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General Linear Spaces

All cubic polynomials over the interval [0,1] form a linear space
Some elements illustrated

Linear space = vector space
Chapters 4 and 9: examined
properties in 2D and 3D

Here: higher dimensions
— Spaces can be abstract
— Powerful concept in dealing with
real-life problems
e car crash simulations
e weather forecasts
e computer games

“General” refers to the dimension
and abstraction
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Basic Properties of Linear Spaces

Ln: of dimension n

Elements of L,, are vectors
— Denoted by boldface letters such as u

Two operations defined on the elements of L,:
— Addition
— Multiplication by a scalar

Any linear combination of vectors results in a vector in the same space
W = su + tv

Both s and t may be zero = every linear space has a zero vector in it
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Basic Properties of Linear Spaces

Generalize linear spaces: include new kinds of vectors
— Objects in the linear space are not always in traditional vector format
— Key: the linearity property

Example: R?

Elements of space: u= [ﬂ and v — [—32]

= w=2u+t+v= [g} is also in R?

Example: Linear space Mo — the set of all 2 x 2 matrices
— Rules of matrix arithmetic guarantee the linearity property

Example: V, — all vectors w in R? that satisfy w, > 0
— e; and e live in V, — Is this a linear space?
No:v=0xe;+—-1xe = [_OJ which is not in),
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Basic Properties of Linear Spaces

In £, define a set of vectors vi,...,v, where 1 <r <n

Vectors are means

Vi = SV + S3V3 + ... + SV,

Will not have a solution set sp,...,s,

= Zero vector can only be expressed in a trivial manner:
If 0=svi+...+sv, thensg=...=5 =0

If the zero vector can be expressed as a nontrivial combination of r vectors
then these vectors are
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Basic Properties of Linear Spaces

of L, of dimension r:

Formed from all linear combinations of linearly independent v, ...

= Subspace is by vi,...,v,

If this subspace equals whole space L, then vi,...,v, a for L,

If £, is a linear space of dimension n
then any n+ 1 vectors in it are linearly dependent

Example: R3 and basis vectors e;, e,, e3

3 1 0 0
v= 4| =3 (0| +4|1]| +7|0| isalsoinR3
7 0 0 1

The four vectors v, ey, ey, e3 are linearly dependent

Any one of four vectors forms a one-dimensional subspace of R3
Any two vectors here form a two-dimensional subspace of R3
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Basic Properties of Linear Spaces

Example: R*

-1 5 3
V] = 0 Vo = 0 V3 = 0
0 -3 -3
1 1 0

These vectors are linearly dependent since
vy =v;+2vz3 or 0=v; —vy+2u;3

Set {v1,Vv2,v3} contains only two linearly independent vectors
= Any two of them spans a subspace of R* of dimension two
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Example: R3

-1 1 1 0
vi=1|0 vy = (2 vy = | 2 vy= 1|0
0 0 -3 -3

These four vectors are linearly dependent since

V3 = —

V1 +2vp vy
Any set of three of these vectors is a basis for R3
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Linear Maps

A:L,— Ly— The A that transforms L, to L,
A preserves linear relationships
v1,Vo,Vv3 in L, mapped to Avi, Avy, Avs in L,
vi=avy+ vy = Av; = aAv, + [Avs

Maps without this property:

Linear map: m x n matrix A
vinl,—=VvinL, =v=Av
A:lei,...,e,]-system — [a1,...,a,]-system
=
vV = via; + way+...vsa, isin the of A
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Linear Maps

Example: A:R? — R3

Given vectors in R?

ol el ool

mapped to vectors in R3
1 0 2
vi= |0 v, = |1 vz = |1
2 2 6

v; are linearly dependent since vz = 2v; + vp
Linear maps preserve linear relationships = v§ = 2v} + v}
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Linear Maps

Matrix

m X n matrix can be at most of rank k = min{m, n}

Rank equals number of linearly independent column vectors
If rank(A) = min{m, n} =

If rank(A) < min{m, n} =

Linear map can never increase dimension

— Possible to map £, to higher-dimensional space £,
Images of L,'s n basis vectors will span
a subspace of L, of dimension at most n
(See last Example)

How to identify rank?
Perform forward elimination until matrix in upper triangular form
— k nonzero rows = rank is k
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Rank scenarios for an m x n matrix
Matrices in upper triangular form

m<n

Top row: full rank matrices

Bottom row: rank deficient matrices
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Linear Maps

Example: Determine the rank of the matrix

1 3 4 1 3 4

0 12 Forward elimination = 0 1 2

1 2 2 0O 0 -3
-1 11 0 0 0

One row of zeroes: matrix has rank 3 — full rank since min{4,3} =3
Example: Determine the rank of the matrix

