
Practical Linear Algebra: A Geometry Toolbox
Third edition

Chapter 16: The Singular Value Decomposition

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book
www.farinhansford.com/books/pla

c©2013

Farin & Hansford Practical Linear Algebra 1 / 43



Outline

1 Introduction to The Singular Value Decomposition

2 The Geometry of the 2 x 2 Case

3 The General Case

4 SVD Steps

5 Singular Values and Volumes

6 The Pseudoinverse

7 Least Squares

8 Application: Image Compression

9 Principal Components Analysis

10 WYSK

Farin & Hansford Practical Linear Algebra 2 / 43



The Singular Value Decomposition

Matrix decomposition: fundamental tool for
— understanding the action of a matrix
— establishing its suitability to solve a problem
— solving linear systems more efficiently and effectively

Symmetric matrices: eigendecomposition

More general matrices: the singular value decomposition

Image compression and the SVD
Original image→Highest compression→Less compression→Original recovered

Farin & Hansford Practical Linear Algebra 3 / 43



The Geometry of the 2× 2 Case

Orthonormal vectors v1 and v2 ⇒ orthogonal matrix V = [v1 v2]
Orthonormal vectors u1 and u2 ⇒ orthogonal matrix U = [u1 u2]

Want vi and ui such that Av1 = σ1u1 and Av2 = σ2u2:

AV = UΣ where Σ =

[

σ1 0
0 σ2

]

The singular value decomposition (SVD) of A:

A = UΣV T

σi called the singular values of A
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The Geometry of the 2× 2 Case

Properties of symmetric positive definite matrices such as ATA

— Real and positive eigenvalues
— Eigenvectors are orthogonal

ATA = (UΣV T)T(UΣV T)

= VΣTUTUΣV T

= VΣTΣV T

= VΛ′V T

where

Λ′ =

[

λ′
1 0
0 λ′

2

]

= ΣTΣ =

[

σ2
1 0
0 σ2

2

]

This is the eigendecomposition of ATA

Columns of V called the right singular vectors of A
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The Geometry of the 2× 2 Case

Eigendecomposition of symmetric positive definite AAT

AAT = (UΣV T)(UΣV T)T

= UΣV TVΣTUT

= UΣΣTUT

= UΛ′UT

Λ′ = ΣTΣ = ΣΣT

⇒ Eigenvalues are diagonal entries of Λ′

⇒ Eigenvectors are columns of U
— Called the left singular vectors of A
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The Geometry of the 2× 2 Case

Elements of the SVD of A:

A = UΣV T

— The singular values

σi =
√

λ′
i

where λ′
i
are the eigenvalues of ATA and AAT

— The columns of V are the eigenvectors of ATA

— The columns of U are the eigenvectors of AAT

Can compute ui = Avi/‖ · ‖ since AV = UΣ
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The Geometry of the 2× 2 Case

Example: symmetric positive definite matrix that scales in e1-direction

A =

[

3 0
0 1

]

AAT = ATA =

[

9 0
0 1

]

eigenvalues: λ′
1 = 9 λ′

2 = 1

⇒ σ1 = 3 and σ2 = 1

U = V =

[

1 0
0 1

]

SVD A = UΣV T:
[

3 0
0 1

]

=

[

1 0
0 1

] [

3 0
0 1

] [

1 0
0 1

]

Positive definite matrix ⇒ SVD identical to eigendecomposition
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The Geometry of the 2× 2 Case

Action: unit circle ⇒ action ellipse

— Semi-major axis length σ1 — Semi-minor axis length σ2

[

3 0
0 1

]

circle

[

1 2
0 1

]

Thick point:

[

1
0

]

Thin point:

[

0
1

]

(Left: previous example; Right: next example)
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The Geometry of the 2× 2 Case

Example: a shear

A =

[

1 2
0 1

]

⇒ ATA =

[

1 2
2 5

]

AAT =

[

5 2
2 1

]

