Practical Linear Algebra: A GEOMETRY TOOLBOX Third edition

Chapter 16: The Singular Value Decomposition

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- 1 Introduction to The Singular Value Decomposition
- 2 The Geometry of the 2×2 Case
- The General Case
- 4 SVD Steps
- 5 Singular Values and Volumes
- 6 The Pseudoinverse
- Least Squares
- 8 Application: Image Compression
- Principal Components Analysis
- **10** WYSK

The Singular Value Decomposition

Matrix decomposition: fundamental tool for

- understanding the action of a matrix
- establishing its suitability to solve a problem
- solving linear systems more efficiently and effectively

Symmetric matrices: eigendecomposition

More general matrices: the singular value decomposition

Image compression and the SVD

 $Original\ image {\rightarrow} Highest\ compression {\rightarrow} Less\ compression {\rightarrow} Original\ recovered$

Orthonormal vectors \mathbf{v}_1 and $\mathbf{v}_2 \Rightarrow orthogonal$ matrix $V = [\mathbf{v}_1 \ \mathbf{v}_2]$ Orthonormal vectors \mathbf{u}_1 and $\mathbf{u}_2 \Rightarrow orthogonal$ matrix $U = [\mathbf{u}_1 \ \mathbf{u}_2]$

Want \mathbf{v}_i and \mathbf{u}_i such that $A\mathbf{v}_1 = \sigma_1\mathbf{u}_1$ and $A\mathbf{v}_2 = \sigma_2\mathbf{u}_2$:

$$AV = U\Sigma$$
 where $\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$

The singular value decomposition (SVD) of A:

$$A = U\Sigma V^{\mathrm{T}}$$

 σ_i called the singular values of A

Properties of symmetric positive definite matrices such as $A^{\mathrm{T}}A$

- Real and positive eigenvalues
- Eigenvectors are orthogonal

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$

$$= V\Sigma^{T}U^{T}U\Sigma V^{T}$$

$$= V\Sigma^{T}\Sigma V^{T}$$

$$= V\Lambda' V^{T}$$

where

$$\Lambda' = \begin{bmatrix} \lambda'_1 & 0 \\ 0 & \lambda'_2 \end{bmatrix} = \Sigma^{\mathrm{T}} \Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$

This is the eigendecomposition of $A^{T}A$

Columns of V called the right singular vectors of A

- (ロ) (個) (E) (E) (E) のQC

Eigendecomposition of symmetric positive definite AA^{T}

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T}$$

$$= U\Sigma V^{T}V\Sigma^{T}U^{T}$$

$$= U\Sigma\Sigma^{T}U^{T}$$

$$= U\Lambda'U^{T}$$

$$\Lambda' = \Sigma^{\mathrm{T}} \Sigma = \Sigma \Sigma^{\mathrm{T}}$$

- \Rightarrow Eigenvalues are diagonal entries of Λ'
- \Rightarrow Eigenvectors are columns of U
 - Called the left singular vectors of A

Elements of the SVD of *A*:

$$A = U\Sigma V^{\mathrm{T}}$$

— The singular values

$$\sigma_i = \sqrt{\lambda_i'}$$

where λ_i' are the eigenvalues of $A^{\mathrm{T}}A$ and AA^{T}

- The columns of V are the eigenvectors of $A^{\mathrm{T}}A$
- The columns of U are the eigenvectors of AA^{T}

Can compute $\mathbf{u}_i = A\mathbf{v}_i/\|\cdot\|$ since $AV = U\Sigma$

Example: symmetric positive definite matrix that scales in e_1 -direction

$$A = egin{bmatrix} 3 & 0 \ 0 & 1 \end{bmatrix}$$
 $AA^{\mathrm{T}} = A^{\mathrm{T}}A = egin{bmatrix} 9 & 0 \ 0 & 1 \end{bmatrix}$ eigenvalues: $\lambda_1' = 9$ $\lambda_2' = 1$ \Rightarrow $\sigma_1 = 3$ and $\sigma_2 = 1$ $U = V = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

SVD $A = U\Sigma V^{\mathrm{T}}$:

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Positive definite matrix \Rightarrow SVD identical to eigendecomposition

Farin & Hansford Practical Linear Algebra 8 / 43

Action: unit circle \Rightarrow action ellipse

— Semi-major axis length σ_1 — Semi-minor axis length σ_2

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \qquad \text{circle} \qquad \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

Thick point:
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 Thin point: $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(Left: previous example; Right: next example)

Example: a shear

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \qquad \Rightarrow \qquad A^{\mathrm{T}}A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \qquad AA^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$$

Eigenvalues: $\lambda_1'=5.82$ and $\lambda_2'=0.17$ \Rightarrow $\sigma_1=2.41$ and $\sigma_2=0.41$

Eigenvectors of $A^{\mathrm{T}}A \Rightarrow$ orthonormal column vectors of

$$V = \begin{bmatrix} 0.38 & -0.92 \\ 0.92 & 0.38 \end{bmatrix}$$

Eigenvectors of $AA^{\mathrm{T}} \Rightarrow$ orthonormal column vectors of

$$U = \begin{bmatrix} 0.92 & -0.38 \\ 0.38 & 0.92 \end{bmatrix}$$

SVD of A:

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.92 & -0.38 \\ 0.38 & 0.92 \end{bmatrix} \begin{bmatrix} 2.41 & 0 \\ 0 & 0.41 \end{bmatrix} \begin{bmatrix} 0.38 & -0.92 \\ 0.92 & 0.38 \end{bmatrix}$$

Break down the action of A in terms of the SVD

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.92 & -0.38 \\ 0.38 & 0.92 \end{bmatrix} \begin{bmatrix} 2.41 & 0 \\ 0 & 0.41 \end{bmatrix} \begin{bmatrix} 0.38 & -0.92 \\ 0.92 & 0.38 \end{bmatrix}$$

Clockwise from top left:

- Initial point set forming a circle with two reference points
- $V^{\mathrm{T}}\mathbf{x}$ rotates clockwise 67.5°
- $\Sigma V^{\mathrm{T}} \mathbf{x}$ stretches in \mathbf{e}_1 and shrinks in \mathbf{e}_2
- $U\Sigma V^{\mathrm{T}}\mathbf{x}$ rotates counterclockwise 22.5°

Farin & Hansford Practical Linear Algebra 11 / 43

Now: $m \times n$ matrix A — not necessarily square nor invertible

$$A = U \qquad \Sigma \qquad V^{T}$$

$$A = U \qquad \Sigma \qquad V^{T}$$

$$A = U \qquad \Sigma \qquad V^{T}$$

Top:
$$m > n$$
 Middle: $m = n$ Bottom: $m < n$

U is
$$m \times m$$

$$\Sigma$$
 is $m \times n$

U is
$$m \times m$$
 Σ is $m \times n$ V^{T} is $n \times n$

$$A^{\mathrm{T}}A = V\Lambda'V^{\mathrm{T}} \Rightarrow \Lambda' \text{ is } n \times n$$

$$A^{\mathrm{T}}A = V\Lambda'V^{\mathrm{T}} \Rightarrow \Lambda' \text{ is } n \times n$$
 $AA^{\mathrm{T}} = U\Lambda'U^{\mathrm{T}} \Rightarrow \Lambda' \text{ is } m \times m$

Both Λ' hold the same non-zero eigenvalues $\Rightarrow \operatorname{rank} \leq \min_{n \in \mathbb{N}} \{m, n\}$

Want \mathbf{v}_i and \mathbf{u}_i such that $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$

$$AV = U\Sigma$$

Rank r of A plays a role in the SVD

Main properties:

- ullet Σ has non-zero singular values σ_1,\ldots,σ_r and all other entries zero
- ullet First r columns of U form an orthonormal basis for column space of A
- Last m-r columns of U form an orthonormal basis for null space of \mathcal{A}^{T}
- ullet First r columns of V form an orthonormal basis for row space of A
- Last n-r columns of V form an orthonormal basis for null space of A

