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Introduction to Eigen Things Revisited

Connectivity matrix for a Google matrix

Chapter 7: 2× 2 matrices
Here: n × n matrices

Eigenvalues and eigenvectors reveal
action and geometry of map

Important in many areas:
— characterizing harmonics of
musical instruments
— moderating movement of fuel in a
ship
— analysis of large data sets

Google matrix:
Used to find the webpage ranking
(See Section: Google Eigenvector)
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The Basics Revisited

If an n × n matrix A has fixed directions

Ar = λr or [A− λI ]r = 0

r = 0 trivially satisfies this equation — not interesting

If [A− λI ] maps r 6= 0 to 0 then

p(λ) = det[A− λI ] = 0 characteristic equation

Polynomial of degree n in λ — its zeroes are A’s eigenvalues
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The Basics Revisited

Example:

A =









1 1 0 0
0 3 1 0
0 0 4 1
0 0 0 2









p(λ) = det[A− λI ] =

∣

∣

∣

∣

∣

∣

∣

∣

1− λ 1 0 0
0 3− λ 1 0
0 0 4− λ 1
0 0 0 2− λ

∣

∣

∣

∣

∣

∣

∣

∣

p(λ) = (1− λ)(3− λ)(4− λ)(2 − λ) = 0

λ1 = 4 λ2 = 3 λ3 = 2 λ4 = 1

Convention: order the eigenvalues in decreasing order

Dominant eigenvalue: largest eigenvalue in absolute value
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The Basics Revisited

Example: Elementary row operations change the eigenvalues

A =

[

2 2
1 2

]

detA = 2 and eigenvalues λ1 = 2 +
√
2 and λ2 = 2−

√
2

One step of forward elimination:

A′ =

[

2 2
0 1

]

Determinant is invariant under forward elimination — detA′ = 2
The eigenvalues are not: A′ has eigenvalues λ1 = 2 and λ2 = 1

Instead: use diagonalization — see Chapter 16.
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The Basics Revisited

General n × n matrix has a degree n characteristic polynomial

p(λ) = det[A− λI ] = (λ1 − λ)(λ2 − λ) · . . . · (λn − λ)

Let λ = 0 then p(0) = detA = λ1λ2 · . . . · λn

Finding zeroes of nth degree polynomial nontrivial
— Use iterative method to find dominant eigenvalue (see next Section)
— Symmetric matrices always have real eigenvalues
— A and AT have the same eigenvalues
— A is invertible and has eigenvalues λi , then A−1 has eigenvalues 1/λi
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The Basics Revisited

Found the λi — now solve homogeneous linear systems

[A− λi I ]ri = 0

to find the eigenvectors ri for i = 1, n

ri in the null space of [A− λi I ]

Homogeneous systems ⇒ no unique solution

Sometimes eigenvectors normalized to eliminate this ambiguity
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The Basics Revisited

Example: Find the eigenvectors

A =









1 1 0 0
0 3 1 0
0 0 4 1
0 0 0 2









λi = 4, 3, 2, 1

Starting with λ1 = 4:








−3 1 0 0
0 −1 1 0
0 0 0 1
0 0 0 −2









r1 = 0 ⇒ r1 =









1/3
1
1
0









Repeating for all eigenvalues

r2 =









1/2
1
0
0









r3 =









1/2
1/2
−1/2
1









r4 =









1
0
0
0









and check: Ari = λi ri
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The Basics Revisited

Multiple zeroes of the characteristic polynomial
⇒ identical homogeneous systems [A− λI ]r = 0

Example:

A =





1 2 3
0 2 0
0 0 2



 λi = 2, 2, 1

For λ1 = λ2 = 2





−1 2 3
0 0 0
0 0 0



 r1 = 0 ⇒ r1 =





5
1
1





For λ3 = 1




0 2 3
0 1 0
0 0 1



 r3 = 0 ⇒ r3 =





1
0
0




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The Basics Revisited

Example: Rotation around the e3-axis:

A =





cosα − sinα 0
sinα cosα 0
0 0 1





Expect that e3 is an eigenvector:
Ae3 = e3 ⇒ corresponding eigenvalue = 1
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The Basics Revisited

Symmetric matrix A:
— real eigenvalues
— eigenvectors are orthogonal

⇒ A is diagonalizable:
Possible to transform A to diagonal matrix Λ = R−1AR

— Columns of R are A’s eigenvectors
— Λ is a diagonal matrix of A’s eigenvalues
— eigendecomposition of A
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The Basics Revisited

Example: Eigendecompostion Λ = R−1SR of the symmetric matrix

S =





3 0 1
0 3 0
1 0 3



 λi = 4, 3, 2

Corresponding eigenvectors

r1 =





1
0
1



 r2 =





0
1
0



 r3 =





−1
0
1





Λ =





4 0 0
0 3 0
0 0 2



 R =





1/
√
2 0 −1/

√
2

0 1 0

1/
√
2 0 1/

√
2




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The Basics Revisited

Projection matrices:
— eigenvalues are one or zero

0: eigenvector projected to the zero vector
⇒ determinant is zero and matrix is singular

