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Introduction to Eigen Things Revisited

Connectivity matrix for a Google matrix

Chapter 7: 2 x 2 matrices
Here: n X n matrices

Eigenvalues and eigenvectors reveal
action and geometry of map

Important in many areas:
— characterizing harmonics of
musical instruments
— moderating movement of fuel in a
ship
— analysis of large data sets
Google matrix:
Used to find the webpage ranking
(See Section: Google Eigenvector)
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If an n x n matrix A has fixed directions

Ar = \r or [A-=Xr=0
r = 0 trivially satisfies this equation — not interesting

If [A— Al maps r # 0 to 0 then

p(\) = det[A — ] =0

characteristic equation
Polynomial of degree n in A — its zeroes are A's eigenvalues
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The Basics Reuvisited

Example:

oo o+
oo WK
o~ H~ O
N R OO

1-x 1 0 0
0 3-x 1 0
0 0 4-x 1
0 0 0 2-2A
pPA) =1 -ANB-NE-1(2-1=0

AM=4 =3 =2 =1

p(A\) = det[A — ] =

Convention: order the eigenvalues in decreasing order

. largest eigenvalue in absolute value
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The Basics Reuvisited

Example: Elementary row operations change the eigenvalues

2 2
A=l
det A =2 and eigenvalues \; =2+ +v2 and A\, =2 — /2

One step of forward elimination:

, 2 2
o]

Determinant is invariant under forward elimination — det A’ = 2
The eigenvalues are not: A’ has eigenvalues \; =2 and A\, =1

Instead: use diagonalization — see Chapter 16.
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The Basics Reuvisited

General n x n matrix has a degree n characteristic polynomial
p(A) =detf A=A =M —=A)(A2—=A)-...-(An =)

Let A =0 then p(0) =det A= XA2-... -\,

Finding zeroes of n'"" degree polynomial nontrivial

— Use iterative method to find dominant eigenvalue (see next Section)
— Symmetric matrices always have real eigenvalues

— A and AT have the same eigenvalues

— A is invertible and has eigenvalues )\;, then A~! has eigenvalues 1/);
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The Basics Reuvisited

Found the A\; — now solve homogeneous linear systems
[A—Xllri=0

to find the eigenvectors r; for i = 1,n

ri in the null space of [A — \;/]

Homogeneous systems = no unique solution

Sometimes eigenvectors normalized to eliminate this ambiguity
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The Basics Reuvisited

Example: Find the eigenvectors

1100
0 310
A= 00 4 1 Ai=4,3 21
0 00 2
Starting with Ay = 4:
-3 1 0 O 1/3
0 -1 1 0 =0 = r 1
0o 0 0 1|t~ S |
0 0 0 -2 0
Repeating for all eigenvalues
1/2 1/2 1
11 1 1)2 10 Ay
v, = 0 r3 = ~1/2 ry = 0 and check: Ar; = A\jr;
0 1 0
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The Basics Reuvisited

Multiple zeroes of the characteristic polynomial
= identical homogeneous systems [A — A/]r =0

Example:
1 2 3
A=1(0 2 0 Ai=2,2,1
0 0 2
FOI’)\1:)\2:2
-1 2 3 5
0 0 0frp=0 = rn=|1
0 0O 1
For A3 =1
0 2 3 1
0 1 0|lr3=0 = r3= |0
0 01 0
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Example: Rotation around the e3-axis:

cosaa —sina 0
A= [sina cosa 0
0 0 1
Expect that e3 is an eigenvector:
Ae3 — €3

=- corresponding eigenvalue =1
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Symmetric matrix A:
— real eigenvalues
— eigenvectors are orthogonal

= A is diagonalizable:

Possible to transform A to diagonal matrix A = R~'AR
— Columns of R are A’s eigenvectors

— N is a diagonal matrix of A’s eigenvalues

— eigendecomposition of A
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The Basics Reuvisited

Example: Eigendecompostion A = R™1SR of the symmetric matrix

301
S=10 3 0 Ai=4, 3,2
10 3

1 0] —1
rp = 0 rh = 1 r3 = 0
1 0] 1
4 00 [1/vV/2 0 —1/V2
A=10 3 0 R=| 0 1 0
0 0 2 (1/vV2 0 1/V2
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The Basics Reuvisited

