the Cauchy-Schwartz inequality

〈v,w〉2 ≤ ‖v‖2‖w‖2
( 〈v,w〉
‖v‖‖w‖

)2

≤ 1

−1 ≤ 〈v,w〉
‖v‖‖w‖ ≤ 1

Angle θ between v and w

cos θ =
〈v,w〉
‖v‖‖w‖
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Inner Products

Inner product properties suggest

‖v‖ ≥ 0

‖v‖ = 0 if and only if v = 0

‖αv‖ = |α|‖v‖

A fourth property is the triangle inequality:

‖v + w‖ ≤ ‖v‖ + ‖w‖

(derived from the Cauchy-Schwartz inequality in Chapter 2)
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Inner Products

General definition of a projection

Let u1, . . . ,uk span a subspace Lk of L
If v is a vector not in Lk then

Pv = 〈v,u1〉u1 + . . .+ 〈v,uk 〉uk

is v’s orthogonal projection into Lk
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Gram-Schmidt Orthonormalization

Every inner product space has an orthonormal basis

Given: orthonormal vectors b1, . . . ,br
— Form basis of subspace Sr of Ln where n > r

Find: br+1 orthogonal to the given bi

Let u be an arbitrary vector in Ln, but not in Sr

u’s orthogonal projection into Sr :

û = projSr
u = 〈u,b1〉b1 + . . .+ 〈u,br 〉br

Check orthogonality: for example 〈u− û,b1〉 = 0

〈u− û,b1〉 = 〈u,b1〉 − 〈u,b1〉〈b1,b1〉 − . . .− 〈u,br 〉〈b1,br 〉

⇒
br+1 =

u− projSr
u

‖ · ‖
Repeat to form an orthonormal basis for all of Ln

Key elements: projections and vector decomposition
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Gram-Schmidt Orthonormalization

S2 is depicted as R2

Build the orthonormal basis:
Given basis v1, . . . , vn of Ln

b1 =
v1

‖ · ‖

b2 =
v2 − projS1

v2

‖ · ‖ =
v2 − 〈v2,b1〉b1

‖ · ‖

b3 =
v3 − projS2

v3

‖ · ‖

=
v3 − 〈v3,b1〉b1 − 〈v3,b2〉b2

‖ · ‖
...
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Gram-Schmidt Orthonormalization

Example: v1 =









1
0
0
0









v2 =









1
1
1
1









v3 =









1
1
0
0









v4 =









0
0
1
0









Form an orthonormal basis b1,b2,b3,b4

b1 =









1
0
0
0









b2 =









0

1/
√
3

1/
√
3

1/
√
3









b3 =









0

2/
√
6

−1/
√
6

−1/
√
6









b4 =
v4 − 〈v4,b1〉b1 − 〈v4,b2〉b2 − 〈v4,b3〉b3

‖ · ‖ =









0
0

1/
√
2

−1/
√
2









Check:
∣

∣b1 b2 b3 b4
∣

∣ = 1
Farin & Hansford Practical Linear Algebra 28 / 34



A Gallery of Spaces

Let’s highlight some special linear spaces—but there are many more!

A linear space Pn whose elements are all polynomials of a fixed degree n

p(t) = a0 + a1t + a2t
2 + . . . + ant

n

where t is the independent variable of p(t)
— Addition in this space is coefficient by coefficient
— Multiplication in this space: polynomial times a real number
Check linearity property: p(t) = 3− 2t + 3t2 and q(t) = −1 + t + 2t2

then 2p(t) + 3q(t) = 3− t + 12t2 is yet another polynomial of the same
degree

⇒ Linear map: derivative p′ of a degree n polynomial p

p′(t) = a1 + 2a2t + . . .+ nant
n−1

Rank of this map is n − 1
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A Gallery of Spaces

Example: Two cubic polynomials

p(t) = 3− t + 2t2 + 3t3 and q(t) = 1 + t − t3

in the linear space of cubic polynomials P3

Let r(t) = 2p(t)− q(t) = 5− 3t + 4t2 + 7t3

r ′(t) = −3 + 8t + 21t2

p′(t) = −1 + 4t + 9t2

q′(t) = 1− 3t2

r ′(t) = 2p′(t)− q′(t) ⇒ linearity of the derivative map
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A Gallery of Spaces

A linear space given by the set of all real-valued continuous functions over
the interval [0, 1]
— This space is typically named C [0, 1]
— The linearity condition is met:

If f and g are elements of C [0, 1] then αf + βg is also in C [0, 1]
— This is an infinite-dimensional linear space

No finite set of functions forms a basis for C [0, 1]

The set of all 3× 3 matrices form a linear space
— This space consists of matrices
— Linear combinations formed using standard matrix addition and
multiplication with a scalar
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A Gallery of Spaces

A more abstract example:
The linear space formed from
the set of all linear maps from a linear space Ln into the reals
— Called the dual space L∗

n of Ln

— Its dimension equals that of Ln

— The linear maps in L∗
n are known as linear functionals

Let a fixed vector v and an variable vector u be in Ln

The linear functionals defined by Φv(u) = 〈u, v〉 are in L∗
n

For any basis b1, . . . ,bn of Ln define linear functionals

Φbi (u) = 〈u,bi 〉 for i = 1, . . . , n

These functionals form a basis for L∗
n
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A Gallery of Spaces

Example: In R
2 consider the fixed vector

v =

[

1
−2

]

Then Φv(u) = 〈u, v〉 = u1 − 2u2 for all vectors u
where 〈·, ·〉 is the dot product

Example: Pick e1, e2 for a basis in R
2

The associated linear functionals are

Φe1(u) = u1, Φe2(u) = u2

Any linear functional Φ can now be defined as

Φ(u) = r1Φe1(u) + r2Φe2(u)

where r1 and r2 are scalars
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WYSK

linear space

vector space

dimension

linear combination

linearity property

linearly independent

subspace

span

linear map

image

preimage

domain

range

rank

full rank

rank deficient

inverse

determinant

inner product

inner product space

distance in an inner
product space

length in an inner
product space

orthogonal

Gram-Schmidt
method

projection

basis

orthonormal

orthogonal
decomposition

best approximation

dual space

linear functional
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