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The Singular Value Decomposition

: fundamental tool for
— understanding the action of a matrix

— establishing its suitability to solve a problem
— solving linear systems more efficiently and effectively

Symmetric matrices: eigendecomposition
More general matrices: the singular value decomposition

Image compression and the SVD
Original image—Highest compression— Less compression—Original recovered
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The Geometry of the 2 x 2 Case

Orthonormal vectors vy and v, = orthogonal matrix V = [v; vp]
Orthonormal vectors uy and uy = orthogonal matrix U = [u; up]

Want v; and u; such that Avy = o1u; and Avy = oous:

AV = UL where Y= [“1 0]
0 oo
The (SVD) of A:
A=UxzVv?
o; called the of A
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The Geometry of the 2 x 2 Case

Properties of symmetric positive definite matrices such as ATA
— Real and positive eigenvalues
— Eigenvectors are orthogonal

ATA = (uzvhHT(uzvT)
=vtytuzv?
=Vvytyv?
= VANVT

where

A0 o2 0
r_ M _yTy _ |91
ARG
This is the eigendecomposition of ATA

Columns of V called the of A
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The Geometry of the 2 x 2 Case

Eigendecomposition of symmetric positive definite AAT

AAT = (uzvh(uzv™h)T
=Uzvtvety?
= Uxxtyut
= UNUT
N=3xTy =y5T
= Eigenvalues are diagonal entries of A\

= Eigenvectors are columns of U
— Called the of A
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The Geometry of the 2 x 2 Case

Elements of the SVD of A:
A=UxzVT

o= %

where X’ are the eigenvalues of ATA and AAT

— The singular values

— The columns of V are the eigenvectors of ATA

— The columns of U are the eigenvectors of AAT

Can compute u; = Av;/|| - || since AV = UX
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The Geometry of the 2 x 2 Case

Example: symmetric positive definite matrix that scales in ej-direction

30
A=l
T _ AT p _ 9 0 : L I
AAT =A A= 0 1 eigenvalues: \1 =9 A =1
= 0'1:3 and 0'2:1
1o
U_V__O 1

SVD A= UxVT:

o 3=l b A

Positive definite matrix = SVD identical to eigendecomposition

2 o
_0 1_
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The Geometry of the 2 x 2 Case

Action: unit circle = action ellipse
— Semi-major axis length o — Semi-minor axis length o5

SO~

30 el 1 2
0 1 circle 01

Thick point: [é] Thin point: [(1)]

(Left: previous example; Right: next example)
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The Geometry of the 2 x 2 Case

Example: a shear

12 v, [1 2 v [5 2
A_[OJ - AA_[25] AA_[2 1]

Eigenvalues: ] =5.82 and \; =0.17 = o7 =2.41 and 0, = 0.41

Eigenvectors of AT A = orthonormal column vectors of

[0.38  —0.92]

V= 092 0.38

Eigenvectors of AAT = orthonormal column vectors of

y— [0:92 —0.38]
~ 038 0.92 |
SVD of A:
1 2] [0.92 —038][241 0 ][0.38 —0.92
0 1] ~ 038 092|| 0 o041][092 038

Farin & Hansford Practical Linear Algebra 10 / 43



The Geometry of the 2 x 2 Case

Break down the action of A in terms of the SVD

1 2 1092 -038| (241 O 0.38 —0.92
0 1| ]0.38 0.92 0 0.41]]092 0.38

Clockwise from top left:

— Initial point set forming a circle with two reference points
— VTx rotates clockwise 67.5°

— Y VTx stretches in e; and shrinks in e

— UX VTx rotates counterclockwise 22.5°

O
P ——
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The General Case

Now: m x n matrix A — not necessarily square nor invertible

Top: m>n  Middle: m=n Bottom: m<n

Uismxm Yismxn VTisnxn

ATA=VNVT = Nisnxn AAT = UNUT = Nismxm
Both A’ hold the same non-zero eigenvalues = rank < min{m, n}
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The General Case

Want v; and u; such that Av; = oju;
AV = UX
Rank r of A plays a role in the SVD

Main properties:
@ X has non-zero singular values o1, ...,0, and all other entries zero
@ First r columns of U form an orthonormal basis for column space of A
@ Last m — r columns of U form an orthonormal basis for null space of
AT