1 3 4 1 3 4
0 12 Forward elimination = 0 12
1 2 2 0 0O
01 2 0 0O

Matrix has rank 2 — rank deficient
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Linear Maps

Review features of linear maps from earlier chapters

n X n matrix A that is rank n is invertible
= inverse matrix A~1 exists

If A is invertible then it does not reduce dimension

= Determinant is nonzero
— Measures volume of nD parallelepiped defined by columns vectors
— Computed by transforming matrix to upper triangular
(via shears/forward elimination)
Then the determinant is the product of the diagonal elements
(pivoting: careful of sign)
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Inner Products

: a map from L, to the reals R — denoted as (v, w)

Properties:

Symmetry: (v,w) = (w,v)

Homogeneity: (av,w) = a(w,v)

Additivity:  (u+v,w) = (u,w) + (v,w) forallv (v,v) >0
Positivity: (v,v) =0 if and only if v=10

Homogeneity and additivity properties combined:
(o + By, w) = alu,w) + Blv,w)
Example: the dot product (v,w) =v-w = viw; + vows + ... + VoW,

. a linear space with an inner product
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Example: Define a “test” inner product in R?

<V,W> =4dviwy + 2vown
Compare it to the dot product:

(e1,e2) = 4(1)(0) +2(0)(1) =0 e;-ep=0
Letr = E;g] (unit vector)

(e1,r) = 4(1)(\%) + 2(0)(%) _4
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Inner Products

Does the test inner product satisfy the necessary properties?

Symmetry: (v,w) = 4viwg + 2vowp = 4wy vy + 2upve = (W, V)

Homogeneity: (av,w) = 4(avi)wi+2(ava)ws = a(dviwi+2vaws) = a(v, w)

Additivity: (u+v,w) = 4(u1 + vi)wy + 2(u2 + v2)wa
= (4uiwi + 2upws) + (dvawy + 2vown)

(u, w) + (v, w)

Positivity: (v,v) =4vZ +2v2 > 0and (v,v) =0iffv=10

Usefulness of this inner product? But it does satisfy the properties!
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Length

2-norm or Euclidean norm: ||v|j2 = 1/(v,v)
(“Usual” norm = subscript typically omitted)

Distance between two vectors

dist(u,v) = /(u—v,u—v) = |ju—v||

Example: the dot product in R”

IVl =/ + B+ + 2

dist(u,v) = \/(ul —v1)2+ (up — v2)2 + ... + (up — vp)?
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Norm and distance for two inner products

Test inner product Dot product

(V,W> =4dviw; + 2vown (V,W> = viwy + Vowsp

le1]] = /(e1,e1) = 4(1)* +2(0)* = 4 leaf =1

diSt(e17e2) = \/4(]- - 0)2 + 2(0 - 1)2 = \/6 dist(el,eg) = \/§
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Inner Products

Black: dot product Gray: test inner product (v,w) = 4viw; + 2vows
4
4
2,
2\/\/
1 2
2 )
n 2
2t ,
n 2n
4+

Unit vector r rotated [0, 27]

Left: inner product e; - r and (ey,r)

Middle: length v/r-r and \/(r,r)

Right: distance \/(e1 —r) - (e1 —r) and \/((e1 —r),(e1 — 1))
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Orthogonality: (v,w) =0 for v,w in L,
Orthogonal basis: vq,...,v, form a basis for £,
and all v; are mutually orthogonal: (vj,v;) =0 for i # j

And if all v; are unit length: |v;|| =1
they form an orthonormal basis

The Gram-Schmidt method:

— Basis of a linear space = an orthonormal basis
— See the next Section

«4O>r «Fr «=Z>r «E)» = Q>



Inner Products
— in the context of inner product spaces
(v, w)? < (v, v)(w, w)
Equality holds if and only if v and w linearly dependent

Restate the Cauchy-Schwartz inequality

(v, w)? < lv][*[w]®

(v.w) \2
(nvunwn) =1
(v, w)

= viwi =7

Angle 6 between v and w

(v, w)

cosf =
[[v[{|w]
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Inner product properties suggest

lvll >0

|lv|[ =0 if and only if v=10
[lawl[ = [ef[v]|

A fourth property is the triangle inequality:

[lv+wif < vl + [/l

(derived from the Cauchy-Schwartz inequality in Chapter 2)

«O>r «F»r < > A

!
v
a



General definition of a projection

Let uy,...,u, span a subspace Ly of L
If v is a vector not in L then

Pv = (v up)u; + ...+ (v,ug)u,
is v's orthogonal projection into Ly
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Gram-Schmidt Orthonormalization

Every inner product space has an orthonormal basis

Given: orthonormal vectors bq,...,b,
— Form basis of subspace S, of L,, where n > r
Find: b,;; orthogonal to the given b;

Let u be an arbitrary vector in L, but not in S,
u's orthogonal projection into S,:

i = projsu = (u,by)b; + ... + (u,b,)b,
Check orthogonality: for example (u — G,b;) =0
<u - ﬁv b1> = <u>b1> - <u>b1><b1>b1> e T <u7 br><b17 br>

u — projg,u
P =T
Repeat to form an orthonormal basis for all of £,
Key elements: projections and vector decomposition
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S, is depicted as R?