Eigenvalues: λ′
1 = 5.82 and λ′

2 = 0.17 ⇒ σ1 = 2.41 and σ2 = 0.41

Eigenvectors of ATA ⇒ orthonormal column vectors of

V =

[

0.38 −0.92
0.92 0.38

]

Eigenvectors of AAT ⇒ orthonormal column vectors of

U =

[

0.92 −0.38
0.38 0.92

]

SVD of A:
[

1 2
0 1

]

=

[

0.92 −0.38
0.38 0.92

] [

2.41 0
0 0.41

] [

0.38 −0.92
0.92 0.38

]
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The Geometry of the 2× 2 Case

Break down the action of A in terms of the SVD
[

1 2
0 1

]

=

[

0.92 −0.38
0.38 0.92

] [

2.41 0
0 0.41

] [

0.38 −0.92
0.92 0.38

]

Clockwise from top left:
— Initial point set forming a circle with two reference points
— V Tx rotates clockwise 67.5◦

— ΣV Tx stretches in e1 and shrinks in e2
— UΣV Tx rotates counterclockwise 22.5◦
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The General Case

Now: m × n matrix A — not necessarily square nor invertible

=A U S VT

=A U S VT

=A U S VT

Top: m > n Middle: m = n Bottom: m < n

U is m ×m Σ is m × n V T is n× n

ATA = VΛ′V T ⇒ Λ′ is n× n AAT = UΛ′UT ⇒ Λ′ is m ×m

Both Λ′ hold the same non-zero eigenvalues ⇒ rank ≤ min{m, n}
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The General Case

Want vi and ui such that Avi = σiui

AV = UΣ

Rank r of A plays a role in the SVD

Main properties:

Σ has non-zero singular values σ1, . . . , σr and all other entries zero

First r columns of U form an orthonormal basis for column space of A

Last m − r columns of U form an orthonormal basis for null space of
AT

First r columns of V form an orthonormal basis for row space of A

Last n− r columns of V form an orthonormal basis for null space of A
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The General Case

Example: Rank 2 matrix

A =





1 0
0 2
0 1





ATA =

[

1 0
0 5

]

λ′
1 = 5

λ′
2 = 1

V =

[

0 1
1 0

]

AAT =





1 0 0
0 4 2
0 2 1





λ′
1 = 5

λ′
2 = 1

λ′
3 = 0

U =





0 1 0
0.89 0 −0.44
0.44 0 0.89





Σ =





2.23 0
0 1
0 0





A = UΣVT :





1 0
0 2
0 1



 =





0 1 0
0.89 0 −0.44
0.44 0 0.89









2.23 0
0 1
0 0





[

0 1
1 0

]

m > n ⇒ u3 is in the null space of AT ⇒ ATu3 = 0
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The General Case

SVD and action of a matrix

A =





1 0
0 2
0 1





Clockwise from top left:
1) Initial circle point set 2) V Tx reflects
3) ΣV Tx stretches in e1 4)UΣV Tx rotates
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The General Case

Example:

A =

[

−0.8 0 0.8
1 1.5 −0.3

]

ATA =





1.64 1.5 −0.94
1.5 2.25 −0.45

−0.94 −0.45 0.73





λ′
1 = 3.77

λ′
2 = 0.84
λ′
3 = 0

V =





−0.63 0.38 0.67
−0.71 −0.62 −0.31
0.30 −0.68 0.67





AAT =

[

1.28 −1.04
−1.04 3.34

]

λ′
1 = 3.77

λ′
2 = 0.84

U =

[

0.39 −0.92
−0.92 −0.39

]

Σ =

[

1.94 0 0
0 0.92 0

]

SVD: A = UΣV T

[

−0.8 0 0.8
1 1.5 −0.3.