First r columns of V form an orthonormal basis for row space of A

Last n — r columns of V form an orthonormal basis for null space of A
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The General Case

Example: Rank 2 matrix

10
A= |0 2
0 1
t, |1 0 M=5 , [o1
AA_{O 5} N=1 YT|1 0
1 0 0] A=5 0 1 0
AAT =10 4 2| XN,=1 U={089 0 —0.44
02 1] XN=0 0.44 0 0.89
223 0
Yy=|0 1
0 0

10 0 1 0 223 0 01
A=UxVT: 0 2| =1089 0 —-0.44 0 1 [ ]
0 1 10

0.44 0 0.89 0 O

m > n = u3 is in the null space of AT = ATuz =0
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SVD and action of a matrix

Clockwise from top left:

1) Initial circle point set 2) VTx reflects
3) ZVTx stretches in e; 4)UZVTx rotates

O»r «F»r «

O O =
= N O
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The General Case

Example:
A -08 0 038
|1 15 -03

—-0.71 -0.62 —-0.31

—-0.63 038 0.67
030 -0.68 0.67

1.64 15 —094] N =3.77
ATA=1 15 225 —045| X,=084 V=
—0.94 —0.45 0.73 N,=0

1.28 —1.04] N =3.77 U_[o.39 —0.92]

T _
AA {—1.04 3.34 A, =0.84 —-0.92 -0.39
194 0 0
z_[ 0 092 o}
SVD: A= UL VT
—0.63 —0.71 0.3
IR el | | A 8]{3;;3 e o

1 1.5 —0.3.

m<n = vsginnullspaccof A = Av3=0
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SVD and action of a matrix

-08 0 038
=00 )

-0.3

& oo
s

Clockwise from top left
Dini

)Initial circle point set 2)VTx 3)ZVTx 4)uzv?

«0O)»r «F

!
v
a
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The General Case

Example: a projection into the [e1, ex]-plane — a rank deficient matrix

1 00
A=10 1 0
0 0O
A is symmetric and idempotent = A = ATA = AAT
A=UzVT:
1 00 1 0 Off1 0 01 0 O
01 0/=1(01 001 0]]0 10
0 0O 0 0 1110 0 0] |0 0 1
Rank =2

= first 2 columns of U form orthonormal basis for column space of A
= first 2 columns of V form orthonormal basis for row space of A
ez vector projected to the zero vector = spans the null space of A and AT
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SVD Steps

A=UxVT

Here: review steps — for a robust algorithm = advanced numerical

methods

Input: an m x n matrix A
Output: U, V,¥ such that A= UZ VT

@ Find the eigenvalues N\, ..., \, of ATA
» Order the A} so that \] > X\, > ... > \]
» Suppose Aj,..., A, >0, then the rank of A'is r

@ Create an m x n diagonal matrix X with o;; = \/\,,i=1,...

© Find the corresponding (normalized) eigenvectors v; of ATA
© Create an n x n matrix V with column vectors v;
© Find the (normalized) eigenvectors u; of AAT

@ Create an m x m matrix U with column vectors u;
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SVD Steps

Notes on steps:

@ Can compute u;,i =1,r as u; = Av;/|| - ||
If m > n then the remaining u; are found from the null space of AT

@ The only “hard” task is finding the \
Since ATA is symmetric = Can choose a highly efficient algorithm

@ Forming ATA can result in an ill-posed problem
k(AT A) = K(A)?
Avoid direct computation of this matrix
— employ the Householder method

Farin & Hansford Practical Linear Algebra 20 / 43



Singular Values and Volumes

Application: compute the determinant

detU=+1 and detV=+1 = |detA|=detX=01-... 0,

Example: given a 2D triangle T with area ¢
Transform T — T’ with 2D linear map with singular values o1, 0>
Area of T = to100¢

Example: given a 3D object O with volume ¢
Transform O — O’ with 3D linear map with singular values o1, 02,03
Volume of O = +o10003¢

Recall determinants without using singular values

detA=XA1-...- Ay
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The Pseudoinverse

The inverse of a matrix:
— Limited to square, nonsingular matrices
— Mainly a theoretical tool for analyzing the solution to a linear system

