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Introduction to Breaking It Up: Triangles

2D finite element method: refinement of a triangulation based on stress
and strain calculations

Triangles are as old as geometry
Of interest to the ancient Greeks

An indispensable tool in many
applications
— computer graphics
— finite element analysis

Reducing the geometry to linear or
piecewise planar
makes computations more tractable
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Barycentric Coordinates

A triangle T is given by three points
— Its vertices p1,p2,p3
— Vertices may live in 2D or 3D

Three points define a plane
⇒ a triangle is a 2D element

Conventions:
— Label the pi counterclockwise
— Edge opposite point pi labeled si
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Barycentric Coordinates

Invented by F. Moebius in 1827

Create a local coordinate system

Let p be an arbitrary point inside T

p = up1 + vp2 + wp3

Right-hand side:
a combination of points
⇒ coefficients must sum to one:

u + v + w = 1

As a linear system:

[

p1 p2 p3
]





u

v

w



 =





p1
p2
1




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Barycentric Coordinates

Solve the 3× 3 linear system with Cramer’s rule

u =
area(p,p2,p3)

area(p1,p2,p3)
v =

area(p,p3,p1)

area(p1,p2,p3)
w =

area(p,p1,p2)

area(p1,p2,p3)

u = (u, v ,w) called barycentric coordinates

Examine the result:
• Ratios of areas
• (u, v ,w) sum to one ⇒ not independent w = 1− u − v

• Let p = p2 ⇒ v = 1 and u = w = 0
• If p is on s1 then u = 0
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Barycentric Coordinates

Examples of barycentric coordinates

Triangle vertices:

p1 ∼= (1, 0, 0)

p2 ∼= (0, 1, 0)

p3 ∼= (0, 0, 1)

Even points outside of T have
barycentric coordinates!
— Determinants return signed areas

Points inside T : positive (u, v ,w)
Points outside T : mixed signs
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Barycentric Coordinates

Application: Triangle inclusion test

Problem: Given a triangle T and a point p. Is p is inside T?

Solution: Compute p’s barycentric coordinates and check their signs!
— All the same sign then p is inside T

— Else p is outside T

Theoretically: one or two (u, v ,w) could be zero ⇒ p is on an edge

Numerically: not likely to encounter exactly zero
⇒ Do not test for equality

Instead: use a zero tolerance ǫ
Is |barycentric coordinate| < ǫ ?
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Barycentric Coordinates

Whole plane covered by a grid of
coordinate lines

Plane divided into seven regions by
the (extended) edges of T
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Barycentric Coordinates

Example: Triangle vertices

p1 =

[

0
0

]

p2 =

[

1
0

]

p3 =

[

0
1

]

Points q, r, s with barycentric coordinates

q ∼=
(

0,
1

2
,
1

2

)

r ∼= (−1, 1, 1) s ∼=
(

1

3
,
1

3
,
1

3

)

have coordinates in the plane

q = 0× p1 +
1

2
× p2 +

1

2
× p3 =

[

1/2
1/2

]

r = −1× p1 + 1× p2 + 1× p3 =

[

1
1

]

s =
1

3
× p1 +

1

3
× p2 +

1

3
× p3 =

[

1/3
1/3

]
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Affine Invariance

Barycentric coordinates are affinely invariant

• T̂ is an affine image of T
• p ∼= u relative to T

• p̂ is an affine image of p

What are the barycentric coordinates
of p̂ with respect to T̂?

Ratios of areas are invariant under
affine maps
— Individual areas change but not
the ratios

⇒ p̂ ∼= u relative to T̂
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Affine Invariance

Example: Given triangle vertices

p1 =

[

0
0

]

p2 =

[

1
0

]

p3 =

[

0
1

]

Apply a 90◦ rotation

R =

[

0 −1
1 0

]

Resulting in p̂i = Rpi

Barycentric coordinates (1/3, 1/3, 1/3) relative to T

s =
1

3
p1 +

1

3
p2 +

1

3
p3 =

[

1/3
1/3

]

⇒ ŝ = Rs =

[

−1/3
1/3

]

Due to the affine invariance of barycentric coordinates
could have found the coordinates as

ŝ =
1

3
p̂1 +

1

3
p̂2 +

1

3
p̂3 =

[

−1/3
1/3

]
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Some Special Points

The centroid c

Intersection of the three medians

c ∼=
(

1

3
,
1

3
,
1

3

)

Verify by writing

(

1

3
,
1

3
,
1

3

)

=
1

3
(0, 1, 0)+

2

3

(

1

2
, 0,

1

2

)

⇒ centroid lies on median associated
with p2
— Same idea for remaining medians

Triangle is affinely related to its
centroid
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Some Special Points

The incenter i = (i1, i2, i3)

Intersection of the angle bisectors
i is the center of the incircle

si : length of triangle edge opposite pi
r : radius of the incircle

i1 =
area(i,p2,p3)

area(p1,p2,p3)

Use “1/2 base times height” rule

i1 =
rs1

rs1 + rs2 + rs3

i1 = s1/c i2 = s2/c i3 = s3/c

c = s1+ s2+ s3 is circumference of T

Triangle is not affinely related to its
incenter
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Some Special Points