Example: Rank 2 matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix} \quad \lambda'_{1} = 5 \quad V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{bmatrix} \quad \lambda'_{2} = 1 \quad U = \begin{bmatrix} 0 & 1 & 0 \\ 0.89 & 0 & -0.44 \\ 0.44 & 0 & 0.89 \end{bmatrix}$$

$$\begin{bmatrix} 2.23 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 2.23 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$A = U\Sigma V^{\mathrm{T}}: \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0.89 & 0 & -0.44 \\ 0.44 & 0 & 0.89 \end{bmatrix} \begin{bmatrix} 2.23 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 $m>n\Rightarrow \mathbf{u}_3$ is in the null space of $A^{\mathrm{T}}\Rightarrow A^{\mathrm{T}}\mathbf{u}_3=0$

SVD and action of a matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix}$$

Clockwise from top left:

- 1) Initial circle point set 2) $V^{\mathrm{T}}\mathbf{x}$ reflects
- 3) $\Sigma V^{\mathrm{T}} \mathbf{x}$ stretches in \mathbf{e}_1 4) $U \Sigma V^{\mathrm{T}} \mathbf{x}$ rotates

Practical Linear Algebra

Example:

$$A = \begin{bmatrix} -0.8 & 0 & 0.8 \\ 1 & 1.5 & -0.3 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 1.64 & 1.5 & -0.94 \\ 1.5 & 2.25 & -0.45 \\ -0.94 & -0.45 & 0.73 \end{bmatrix} \quad \begin{array}{l} \lambda_{1}' = 3.77 \\ \lambda_{2}' = 0.84 \\ \lambda_{3}' = 0 \end{array} \quad V = \begin{bmatrix} -0.63 & 0.38 & 0.67 \\ -0.71 & -0.62 & -0.31 \\ 0.30 & -0.68 & 0.67 \end{bmatrix}$$

$$AA^{T} = \begin{bmatrix} 1.28 & -1.04 \\ -1.04 & 3.34 \end{bmatrix} \quad \begin{array}{l} \lambda_{1}' = 3.77 \\ \lambda_{2}' = 0.84 \end{array} \quad U = \begin{bmatrix} 0.39 & -0.92 \\ -0.92 & -0.39 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.94 & 0 & 0 \\ 0 & 0.92 & 0 \end{bmatrix}$$

SVD: $A = U\Sigma V^{T}$

$$\begin{bmatrix} -0.8 & 0 & 0.8 \\ 1 & 1.5 & -0.3. \end{bmatrix} = \begin{bmatrix} 0.39 & -0.92 \\ -0.92 & -0.39 \end{bmatrix} \begin{bmatrix} 1.94 & 0 & 0 \\ 0 & 0.92 & 0 \end{bmatrix} \begin{bmatrix} -0.63 & -0.71 & 0.3 \\ 0.38 & -0.62 & -0.68 \\ 0.67 & -0.31 & 0.67 \end{bmatrix}$$

 $m < n \; \Rightarrow \; \mathbf{v}_3$ in null space of $A \; \Rightarrow \; A \mathbf{v}_3 = \mathbf{0}$

SVD and action of a matrix

$$A = \begin{bmatrix} -0.8 & 0 & 0.8\\ 1 & 1.5 & -0.3 \end{bmatrix}$$

Clockwise from top left:

1)Initial circle point set $2)V^{\mathrm{T}}\mathbf{x}$ $3)\Sigma V^{\mathrm{T}}\mathbf{x}$ $4)U\Sigma V^{\mathrm{T}}\mathbf{x}$

Example: a projection into the $[e_1, e_2]$ -plane — a rank deficient matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A is symmetric and idempotent $\Rightarrow A = A^{T}A = AA^{T}$ $A = U \Sigma V^{T}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rank = 2

 \Rightarrow first 2 columns of U form orthonormal basis for column space of A

 \Rightarrow first 2 columns of V form orthonormal basis for row space of A \mathbf{e}_3 vector projected to the zero vector \Rightarrow spans the null space of A and A^{T}

SVD Steps

$$A = U\Sigma V^{\mathrm{T}}$$

Here: review steps — for a robust algorithm \Rightarrow advanced numerical methods