Projection matrices:
— eigenvalues are one or zero
0: eigenvector projected to the zero vector
= determinant is zero and matrix is singular
1: eigenvector projected to itself
— If Ay = ... = X =1 then eigenvectors populate column space
= dimension is k and null space is dimension n — k
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The Basics Reuvisited

Example: 3 x 3 projection matrix P = uu’
1/v/2 1/2 0 1/2
u= 0 P=]10 0 O Ai=1,0,0
1/v2 1/2 0 1/2
-1/2 0 1/2 1
AA=1 = 0 -1 0 = r = |0
1/2 0 -1/2 1
1/2 0 1/2 -1
)\1,2 =0 = 0 0 0 = ro = 1
1/2 0 1/2 1
Or find two eigenvectors that span 2D null space:
-1 0
ro = 0 r3 = 1
1 0
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The Basics Reuvisited

of matrix A

tr(A)=M+X+...+ s =ar1+a+...+ans,

Gives insight to eigenvalues without computing directly

For 2 x 2 matrices

tr(A) £ \/tr(A)? — 4det A
det[A—A] = N> —Atr(A)+detA = A= r(A) £ vtr(A) e

2
Example:
1 -2
A= |:0 _2:| = A\i=-2,1
tr(A) =—landdetA=-2 = )\172 — —12i3
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The Basics Reuvisited

f(V) = VTCV = C171V]? + 2C172V1V2 + ...+ Cn7nV3

The contour f(v) =1 is an n-dimensional ellipsoid
— Semi-minor axis corresponds to r; with length 1/v/\;
— Semi-major axis corresponds to r, with length 1/v/\,

matrix: A real matrix satisfying

f(v) =viAv>0 forany v#0 e R"
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A: symmetric n X n matrix

Let A be the dominant eigenvalue and r its corresponding eigenvector

Alr = Ny

Use this property to find the dominant eigenvalue and eigenvector
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The Power Method

Start with arbitrary (nonzero) r(1) — construct vector sequence
D) = Ar(), i=1,2,...

After a sufficiently large i r() will begin to line up with r: r(i+1) = \¢()
= All components of rit1) and r() are (approximately) related by

rj(;+1)
i

=X forj=1,...,n (%)

Longest black vector: initial guess; Successive iterations lighter shades

Each iteration scaled with respect to the oo-norm
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The Power Method

Algorithm:
Rather than checking each ratio (*) use the co-norm to define A
Initialization:

Estimate dominant eigenvector r(!) £ 0

Find j where |rj(1)| = |IrM]|o and set rH) = r(l)/rj(l)

Set A\ =0

Set tolerance ¢

Set maximum number of iterations m
Fork=2,....m

y = Arlk=1)

MO =y

Find j where |y;| = [ly|/

If yj =0 Then output: “eigenvalue zero; select new r(1) and restart”: exit

v =y /y:

j
If [AK) — Xk=1)| < ¢ Then output: A% and r(K); exit
If Kk = m output: maximum iterations exceeded
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The Power Method

Some remarks on this method:

@ If |A| is either “large” or “close” to zero, could cause numerical
problems — Good to scale the r") — Done here with co-norm

@ Convergence seems impossible if r() is perpendicular to r, but
numerical round-off helps and it will converge slowly

@ Very slow convergence if || = |\

@ Limited to symmetric matrices with one dominant eigenvalue
May be generalized to more cases
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The Power Method

Example: A;, Ay, Az correspond to Figure from left to right

2 1
Al:_l 2] A =3 =1

[2 01
Ay = -0'1 5 :l Ar=21 A =19

(2 —0.1 . .
Az = _0.1 2:| A =2+0.1/ \y=2-0.1i

—0.1 —0.066667

A1: symmetric and \; separated from \»
= rapid convergence in 11 iterations — Estimate: A = 2.99998

r(D) — [ 15 } oo-norm scaled = (M) = [ 1 ]

As: symmetric but A1 close to A
= convergence slower 41 iterations — Estimate: A = 2.09549

As: rotation matrix (not symmetric) and complex eigenvalues

= NO convergence.
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Application: Google Eigenvector

Linear algebra + search engines

Search engine techniques are highly proprietary and changing
All share the basic idea of ranking webpages

Concept introduced by Brin and Page in 1998 — Google
Ranking webpages is an eigenvector problem!