]

=

[

0.39 −0.92
−0.92 −0.39

] [

1.94 0 0
0 0.92 0

]





−0.63 −0.71 0.3
0.38 −0.62 −0.68
0.67 −0.31 0.67





m < n ⇒ v3 in null space of A ⇒ Av3 = 0
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The General Case

SVD and action of a matrix

A =

[

−0.8 0 0.8
1 1.5 −0.3

]

Clockwise from top left:
1)Initial circle point set 2)V Tx 3)ΣV Tx 4)UΣV Tx
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The General Case

Example: a projection into the [e1, e2]-plane — a rank deficient matrix

A =





1 0 0
0 1 0
0 0 0





A is symmetric and idempotent ⇒ A = ATA = AAT

A = UΣV T:




1 0 0
0 1 0
0 0 0



 =





1 0 0
0 1 0
0 0 1









1 0 0
0 1 0
0 0 0









1 0 0
0 1 0
0 0 1





Rank = 2
⇒ first 2 columns of U form orthonormal basis for column space of A
⇒ first 2 columns of V form orthonormal basis for row space of A
e3 vector projected to the zero vector ⇒ spans the null space of A and AT
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SVD Steps

A = UΣV T

Here: review steps — for a robust algorithm ⇒ advanced numerical
methods

Input: an m × n matrix A

Output: U,V ,Σ such that A = UΣV T

1 Find the eigenvalues λ′
1, . . . , λ

′
n of ATA

◮ Order the λ′
i
so that λ′

1 ≥ λ′
2 ≥ . . . ≥ λ′

n

◮ Suppose λ′
1, . . . , λ

′
r
> 0, then the rank of A is r

2 Create an m × n diagonal matrix Σ with σi ,i =
√

λ′
i
, i = 1, . . . , r

3 Find the corresponding (normalized) eigenvectors vi of A
TA

4 Create an n × n matrix V with column vectors vi
5 Find the (normalized) eigenvectors ui of AA

T

6 Create an m ×m matrix U with column vectors ui
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SVD Steps

Notes on steps:

Can compute ui , i = 1, r as ui = Avi/‖ · ‖
If m > n then the remaining ui are found from the null space of AT

The only “hard” task is finding the λ′
i

Since ATA is symmetric ⇒ Can choose a highly efficient algorithm

Forming ATA can result in an ill-posed problem
κ(ATA) = κ(A)2

Avoid direct computation of this matrix
— employ the Householder method
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Singular Values and Volumes

Application: compute the determinant

detU = ±1 and detV = ±1 ⇒ | detA| = detΣ = σ1 · . . . · σn

Example: given a 2D triangle T with area ϕ
Transform T → T ′ with 2D linear map with singular values σ1, σ2
Area of T ′ = ±σ1σ2ϕ

Example: given a 3D object O with volume ϕ
Transform O → O ′ with 3D linear map with singular values σ1, σ2, σ3
Volume of O ′ = ±σ1σ2σ3ϕ

Recall determinants without using singular values

detA = λ1 · . . . · λn
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The Pseudoinverse

The inverse of a matrix:
— Limited to square, nonsingular matrices
— Mainly a theoretical tool for analyzing the solution to a linear system

The generalized inverse or psuedoinverse A†

— For general matrices
— Suited for practical use
— Can be computed with the SVD

Given an m × n diagonal matrix Σ with diagonal elements σi
The pseudoinverse: the n×m matrix Σ† with

σ†
i
=

{

1/σi if σi > 0
0 else

}

If rank(Σ) = r then
— Σ†Σ holds the r × r identity matrix
— All other elements are zero
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The Pseudoinverse

Leads to the pseudoinverse for a general m × n matrix A

A† = (UΣV T)−1 = VΣ†UT

If A is square and invertible then A† = A−1

Properties:
A†AA† = A† and AA†A = A

Often times called the Moore-Penrose generalized inverse

Primary application: least squares approximation
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The Pseudoinverse

Example: Find the pseudoinverse of

A =





1 0
0 2
0 1



 =





0 1 0
0.89 0 −0.44
0.44 0 0.89









2.23 0
0 1
0 0





[

0 1
1 0

]

Σ† =

[

1/2.23 0 0
0 1 0

]

A† =

[

1 0 0
0 2/5 1/5

]

=

[

0 1
1 0

] [

1/2.23 0 0
0 1 0

]





0 0.89 0.44
1 0 0
0 −0.44 0.89




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The Pseudoinverse

Example: square and nonsingular A

A =

[

3 0
0 1

]

and A−1 =

[

1/3 0
0 1

]