Input: an $m \times n$ matrix A

Output: U, V, Σ such that $A = U\Sigma V^{\mathrm{T}}$

- **1** Find the *eigenvalues* $\lambda'_1, \ldots, \lambda'_n$ of $A^{\mathrm{T}}A$
 - ▶ Order the λ_i' so that $\lambda_1' \geq \lambda_2' \geq \ldots \geq \lambda_n'$
 - ▶ Suppose $\lambda'_1, \dots, \lambda'_r > 0$, then the *rank* of *A* is *r*
- ② Create an $m \times n$ diagonal matrix Σ with $\sigma_{i,i} = \sqrt{\lambda_i'}, i = 1, \ldots, r$
- **3** Find the corresponding (normalized) eigenvectors \mathbf{v}_i of A^TA
- Create an $n \times n$ matrix V with column vectors \mathbf{v}_i
- **5** Find the (normalized) eigenvectors \mathbf{u}_i of AA^{T}
- **1** Create an $m \times m$ matrix U with column vectors \mathbf{u}_i

SVD Steps

Notes on steps:

- Can compute \mathbf{u}_i , i = 1, r as $\mathbf{u}_i = A\mathbf{v}_i/\|\cdot\|$ If m > n then the remaining \mathbf{u}_i are found from the null space of A^{T}
- The only "hard" task is finding the λ_i Since $A^{T}A$ is symmetric \Rightarrow Can choose a highly efficient algorithm
- Forming $A^{T}A$ can result in an ill-posed problem $\kappa(A^{\mathrm{T}}A) = \kappa(A)^2$ Avoid direct computation of this matrix
 - employ the Householder method

Singular Values and Volumes

Application: compute the determinant

$$\det U = \pm 1 \quad \text{and} \quad \det V = \pm 1 \quad \Rightarrow \quad |\det A| = \det \Sigma = \sigma_1 \cdot \ldots \cdot \sigma_n$$

Example: given a 2D triangle T with area φ Transform $T \to T'$ with 2D linear map with singular values σ_1, σ_2 Area of $T' = \pm \sigma_1 \sigma_2 \varphi$

Example: given a 3D object O with volume φ Transform $O \to O'$ with 3D linear map with singular values $\sigma_1, \sigma_2, \sigma_3$ Volume of $O' = \pm \sigma_1 \sigma_2 \sigma_3 \varphi$

Recall determinants without using singular values

$$\det A = \lambda_1 \cdot \ldots \cdot \lambda_n$$

The inverse of a matrix:

- Limited to square, nonsingular matrices
- Mainly a theoretical tool for analyzing the solution to a linear system

The generalized inverse or psuedoinverse A^{\dagger}

- For general matrices
- Suited for practical use
- Can be computed with the SVD

Given an $m \times n$ diagonal matrix Σ with diagonal elements σ_i The pseudoinverse: the $n \times m$ matrix Σ^\dagger with

$$\sigma_i^{\dagger} = \left\{ \begin{array}{ll} 1/\sigma_i & \text{if } \sigma_i > 0 \\ 0 & \text{else} \end{array} \right\}$$

If $rank(\Sigma) = r$ then

- $\Sigma^{\dagger}\Sigma$ holds the $r \times r$ identity matrix
- All other elements are zero

Leads to the pseudoinverse for a general $m \times n$ matrix A

$$A^{\dagger} = (U\Sigma V^{\mathrm{T}})^{-1} = V\Sigma^{\dagger}U^{\mathrm{T}}$$

If A is square and invertible then $A^{\dagger} = A^{-1}$

Properties:

$$A^{\dagger}AA^{\dagger} = A^{\dagger}$$
 and $AA^{\dagger}A = A$

Often times called the Moore-Penrose generalized inverse

Primary application: least squares approximation

Example: Find the pseudoinverse of

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0.89 & 0 & -0.44 \\ 0.44 & 0 & 0.89 \end{bmatrix} \begin{bmatrix} 2.23 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$\Sigma^{\dagger} = \begin{bmatrix} 1/2.23 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A^{\dagger} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2/5 & 1/5 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1/2.23 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0.89 & 0.44 \\ 1 & 0 & 0 \\ 0 & -0.44 & 0.89 \end{bmatrix}$$