The web frozen at some point in time consists of N webpages
— A page pointed to very often: important
— A page with none or few other pages pointing to it: unimportant

How can we rank all web pages?
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Application: Google Eigenvector

Basics:

— Assume all webpages are ordered: assign a number i to each
— If page i — j: record an for page i

— If page j — i: record an for page i

— A page is not supposed to link to itself
Example: 4 web pages

4 x4 C:
— Outlink for page i = ¢j; =1

®
/ \ — Else ¢j; =0
(@\ /@)

73y
(3)
)

N>

o= O O
O = O =
H ORrR R
O = O =
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Application: Google Eigenvector

Ranking r; of page i determined by C

Example rules:
© r; should grow with the number of page i's inlinks
© r; should be weighted by the ranking of each of page i's inlinks
© Let page i have an inlink from page j

then the more outlinks page j has, the less it should contribute to r;

Not realistic but assume each page has at least one outlink and inlink
o;j: total number of outlinks of page i
Scale every element of column i by 1/0;

D

: columns have non-negative entries and sum to one
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Adjacency matrix Stochastic Google matrix
0111 0 1/2 1/3 1/2
10010 o0 1/3 0
C=11 101 = D=l 0 o
0 010 0 0 1/3 0




Application: Google Eigenvector

Finding r; involves knowing the ranking of all pages including r;
— Seems like an ill-posed circular problem, but ...

Find r = Dr where r = [r1,..., ry]"

— Eigenvector of D corresponding to the eigenvalue 1
— All stochastic matrices have an eigenvalue 1

—r is called a

— 1 is D’s largest (dominant) eigenvalue

— Employ the power method

— Vector r now contains the

r =1[0.67, 0.33, 1, 0.33]T = Highest ranked: page 3
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Application: Google Eigenvector

In the real world — in 2013 — approximately 50 billion webpages
= World's largest matrix to be used

Luckily it contains mostly zeroes — sparse matrix

Introduction Figure illustrates a Google matrix for ~3 million pages

In the real world many more rules are needed and much more robust
numerical analysis methods required
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Eigenfunctions

Explore the space of all real-valued functions —
Do eigenvalues and eigenvectors have meaning there?

Let f be a function: y = f(x) where x and y are real numbers
— Assume that f is smooth or differentiable

— Example: f(x) = sin(x)

— The set of all such functions f forms a linear space

Define linear maps for elements of this function space

— Example: Lf = 2f

— Example: Derivatives Df = f’
To any function f the map D assigns another function
Example: let f(x) = sin(x) then Df(x) = cos(x)
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Eigenfunctions

How can we marry the concept of eigenvalues and linear maps?

D will not have eigenvectors since our linear space consists of functions,
Instead: eigenfunctions

A function f is an eigenfunction of linear map D if
Df = \f

D may have many eigenfunctions each corresponding to a different A
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Eigenfunctions

f' = \f
Any function f satisfying this is an eigenfunction of the derivative map

The function f(x) = €~ satisfies
f'(x) = & which may be written as Df=f=1xf

= 1 is an eigenvalue of the derivative map D
More generally: all functions f(x) = e satisfy (for A # 0):

f'(x) = Xe™  which may be written as Df = \f

= all real numbers A\ # 0 are eigenvalues of D
Corresponding eigenfunctions are e
This map D has infinitely many eigenfunctions!
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Example: the map is the second derivative Lf = f”

A set of eigenfunctions for this map is cos(kx) for k =1,2,...

d? cos(kx) dsin(kx) 5
e - —k e —k* cos(kx)
and the eigenvalues are —k?
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Eigenfunctions

Eigenfunctions have many uses
— Differential equations
— Mathematical physics
— Engineering mathematics:
orthogonal functions key for data fitting and vibration analysis

Orthogonal functions arise as result of the solution to a Sturm-Liouville
equation

y'(x)+Ay(x) =0  suchthat y(0)=0 and y(r)=0

— Linear second order differential equation with boundary conditions
— Defines a boundary value problem

— Unknown are the functions y(x) that satisfy this equation

— Solution: y(x) =sin(ax) fora=1,2,...

— These are eigenfunctions of the Sturm-Liouville equation

— The corresponding eigenvalues are \ = a°
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WYSK

eigenvalue
eigenvector
characteristic polynomial

eigenvalues and eigenvectors of a symmetric matrix

dominant eigenvalue
eigendecomposition
trace

quadratic form
positive definite matrix
power method
max-norm
adjacency matrix
directed graph
stochastic matrix
stationary vector
eigenfunction
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