1: eigenvector projected to itself
— If λ1 = . . . = λk = 1 then eigenvectors populate column space

⇒ dimension is k and null space is dimension n − k
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The Basics Revisited

Example: 3× 3 projection matrix P = uuT

u =





1/
√
2

0

1/
√
2



 P =





1/2 0 1/2
0 0 0

1/2 0 1/2



 λi = 1, 0, 0

λ1 = 1 ⇒





−1/2 0 1/2
0 −1 0
1/2 0 −1/2



 ⇒ r1 =





1
0
1





λ1,2 = 0 ⇒





1/2 0 1/2
0 0 0
1/2 0 1/2



 ⇒ r2 =





−1
1
1





Or find two eigenvectors that span 2D null space:

r2 =





−1
0
1



 r3 =





0
1
0




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The Basics Revisited

Trace of matrix A

tr(A) = λ1 + λ2 + . . .+ λn = a1,1 + a2,2 + . . . + an,n

Gives insight to eigenvalues without computing directly

For 2× 2 matrices

det[A−λI ] = λ2−λtr(A)+detA ⇒ λ1,2 =
tr(A)±

√

tr(A)2 − 4 detA

2

Example:

A =

[

1 −2
0 −2

]

⇒ λi = −2, 1

tr(A) = −1 and detA = −2 ⇒ λ1,2 =
−1±3

2
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The Basics Revisited

Quadratic forms in R
n

f (v) = vTCv = c1,1v
2
1 + 2c1,2v1v2 + . . .+ cn,nv

2
n

The contour f (v) = 1 is an n-dimensional ellipsoid
— Semi-minor axis corresponds to r1 with length 1/

√
λ1

— Semi-major axis corresponds to rn with length 1/
√
λn

Positive definite matrix: A real matrix satisfying

f (v) = vTAv > 0 for any v 6= 0 ∈ R
n
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The Power Method

A: symmetric n × n matrix
Let λ be the dominant eigenvalue and r its corresponding eigenvector

Ai r = λi r

Use this property to find the dominant eigenvalue and eigenvector
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The Power Method

Start with arbitrary (nonzero) r(1) — construct vector sequence

r(i+1) = Ar(i); i = 1, 2, . . .

After a sufficiently large i r(i) will begin to line up with r: r(i+1) = λr(i)

⇒ All components of r(i+1) and r(i) are (approximately) related by

r
(i+1)
j

r
(i)
j

= λ for j = 1, . . . , n (∗)

Longest black vector: initial guess; Successive iterations lighter shades
Each iteration scaled with respect to the ∞-norm
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The Power Method

Algorithm:
Rather than checking each ratio (*) use the ∞-norm to define λ

Initialization:

Estimate dominant eigenvector r(1) 6= 0

Find j where |r (1)j | = ‖r(1)‖∞ and set r(1) = r(1)/r
(1)
j

Set λ(1) = 0
Set tolerance ǫ
Set maximum number of iterations m

For k = 2, . . . ,m
y = Ar(k−1)

λ(k) = yj
Find j where |yj | = ‖y‖∞
If yj = 0 Then output: “eigenvalue zero; select new r(1) and restart”; exit

r(k) = y/yj
If |λ(k) − λ(k−1)| < ǫ Then output: λ(k) and r(k); exit
If k = m output: maximum iterations exceeded
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The Power Method

Some remarks on this method:

If |λ| is either “large” or “close” to zero, could cause numerical
problems — Good to scale the r(k) — Done here with ∞-norm

Convergence seems impossible if r(1) is perpendicular to r, but
numerical round-off helps and it will converge slowly

Very slow convergence if |λ1| ≈ |λ2|
Limited to symmetric matrices with one dominant eigenvalue
May be generalized to more cases
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The Power Method

Example: A1,A2,A3 correspond to Figure from left to right

A1 =

[

2 1
1 2

]

λ1 = 3 λ2 = 1

A2 =

[

2 0.1
0.1 2

]

λ1 = 2.1 λ2 = 1.9

A3 =

[

2 −0.1
0.1 2

]

λ1 = 2 + 0.1i λ2 = 2− 0.1i

r(1) =

[

1.5
−0.1

]

∞-norm scaled ⇒ r(1) =

[

1
−0.066667

]

A1: symmetric and λ1 separated from λ2

⇒ rapid convergence in 11 iterations — Estimate: λ = 2.99998

A2: symmetric but λ1 close to λ2

⇒ convergence slower 41 iterations — Estimate: λ = 2.09549

A3: rotation matrix (not symmetric) and complex eigenvalues
⇒ no convergence.
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Application: Google Eigenvector

Linear algebra + search engines

Search engine techniques are highly proprietary and changing

All share the basic idea of ranking webpages

Concept introduced by Brin and Page in 1998 — Google

Ranking webpages is an eigenvector problem!