Farin & Hansford

Example: square and nonsingular *A*

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1 \end{bmatrix}$

The pseudoinverse is equal to the inverse:

$$A^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & 0 \\ 0 & 1 \end{bmatrix}$$

Overdetermined linear system: m equations in n unknowns where $m \ge n$

$$A\mathbf{x} = \mathbf{b}$$

Linear system is inconsistent

— unlikely that **b** lives in subspace $\mathcal V$ defined by columns of A

The least squares solution finds the orthogonal projection of \boldsymbol{b} into $\mathcal V$

- Call this projection **b**'
 - \Rightarrow Solution to $A\mathbf{x} = \mathbf{b}'$ produces vector closest to \mathbf{b} that lives in $\mathcal V$

Normal equations

$$A^{\mathrm{T}}A\mathbf{x} = A^{\mathrm{T}}\mathbf{b}$$
 solution minimizes $\|A\mathbf{x} - \mathbf{b}\|$

This system can be ill-posed \Rightarrow use *pseudoinverse*

$$\mathbf{x} = A^{\dagger}\mathbf{b}$$

Why is $\mathbf{x} = A^{\dagger} \mathbf{b}$ the least squares solution?

Find \mathbf{x} to minimize $\|A\mathbf{x} - \mathbf{b}\|$

$$A\mathbf{x} - \mathbf{b} = U\Sigma V^{\mathrm{T}}\mathbf{x} - \mathbf{b}$$
$$= U\Sigma V^{\mathrm{T}}\mathbf{x} - UU^{\mathrm{T}}\mathbf{b}$$
$$= U(\Sigma \mathbf{y} - \mathbf{z})$$

This new framing of the problem exposes that

$$\|A\mathbf{x} - \mathbf{b}\| = \|\Sigma \mathbf{y} - \mathbf{z}\|$$

⇒ an easier diagonal least squares problem to solve

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Steps:

- **1** Compute the SVD $A = U\Sigma V^{\mathrm{T}}$
- **2** Compute the $m \times 1$ vector $\mathbf{z} = U^{\mathrm{T}}\mathbf{b}$
- **3** Compute the $n \times 1$ vector $\mathbf{y} = \Sigma^{\dagger} \mathbf{z}$ Least squares solution to $m \times n$ problem $\Sigma \mathbf{y} = \mathbf{z}$

requires minimizing
$$\mathbf{v} = \mathbf{\Sigma} \mathbf{y} - \mathbf{z}$$

$$\mathbf{v} = \mathbf{rank}(\mathbf{\Sigma}) = r$$

$$\mathbf{v} = \begin{bmatrix} \sigma_1 y_1 - z_1 \\ \sigma_2 y_2 - z_2 \\ \vdots \\ \sigma_r y_r - z_r \\ -z_{r+1} \\ \vdots \\ -z_m \end{bmatrix}$$

 \mathbf{y} minimizing \mathbf{v} : $y_i = z_i/\sigma_i$ $i = 1, \dots, r$ \Rightarrow $\mathbf{y} = \Sigma^{\dagger} \mathbf{z}$

lacktriangle Compute the n imes 1 solution vector $\mathbf{x}=V\mathbf{y}$

◆ロト ◆問 > ◆ き > ◆ き > り へ ②

Summarize — The calculations in reverse order include

$$\begin{aligned} \mathbf{x} &= V \mathbf{y} \\ \mathbf{x} &= V (\Sigma^\dagger \mathbf{z}) \\ \mathbf{x} &= V \Sigma^\dagger (U^\mathrm{T} \mathbf{b}) \end{aligned}$$

Example: Revisit temperature-time data: find the best fit line coefficients — Chapter 12 (normal equations) and Chapter 13 (Householder)