The or Af
— For general matrices

— Suited for practical use

— Can be computed with the SVD

Given an m x n diagonal matrix ¥ with diagonal elements o;
The pseudoinverse: the n x m matrix £ with

af:{ 1/0,‘ if U,‘>O}

0 else

If rank(X) = r then
— Y'Y holds the r x r identity matrix
— All other elements are zero
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Leads to the pseudoinverse for a general m x n matrix A

Al = (uzvT)t = vxfy®

If Ais square and invertible then AT = A~1
Properties:

AfaAt = AT and  AATA=A

Often times called the Moore-Penrose generalized inverse

Primary application: least squares approximation

«0O)>» «F»r « < > o>
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The Pseudoinverse

Example: Find the pseudoinverse of

A= |0 2| =1089 0 —044| | 0 1 [1 0]
0 1 0.44 0 0.89 0 0
1/223 0 0
-
> —[ 0 1 o]
AT_[I 0 0]_[0 1} [1/2.23 0 0] (1) 0'839 0'34
0 2/5 1/5] |1 O 0 1 0]|, 4541 089
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Example: square and nonsingular A

b

_ 1/3 0
1 _

and At = [ 0 1]
The pseudoinverse is equal to the inverse:

S

[

«0)>» «Fr «=Z»r « > o>



Least Squares

Overdetermined linear system: m equations in n unknowns where m > n

Ax=Db

Linear system is inconsistent
— unlikely that b lives in subspace V defined by columns of A

The least squares solution finds the orthogonal projection of b into V
— Call this projection b’
= Solution to Ax = b’ produces vector closest to b that lives in V

Normal equations
ATAx = ATb  solution minimizes ||Ax — b||
This system can be ill-posed = use pseudoinverse

x = A'b
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Least Squares

Why is x = Afb the least squares solution?

Find x to minimize ||Ax — b||

Ax—b=UZVTx—b
= ULVTx — UU™b
= U(Xy —2)

This new framing of the problem exposes that
[Ax — b]| = | Xy — 2|

= an easier diagonal least squares problem to solve
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Least Squares

Steps:
@ Compute the SVD A= UXVT
© Compute the m x 1 vector z= UTb

© Compute the n x 1 vectory = ¥z
— Least squares solution to m x n problem Yy =z

o1y1— 24
022 — 22
requires minimizing
v=3Yy—z ’
V= |0rYr—2Zr
-z
rank(X) =r r+l
- _Zm -

y minimizing v: y; =z /o; i=1,....,r = y=%X'z
© Compute the n x 1 solution vector x = Vy
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Least Squares

Summarize — The calculations in reverse order include

x=Vy
x = V(X'2)
x = VEI(UTb)

Example: Revisit temperature-time data: find the best fit line coefficients
— Chapter 12 (normal equations) and Chapter 13 (Householder)

0 1 30
10 1 25
20 1 40
30 1| x= [40
40 1 30
50 1 5
60 1] 25|
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Least Squares

Step 1) Compute the SVD A= UTZ VT

[05.42 0 ]
0 1.47
0 0 U 7x7
S N O SRR
0 0 ’ V 2x2
0 0
. 0 O -
[ 545 ]
51.1
32 0.57
Step2) z=U'b= |-156 Step3) y=Xz= [34 8}
9.6 ’
15.2
| 10.8 |
—0.23 -
Step 4) x=Vy= 348 = best fit line: x, = —0.23x; + 34.8
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Least Squares

The normal equations give a best approximation
x = (ATA)7!ATb to the original problem Ax =bh

by considering b’ in the subspace of A called V
Substitute this expression for x into Ax = b’:

b’ = A(ATA)"!ATb = AATb = projyb

— Goal is to project b into V = AA' is a projection
— Property ATAAT = AT ensures necessary idempotent property
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Application: Image Compression

Given m x n matrix A with kK = min(m, n) singular values o;
012022 ...2 0
Using the SVD write A as a sum of k rank one matrices:

A= alulvlT + 02u2v2T +...+ O'kukVE

Use this for image compression

— An image is comprised of a grid of colored pixels — grayscales here
— Figure (left): input image with 4 x 4 pixels

— Each grayscale associated with a number = grid is a matrix

= ok o
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Application: Image Compression