The circumcenter cc

Circle through T ’s vertices called the
circumcircle

Center of the circumcircle is the
circumcenter
— Intersection of the edge bisectors
— Might not be inside the triangle
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Some Special Points

The barycentric coordinates (cc1, cc2, cc3) of the circumcenter

cc1 =
d1(d2 + d3)

D
cc2 =

d2(d1 + d3)

D
cc3 =

d3(d1 + d2)

D

d1 = (p2−p1)·(p3−p1) d2 = (p1−p2)·(p3−p2) d3 = (p1−p3)·(p2−p3)

D = 2(d1d2 + d2d3 + d3d1)

Radius of circumcircle:

R =
1

2

√

(d1 + d2)(d2 + d3)(d3 + d1)

D/2

Circumcenter can be far away from the vertices
⇒ In general not suited for practical use

Triangle not affinely related to its circumcenter
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Some Special Points

Example: Given triangle vertices

p1 =

[

0
0

]

p2 =

[

1
0

]

p3 =

[

0
1

]

Edge lengths: s1 =
√
2, s2 = 1, s3 = 1

Circumference of triangle: c = 2 +
√
2

The incenter:

i ∼=
( √

2

2 +
√
2
,

1

2 +
√
2
,

1

2 +
√
2

)

≈ (0.41, 0.29, 0.29)

The coordinates of the incenter

i = 0.41 × p1 + 0.29 × p2 + 0.29 × p3 =

[

0.29
0.29

]

The circumcenter: d1 = 0, d2 = 1, d3 = 1, D = 2
c ∼= (0, 1/2, 1/2) ⇒ midpoint of the “diagonal” edge
Radius of the circumcircle: R =

√
2/2
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2D Triangulations

Used by many applications e.g.,
— For centuries in surveying
— Finite element analysis

Definition: A set of triangles formed
from a 2D points {pi}Ni=1 such that:

1. Vertices of the triangles consist
of the pi

2. Interiors of any two triangles do
not intersect

3. If two triangles are not disjoint
then they share a vertex or edge

4. Union of all triangles equals the
convex hull of the pi
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2D Triangulations

Examples of illegal triangulations

Top: overlapping triangles
Middle: boundary not the convex
hull of points
Bottom: violates condition 3

Terminology:
Valence: number of triangles
surrounding a vertex

Star triangles around a vertex
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2D Triangulations

Non-uniqueness of triangulations

If we are given a point set, is there a
unique triangulation?

Among the many possible
triangulations the
Delaunay triangulation commonly
agreed to be the “best”
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A Data Structure

Best data structure?
— storage requirements
— accessibility

5 (number of points)
0.0 0.0 (point 1)
1.0 0.0
0.0 1.0
0.25 0.3
0.5 0.3
5 (number of triangles)
1 2 5 (1st triangle)
2 3 5
4 5 3
1 5 4
1 4 3

Important: consistent triangle
orientation
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A Data Structure

An improved data structure: include neighbor information

5
0.0 0.0
1.0 0.0
0.0 1.0
0.25 0.3
0.5 0.3
5
1 2 5 2 4 -1
2 3 5 3 1 -1
4 5 3 2 5 4
1 5 4 3 5 1
1 4 3 3 -1 4

Triangle 1: points 1 2 5
— Across from point 1 is triangle 2
— Across from point 2 is triangle 4
— Across from point 5 is no triangle
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Application: Point Location

Point location problem:
Given: point p in the convex hull of
the triangulation
Which triangle is p in?

Method 1: Compute p’s barycentric
coordinates with respect to all
triangles — simple but expensive

Method 2: Use sign of barycentric
coordinates to traverse triangulation

Key: If p not in “current” triangle
then move to neighboring triangle
corresponding to a negative
barycentric coordinate

Farin & Hansford Practical Linear Algebra 23 / 26



Application: Point Location

Point Location Algorithm

1 Choose a guess triangle to be the current triangle T

2 Compute p’s barycentric coordinates (u, v ,w) with respect to T

3 If all barycentric coordinates are positive then output current triangle
— exit

4 Determine the most negative of (u, v ,w)

5 Set the current triangle to be the neighbor associated with this
coordinate

6 Go to step 2

Can improve speed by not completing the division for determining the
barycentric coordinates — must modify triangle inclusion test

If algorithm executed for more than one point can use previous run
triangle as guess triangle
— Take advantage of coherence in data set
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3D Triangulations

• Triangles are connected to describe 3D geometric objects
• Rules for 3D triangulations same as for 2D
— Data structure just adds z-coordinate in point list
• Shading requires a normal for each triangle or vertex
— Normal is perpendicular to object’s surface at a particular point
— Used to calculate how light is reflected ⇒ illumination of the object

Farin & Hansford Practical Linear Algebra 25 / 26



WYSK

barycentric coordinates

triangle inclusion test

affine invariance of barycentric coordinates

centroid, barycenter

incenter

circumcenter

2D triangulation criteria

star

valence

Delaunay triangulation

triangulation data structure

point location algorithm

3D triangulation criteria

3D triangulation data structure

normal
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