The pseudoinverse is equal to the inverse:

A† =

[

1 0
0 1

] [

1/3 0
0 1

] [

1 0
0 1

]

=

[

1/3 0
0 1

]
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Least Squares

Overdetermined linear system: m equations in n unknowns where m ≥ n

Ax = b

Linear system is inconsistent
— unlikely that b lives in subspace V defined by columns of A

The least squares solution finds the orthogonal projection of b into V
— Call this projection b′

⇒ Solution to Ax = b′ produces vector closest to b that lives in V

Normal equations

ATAx = ATb solution minimizes ‖Ax− b‖

This system can be ill-posed ⇒ use pseudoinverse

x = A†b
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Least Squares

Why is x = A†b the least squares solution?

Find x to minimize ‖Ax− b‖

Ax− b = UΣV Tx− b

= UΣV Tx− UUTb

= U(Σy − z)

This new framing of the problem exposes that

‖Ax− b‖ = ‖Σy − z‖

⇒ an easier diagonal least squares problem to solve

Farin & Hansford Practical Linear Algebra 27 / 43



Least Squares

Steps:

1 Compute the SVD A = UΣVT

2 Compute the m × 1 vector z = UTb

3 Compute the n × 1 vector y = Σ†z
— Least squares solution to m × n problem Σy = z

requires minimizing
v = Σy − z

rank(Σ) = r

v =

























σ1y1 − z1
σ2y2 − z2

...
σryr − zr
−zr+1

...
−zm

























y minimizing v: yi = zi/σi i = 1, . . . , r ⇒ y = Σ†z

4 Compute the n × 1 solution vector x = V y
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Least Squares

Summarize — The calculations in reverse order include

x = V y

x = V (Σ†z)

x = VΣ†(UTb)

Example: Revisit temperature-time data: find the best fit line coefficients
— Chapter 12 (normal equations) and Chapter 13 (Householder)





















0 1
10 1
20 1
30 1
40 1
50 1
60 1





















x =





















30
25
40
40
30
5
25




















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Least Squares

Step 1) Compute the SVD A = UΣV T

Σ =





















95.42 0
0 1.47
0 0
0 0
0 0
0 0
0 0





















Σ† =

[

0.01 0 0 0 0 0 0
0 0.68 0 0 0 0 0

] U 7× 7
Σ 7× 2
V 2× 2

Step 2) z = UTb =



















54.5
51.1
3.2

−15.6
9.6
15.2
10.8



















Step 3) y = Σ†z =

[

0.57
34.8

]

Step 4) x = V y =

[

−0.23
34.8

]

⇒ best fit line: x2 = −0.23x1 + 34.8
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Least Squares

The normal equations give a best approximation

x = (ATA)−1ATb to the original problem Ax = b

by considering b′ in the subspace of A called V
Substitute this expression for x into Ax = b′:

b′ = A(ATA)−1ATb = AA†b = projVb

— Goal is to project b into V ⇒ AA† is a projection
— Property A†AA† = A† ensures necessary idempotent property
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Application: Image Compression

Given m × n matrix A with k = min(m, n) singular values σi
σ1 ≥ σ2 ≥ . . . ≥ σk
Using the SVD write A as a sum of k rank one matrices:

A = σ1u1v
T

1 + σ2u2v
T

2 + . . . + σkukv
T

k

Use this for image compression
— An image is comprised of a grid of colored pixels — grayscales here
— Figure (left): input image with 4× 4 pixels
— Each grayscale associated with a number ⇒ grid is a matrix
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Application: Image Compression

Singular values for this matrix are σi = 7.1, 3.8, 1.3, 0.3
Images from left to right I0, I1, I2, I3 — Original image is I0

A1 = σ1u1v
T

1 ⇒ image I1

A2 = σ1u1v
T

1 + σ2u2v
T

2 ⇒ image I2

Original image nearly replicated incorporating only half the singular values
⇒ σ1 and σ2 large in comparison to σ3 and σ4