Singular values for this matrix are o; = 7.1, 3.8, 1.3, 0.3
Images from left to right Iy, li, l», 5 — Original image is Iy

Al = alulvlT = image h
_ T T .
Ax = o1uvy +ooupvy, = image b

Original image nearly replicated incorporating only half the singular values
= 01 and o large in comparison to o3 and o4

Image /3 created from Az = Ay + U3U3vg
Image Iy is not displayed — identical to Iy

el

Farin & Hansford
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Application: Image Compression

The change in an image by adding the smallest o; can be hardly noticeable
= Omitting images /I, corresponding to small o, amounts to compressing
the original image

Chapter introduction Figure: 8 x 8 matrix
0;=26.2, 1.7, 1.49, 0,...,0
— Figure illustrates images corresponding to each non-zero o;
— Last image is identical to the input
= the five remaining o; = 0 are unimportant to image quality
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Principal Components Analysis

. data pairs recorded in Cartesian coordinates

o« °,
‘e . Each circle represents a coordinate
L]
° . pair (point) in the [e1, ey]-system
&e .
* s . Example: Gross Domestic Product
5 and poverty rate pairs
®
. .. L]
e ©
%e
L]
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Principal Components Analysis

Given: 2D data set x1,...,X,
such that x; +...+x, =0

Let d be a unit vector
Project x; onto line containing d
- Result:
' vector with (signed) length x; - d

I(d) = [xg -d]? + ... + [x, - dJ?

Rotate d around the origin

For each position compute /(d)
Directions corresponding to largest
and smallest /(d) are orthogonal
= indicates variation in data
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Principal Components Analysis

Arrange data x; in a matrix

T
Xq

x; 2 TyT
X=: then /(d) = || Xd|“ = (Xd) - (Xd) =d" X" Xd (%)
Xn
Let C=XTX
= (*) is a quadratic form — See Figure

C is a symmetric positive definite 2 x 2 matrix

37 /43
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Principal Components Analysis

For which d is /(d) maximal?

Answer: d that corresponds to C's dominant eigenvector
And: /(d) is minimal for d being the eigenvector corresponding to C's
smallest eigenvalue

These eigenvectors form the major and minor axis of the action ellipse of
C (Thick lines in Figure)
— Eigenvectors orthogonal because C is symmetric
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Principal Components Analysis

Look more closely at C

2 2 2
C]_7]_ - X171 + X271 + S + Xn71
Cl2 =C1 =X11X12 +X21X02 + ... + Xp1Xn 2
2 2 2
C272 = X172 + X272 + “ e + XI172'
If each element of C is divided by n it is called the
— Summary of the variation in each coordinate and between coordinates

— Dividing by n will result in scaled eigenvalues
eigenvectors will not change
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Principal Components Analysis

Eigenvectors provide a convenient local coordinate frame for the data set
— ldea behind the principle of the eigendecomposition
— This frame is commonly called the

Let V = [v1 vp] hold the normalized eigenvectors as column vectors
— v1 is the dominant eigenvector

Orthogonal transformation of the data X

— aligns vi with e; and vy with e

X=xv = g-= [x’:"’l}
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Principal Components Analysis

Summary:

e Established a

— Defined by the eigenvectors of the covariance matrix
— Greatest variance corresponds to the first coordinate

e Data coordinates are now in terms of the trend lines
— Coordinates directly measure the distance from each trend line

= Name of this method:
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Principal Components Analysis

PCA can also be used for data compression by reducing dimensionality

Let V hold only some eigenvectors
— Example: most significant then V = vy (left Figure)
— Example: V' = v, (right Figure)

Greater spread of the data corresponds to higher variance

Here 2D data but the real power of PCA comes with higher dimensional

data
— Difficult to visualize and understand relationships between dimensions
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WYSK

Singular Value Decomposition

(SVD)

singular values

right singular vector
left singular vector
SVD matrix dimensions

SVD column, row, and null
spaces

SVD steps

@ volume in terms of singular

values
eigendecomposition

matrix decomposition

action ellipse axes length
pseudoinverse
generalized inverse

least squares solution via the
pseudoinverse

quadratic form

@ contour ellipse

Principal Components Analysis
(PCA)

covariance matrix
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