Step 1) Compute the SVD $A = U\Sigma V^{\mathrm{T}}$

$$\Sigma = egin{pmatrix} 95.42 & 0 \ 0 & 1.47 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ \end{pmatrix}$$

$$\Sigma = \begin{bmatrix} 95.42 & 0 \\ 0 & 1.47 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \Sigma^\dagger = \begin{bmatrix} 0.01 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.68 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} U & 7 \times 7 \\ \Sigma & 7 \times 2 \\ V & 2 \times 2 \end{array}$$

Step 2)
$$\mathbf{z} = U^{\mathrm{T}}\mathbf{b} = \begin{bmatrix} 54.5 \\ 51.1 \\ 3.2 \\ -15.6 \\ 9.6 \\ 15.2 \\ 10.8 \end{bmatrix}$$

Step 3)
$$\mathbf{y} = \Sigma^{\dagger} \mathbf{z} = \begin{bmatrix} 0.57 \\ 34.8 \end{bmatrix}$$

Step 4)
$$x = Vy = \begin{bmatrix} -0.23 \\ 34.8 \end{bmatrix}$$

⇒ best fit line: $x_2 = -0.23x_1 + 34.8$

The normal equations give a best approximation

$$\mathbf{x} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\mathbf{b}$$
 to the original problem $A\mathbf{x} = \mathbf{b}$

by considering \mathbf{b}' in the subspace of A called \mathcal{V} Substitute this expression for \mathbf{x} into $A\mathbf{x} = \mathbf{b}'$:

$$\mathbf{b}' = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}\mathbf{b} = AA^{\dagger}\mathbf{b} = \mathrm{proj}_{\mathcal{V}}\mathbf{b}$$

- Goal is to project **b** into $V \Rightarrow AA^{\dagger}$ is a projection
- Property $A^{\dagger}AA^{\dagger}=A^{\dagger}$ ensures necessary idempotent property

Application: Image Compression

Given $m \times n$ matrix A with $k = \min(m, n)$ singular values σ_i $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$

Using the SVD write A as a sum of k rank one matrices:

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathrm{T}} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^{\mathrm{T}} + \ldots + \sigma_k \mathbf{u}_k \mathbf{v}_k^{\mathrm{T}}$$

Use this for image compression

- An image is comprised of a grid of colored pixels grayscales here
- Figure (left): input image with 4×4 pixels
- Each grayscale associated with a number ⇒ grid is a matrix

Application: Image Compression

Singular values for this matrix are $\sigma_i = 7.1, 3.8, 1.3, 0.3$ Images from left to right I_0, I_1, I_2, I_3 — Original image is I_0

$$\begin{aligned} A_1 &= \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\mathrm{T} \quad \Rightarrow \quad \text{image } \mathit{I}_1 \\ A_2 &= \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\mathrm{T} + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^\mathrm{T} \quad \Rightarrow \quad \text{image } \mathit{I}_2 \end{aligned}$$

Original image nearly replicated incorporating only half the singular values $\Rightarrow \sigma_1$ and σ_2 large in comparison to σ_3 and σ_4

Image I_3 created from $A_3 = A_2 + \sigma_3 \mathbf{u}_3 \mathbf{v}_3^{\mathrm{T}}$ Image I_4 is not displayed — identical to I_0

Application: Image Compression

The change in an image by adding the smallest σ_i can be hardly noticeable \Rightarrow Omitting images I_k corresponding to small σ_k amounts to compressing the original image

Chapter introduction Figure: 8×8 matrix

$$\sigma_i = 6.2, 1.7, 1.49, 0, \ldots, 0$$

- Figure illustrates images corresponding to each non-zero σ_i
- Last image is identical to the input
 - \Rightarrow the five remaining $\sigma_i=0$ are unimportant to image quality

Scatter plot: data pairs recorded in Cartesian coordinates

Each circle represents a coordinate pair (point) in the $[e_1, e_2]$ -system

Example: Gross Domestic Product and poverty rate pairs

How might we reveal trends in this data set?