Image I3 created from A3 = A2 + σ3u3v
T

3

Image I4 is not displayed — identical to I0
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Application: Image Compression

The change in an image by adding the smallest σi can be hardly noticeable
⇒ Omitting images Ik corresponding to small σk amounts to compressing
the original image

Chapter introduction Figure: 8× 8 matrix
σi = 6.2, 1.7, 1.49, 0, . . . , 0
— Figure illustrates images corresponding to each non-zero σi
— Last image is identical to the input

⇒ the five remaining σi = 0 are unimportant to image quality
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Principal Components Analysis

Scatter plot: data pairs recorded in Cartesian coordinates

Each circle represents a coordinate
pair (point) in the [e1, e2]-system

Example: Gross Domestic Product
and poverty rate pairs

How might we reveal trends in this
data set?
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Principal Components Analysis

Given: 2D data set x1, . . . , xn
such that x1 + . . .+ xn = 0

Let d be a unit vector
Project xi onto line containing d
Result:
vector with (signed) length xi · d

l(d) = [x1 · d]
2 + . . .+ [xn · d]

2

Rotate d around the origin
For each position compute l(d)
Directions corresponding to largest
and smallest l(d) are orthogonal
⇒ indicates variation in data
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Principal Components Analysis

Arrange data xi in a matrix

X =











xT1
xT2
...
xTn











then l(d) = ‖Xd‖2 = (Xd) · (Xd) = dTXTXd (∗)

Let C = XTX C is a symmetric positive definite 2× 2 matrix
⇒ (*) is a quadratic form — See Figure
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Principal Components Analysis

For which d is l(d) maximal?

Answer: d that corresponds to C ’s dominant eigenvector
And: l(d) is minimal for d being the eigenvector corresponding to C ’s
smallest eigenvalue

These eigenvectors form the major and minor axis of the action ellipse of
C (Thick lines in Figure)
— Eigenvectors orthogonal because C is symmetric
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Principal Components Analysis

Look more closely at C

c1,1 = x21,1 + x22,1 + . . .+ x2n,1

c1,2 = c2,1 = x1,1x1,2 + x2,1x2,2 + . . . + xn,1xn,2

c2,2 = x21,2 + x22,2 + . . .+ x2n,2.

If each element of C is divided by n it is called the covariance matrix
— Summary of the variation in each coordinate and between coordinates
— Dividing by n will result in scaled eigenvalues

eigenvectors will not change
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Principal Components Analysis

Eigenvectors provide a convenient local coordinate frame for the data set
— Idea behind the principle of the eigendecomposition

— This frame is commonly called the principal axes

Let V = [v1 v2] hold the normalized eigenvectors as column vectors
— v1 is the dominant eigenvector
Orthogonal transformation of the data X

— aligns v1 with e1 and v2 with e2

X̂ = XV ⇒ x̂i =

[

xi · v1
xi · v2

]
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Principal Components Analysis

Summary:
• Established a principal components coordinate system
— Defined by the eigenvectors of the covariance matrix
— Greatest variance corresponds to the first coordinate

• Data coordinates are now in terms of the trend lines
— Coordinates directly measure the distance from each trend line

⇒ Name of this method: Principal Components Analysis (PCA)
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Principal Components Analysis

PCA can also be used for data compression by reducing dimensionality

Let V hold only some eigenvectors
— Example: most significant then V = v1 (left Figure)
— Example: V = v2 (right Figure)

Greater spread of the data corresponds to higher variance

Here 2D data but the real power of PCA comes with higher dimensional
data
— Difficult to visualize and understand relationships between dimensions
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WYSK

Singular Value Decomposition
(SVD)

singular values

right singular vector

left singular vector

SVD matrix dimensions

SVD column, row, and null
spaces

SVD steps

volume in terms of singular
values

eigendecomposition

matrix decomposition

action ellipse axes length

pseudoinverse

generalized inverse

least squares solution via the
pseudoinverse

quadratic form

contour ellipse

Principal Components Analysis
(PCA)

covariance matrix
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