The web frozen at some point in time consists of N webpages
— A page pointed to very often: important
— A page with none or few other pages pointing to it: unimportant

How can we rank all web pages?
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Application: Google Eigenvector

Basics:
— Assume all webpages are ordered: assign a number i to each
— If page i → j : record an outlink for page i

— If page j → i : record an inlink for page i

— A page is not supposed to link to itself

Example: 4 web pages

1

2

3

4

Directed graph

4× 4 adjacency matrix C :
— Outlink for page i ⇒ cj ,i = 1
— Else cj ,i = 0

C =









0 1 1 1
0 0 1 0
1 1 0 1
0 0 1 0








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Application: Google Eigenvector

Ranking ri of page i determined by C

Example rules:

1 ri should grow with the number of page i ’s inlinks

2 ri should be weighted by the ranking of each of page i ’s inlinks

3 Let page i have an inlink from page j

then the more outlinks page j has, the less it should contribute to ri

Not realistic but assume each page has at least one outlink and inlink
oi : total number of outlinks of page i

Scale every element of column i by 1/oi
Google matrix D

dj ,i =
cj ,i

oi

Stochastic matrix: columns have non-negative entries and sum to one
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Application: Google Eigenvector

Adjacency matrix Stochastic Google matrix

C =









0 1 1 1
0 0 1 0
1 1 0 1
0 0 1 0









⇒ D =









0 1/2 1/3 1/2
0 0 1/3 0
1 1/2 0 1/2
0 0 1/3 0









1

2

3

4
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Application: Google Eigenvector

Finding ri involves knowing the ranking of all pages including ri
— Seems like an ill-posed circular problem, but ...

Find r = Dr where r = [r1, . . . , rN ]
T

— Eigenvector of D corresponding to the eigenvalue 1
— All stochastic matrices have an eigenvalue 1
— r is called a stationary vector
— 1 is D’s largest (dominant) eigenvalue
— Employ the power method

— Vector r now contains the page rank

r = [0.67, 0.33, 1, 0.33]T ⇒ Highest ranked: page 3

1

2

3

4
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Application: Google Eigenvector

In the real world — in 2013 — approximately 50 billion webpages
⇒ World’s largest matrix to be used

Luckily it contains mostly zeroes — sparse matrix

Introduction Figure illustrates a Google matrix for ≈3 million pages

In the real world many more rules are needed and much more robust
numerical analysis methods required
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Eigenfunctions

Explore the space of all real-valued functions — function space
Do eigenvalues and eigenvectors have meaning there?

Let f be a function: y = f (x) where x and y are real numbers
— Assume that f is smooth or differentiable
— Example: f (x) = sin(x)
— The set of all such functions f forms a linear space

Define linear maps for elements of this function space
— Example: Lf = 2f
— Example: Derivatives Df = f ′

To any function f the map D assigns another function
Example: let f (x) = sin(x) then Df (x) = cos(x)
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Eigenfunctions

How can we marry the concept of eigenvalues and linear maps?

D will not have eigenvectors since our linear space consists of functions,
Instead: eigenfunctions
A function f is an eigenfunction of linear map D if

Df = λf

D may have many eigenfunctions each corresponding to a different λ
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Eigenfunctions

f ′ = λf

Any function f satisfying this is an eigenfunction of the derivative map

The function f (x) = ex satisfies

f ′(x) = ex which may be written as Df = f = 1× f

⇒ 1 is an eigenvalue of the derivative map D

More generally: all functions f (x) = eλx satisfy (for λ 6= 0):

f ′(x) = λeλx which may be written as Df = λf

⇒ all real numbers λ 6= 0 are eigenvalues of D
Corresponding eigenfunctions are eλx

This map D has infinitely many eigenfunctions!
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Eigenfunctions

Example: the map is the second derivative Lf = f ′′

A set of eigenfunctions for this map is cos(kx) for k = 1, 2, . . .

d2 cos(kx)

dx2
= −k

d sin(kx)

dx
= −k2 cos(kx)

and the eigenvalues are −k2
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Eigenfunctions

Eigenfunctions have many uses
— Differential equations
— Mathematical physics
— Engineering mathematics:

orthogonal functions key for data fitting and vibration analysis

Orthogonal functions arise as result of the solution to a Sturm-Liouville
equation

y ′′(x) + λy(x) = 0 such that y(0) = 0 and y(π) = 0

— Linear second order differential equation with boundary conditions
— Defines a boundary value problem

— Unknown are the functions y(x) that satisfy this equation
— Solution: y(x) = sin(ax) for a = 1, 2, . . .
— These are eigenfunctions of the Sturm-Liouville equation
— The corresponding eigenvalues are λ = a2
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WYSK

eigenvalue

eigenvector

characteristic polynomial

eigenvalues and eigenvectors of a symmetric matrix

dominant eigenvalue

eigendecomposition

trace

quadratic form

positive definite matrix

power method

max-norm

adjacency matrix

directed graph

stochastic matrix

stationary vector

eigenfunction
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