Given: 2D data set $\mathbf{x}_1, \dots, \mathbf{x}_n$ such that $\mathbf{x}_1 + \dots + \mathbf{x}_n = \mathbf{0}$ Let **d** be a unit vector Project \mathbf{x}_i onto line containing **d** Result:

vector with (signed) length $\mathbf{x}_i \cdot \mathbf{d}$

$$I(\mathbf{d}) = [\mathbf{x}_1 \cdot \mathbf{d}]^2 + \ldots + [\mathbf{x}_n \cdot \mathbf{d}]^2$$

Rotate **d** around the origin For each position compute $I(\mathbf{d})$ Directions corresponding to largest and smallest $I(\mathbf{d})$ are orthogonal \Rightarrow indicates variation in data

Arrange data \mathbf{x}_i in a matrix

$$X = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \quad \text{then} \quad I(\mathbf{d}) = \|X\mathbf{d}\|^2 = (X\mathbf{d}) \cdot (X\mathbf{d}) = \mathbf{d}^T X^T X \mathbf{d} \quad (*)$$

Let $C = X^{\mathrm{T}}X$ C is a symmetric positive definite 2×2 matrix \Rightarrow (*) is a quadratic form — See Figure

Farin & Hansford

For which \mathbf{d} is $I(\mathbf{d})$ maximal?

Answer: \mathbf{d} that corresponds to C's dominant eigenvector

And: $I(\mathbf{d})$ is minimal for \mathbf{d} being the eigenvector corresponding to C's smallest eigenvalue

These eigenvectors form the major and minor axis of the *action ellipse* of C (Thick lines in Figure)

— Eigenvectors orthogonal because C is symmetric

Look more closely at C

$$c_{1,1} = x_{1,1}^2 + x_{2,1}^2 + \dots + x_{n,1}^2$$

$$c_{1,2} = c_{2,1} = x_{1,1}x_{1,2} + x_{2,1}x_{2,2} + \dots + x_{n,1}x_{n,2}$$

$$c_{2,2} = x_{1,2}^2 + x_{2,2}^2 + \dots + x_{n,2}^2.$$

If each element of C is divided by n it is called the covariance matrix

- Summary of the variation in each coordinate and between coordinates
- Dividing by n will result in scaled eigenvalues eigenvectors will not change

Eigenvectors provide a convenient local coordinate frame for the data set

- Idea behind the principle of the eigendecomposition
- This frame is commonly called the principal axes

Let $V = [\mathbf{v}_1 \ \mathbf{v}_2]$ hold the normalized eigenvectors as column vectors

— \mathbf{v}_1 is the dominant eigenvector

Orthogonal transformation of the data X

— aligns \mathbf{v}_1 with \mathbf{e}_1 and \mathbf{v}_2 with \mathbf{e}_2

$$\hat{X} = XV \quad \Rightarrow \quad \hat{\mathbf{x}}_i = \begin{bmatrix} \mathbf{x}_i \cdot \mathbf{v}_1 \\ \mathbf{x}_i \cdot \mathbf{v}_2 \end{bmatrix}$$

Summary:

- Established a principal components coordinate system
- Defined by the eigenvectors of the covariance matrix
- Greatest variance corresponds to the first coordinate
- Data coordinates are now in terms of the trend lines
- Coordinates directly measure the distance from each trend line
- ⇒ Name of this method: Principal Components Analysis (PCA)

PCA can also be used for data compression by reducing dimensionality

Let V hold only some eigenvectors

- Example: most significant then $V = \mathbf{v}_1$ (left Figure)
- Example: $V = \mathbf{v}_2$ (right Figure)

Greater spread of the data corresponds to higher variance

Here 2D data but the real power of PCA comes with higher dimensional data

— Difficult to visualize and understand relationships between dimensions

Farin & Hansford Practical Linear Algebra 42 / 43

WYSK

- Singular Value Decomposition (SVD)
- singular values
- right singular vector
- left singular vector
- SVD matrix dimensions
- SVD column, row, and null spaces
- SVD steps
- volume in terms of singular values
- eigendecomposition
- matrix decomposition

- action ellipse axes length
- pseudoinverse
- generalized inverse
- least squares solution via the pseudoinverse
- quadratic form
- contour ellipse
- Principal Components Analysis (PCA)
- covariance matrix