Build the orthonormal basis:
Given basis vy,

...,vpof L,

Vi
b; =

by — V2 — Projg va _ va — (vz,by)by
[l [l
V3 — projc.v
bs = 3 — Projs,vs

|-
vz — (v3,b1)b; — (v3,b)by
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Gram-Schmidt Orthonormalization

1 1 1 0
Example: v; = 0 vy = 1 vz = L vy = 0
0 1 0 1
0 1 0 0
Form an orthonormal basis by, by, b3, by
1 0 7 0
b, = 0 b, = 1/\/§ bs = 2/\/6
0 1/vV3| 7 |-1/v6
0 1/v/3] —~1//6
0
b, = V4~ (va,b1)b1 — (v4,bz)by — (v4,b3)b3 _ 0
* I 1/v2
—1/V/2

Check: b1 b2 b3 b4|:1
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A Gallery of Spaces

Let's highlight some special linear spaces—but there are many more!

A linear space P, whose elements are all polynomials of a fixed degree n
p(t) = ag + art + axt> + ... + a,t"

where t is the independent variable of p(t)

— Addition in this space is coefficient by coefficient

— Multiplication in this space: polynomial times a real number

Check linearity property: p(t) =3 — 2t + 3t and q(t) = —1 + t + 2t2
then 2p(t) +3q(t) = 3 — t + 12t2 is yet another polynomial of the same
degree

= Linear map: derivative p’ of a degree n polynomial p
p'(t) = a4+ 2ast + ...+ na,t™ !

Rank of this mapis n—1
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A Gallery of Spaces

Example: Two cubic polynomials
p(t)y=3—t+2t>+3t> and q(t)=1+t—t
in the linear space of cubic polynomials P3

Let r(t)=2p(t)—q(t)=5—3t+4t> + 73

r'(t) = =3 + 8t +21t°
pl(t) = —1+4t+9t2
q(t)=1-3t2

r'(t) = 2p'(t) — ¢'(t) = linearity of the derivative map
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A Gallery of Spaces

A linear space given by the set of all real-valued continuous functions over
the interval [0, 1]
— This space is typically named C[0, 1]
— The linearity condition is met:
If f and g are elements of C[0, 1] then af + Bg is also in C[0,1]
— This is an infinite-dimensional linear space
No finite set of functions forms a basis for C[0, 1]

The set of all 3 x 3 matrices form a linear space

— This space consists of matrices

— Linear combinations formed using standard matrix addition and
multiplication with a scalar
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A Gallery of Spaces

A more abstract example:

The linear space formed from

the set of all linear maps from a linear space L, into the reals
— Called the Ly of L,

— Its dimension equals that of £,

— The linear maps in £}, are known as

Let a fixed vector v and an variable vector u be in £,
The linear functionals defined by ®,(u) = (u,v) are in L},
For any basis by, ...,b, of £, define linear functionals

CDb,.(u) = (u,b;) for i = 1,...,n

These functionals form a basis for L7,
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A Gallery of Spaces

Example: In R? consider the fixed vector

e

Then &, (u) = (u,v) = u; — 2us for all vectors u
where (-, ) is the dot product

Example: Pick e, e, for a basis in R?
The associated linear functionals are

Ge, (u) = U1, Pe,(u) = w2
Any linear functional ® can now be defined as
®(u) = e, (u) + NPPe,(u)

where r; and r» are scalars

Farin & Hansford Practical Linear Algebra

33 /34



WYSK

linear space
vector space
dimension

linear combination
linearity property
linearly independent
subspace

span

linear map

image

preimage

domain

Farin & Hansford

range

rank

full rank

rank deficient
inverse
determinant

inner product

inner product space

distance in an inner
product space

length in an inner
product space

Practical Linear Algebra

@ orthogonal

Gram-Schmidt
method

projection
basis
orthonormal

orthogonal
decomposition

best approximation

@ dual space

@ linear functional

34 /34



	Introduction to General Linear Spaces
	Basic Properties of Linear Spaces
	Linear Maps
	Inner Products
	Gram-Schmidt Orthonormalization
	A Gallery of Spaces
	WYSK

