Practical Linear Algebra: A GEOMETRY TOOLBOX Third edition

Chapter 18: Putting Lines Together: Polylines and Polygons

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- 1 Introduction to Putting Lines Together: Polylines and Polygons
- Polylines
- Polygons
- 4 Convexity
- Types of Polygons
- 6 Unusual Polygons
- Turning Angles and Winding Numbers
- 8 Area
- Application: Planarity Test
- Application: Inside or Outside?
- **11** WYSK

Introduction to Putting Lines Together: Polylines and Polygons

Left Figure shows a polygon

— just about every computer-generated drawing consists of polygons

Add an "eye" and apply a sequence of rotations and translations \Rightarrow Right Figure: copies of the bird polygon can cover the whole plane Technique is present in many illustrations by M. C. Escher

Polylines

2D polyline examples

Polyline: edges connecting an ordered set of vertices

First and last vertices not necessarily connected

Vertices are ordered and edges are oriented

 \Rightarrow edge vectors

Polyline can be 3D

Polylines

Polylines are a primary output primitive in graphics standards

- Example: GKS (Graphical Kernel System)
- Postscript (printer language) based on GKS

Polylines used to outline a shape 2D or 3D – see Figure

- Surface evaluated in an organized fashion \Rightarrow polylines
- Gives feeling of the "flow" of the surface

Modeling application: polylines approximate a complex curve or data

 \Rightarrow analysis easier and less costly

Polygons

Polygon: polyline with first and last vertices connected

Here: Polygon encloses an area \Rightarrow planar polygons only

Polygon with n edges is given by an ordered set of 2D points

$$\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$$

Edge vectors

$$\mathbf{v}_i = \mathbf{p}_{i+1} - \mathbf{p}_i \quad i = 1, \dots, n$$

where $\mathbf{p}_{n+1} = \mathbf{p}_1$ — cyclic numbering convention

- Edge vectors sum to the zero vector
- Number of vertices equals the number of edges

Polygons

Interior and exterior angles

Polygon is closed \Rightarrow divides the plane into two parts:

- 1) a finite part: interior
- 2) an infinite part: exterior

Traverse the boundary of a polygon: Move along the edges and at each vertex rotate angle α_i — turning angle or exterior angle

Interior angle: $\pi - \alpha_i$

Polygons

A minmax box is a polygon

Polygons are used a lot!

Fundamental Examples:

- Extents of geometry: the *minmax box*
- Triangles forming a polygonal mesh of a 3D model

Left Sketch: Polygon classification

— Left polygon: convex Right polygon: nonconvex

Convexity tests:

1) Rubberband test described in right Sketch

2) Line connecting any two points in/on polygon never leaves polygon

Some algorithms simplified or specifically designed for convex polygons

Example: polygon clipping

Given: two polygons

Find: intersection of polygon areas

If both polygons are convex results in one convex polygon

Nonconvex polygons need more record keeping

n-sided convex polygon

Sum of interior angles:

$$I=(n-2)\pi$$

Triangulate $\Rightarrow n-2$ triangles Triangle: sum of interior angles is π

Sum of the exterior angles:

$$E = n\pi - (n-2)\pi = 2\pi$$

Each interior and exterior angle sums to π

More convexity tests for an *n*-sided polygon

The barycenter of the vertices

$$\mathbf{b} = \frac{1}{n}(\mathbf{p}_1 + \ldots + \mathbf{p}_n)$$
 center of gravity

Construct the implicit line equation for each edge vector

- Needs to be done in a consistent manner
- Polygon convex if **b** on "same" side of every line
- Implicit equation evaluations result in all positive or all negative values

Another test for convexity:

— Check if there is a re-entrant angle: an interior angle $>\pi$

Farin & Hansford

Types of Polygons

Variety of special polygons

- equilateral: all sides equal length
- equiangular: all interior angles at vertices equal
- regular: equilateral and equiangular

Rhombus:

equilateral but not equiangular

Rectangle:

equiangular but not equilateral

Square: equilateral and equiangular

Types of Polygons

Regular polygon also referred to as an n-gon

- a 3-gon is an equilateral triangle
- a 4-gon is a square
- a 5-gon is a pentagon
- a 6-gon is a hexagon
- an 8-gon is an octagon

Types of Polygons

Circle approximation: using an n-gon to represent a circle

Unusual Polygons

Nonsimple polygon: edges intersecting other than at the vertices

Can cause algorithms to fail

Traverse along the boundary At the mid-edge intersections polygon's interior switches sides

Nonsimple polygons can arise due to an error

Example: polygon clipping algorithm involves sorting vertices to form polygon

— If sorting goes haywire result could be a nonsimple polygon

Unusual Polygons

Polygons with holes defined by

- 1) boundary polygon
- 2) interior polygons

Convention: The *visible region* or the region that is not cut out is to the "left"

- ⇒ Outer boundary oriented counterclockwise
- ⇒ Inner boundaries are oriented clockwise

Unusual Polygons

Trimmed surface: an application of polygons with holes

Left: trimmed surface

Right: rectangular parametric domain with polygonal holes

A Computer-Aided Design and Manufacturing (CAD/CAM) application Polygons define parts of the material to be cut or punched out This allows other parts to fit to this one

Farin & Hansford Practical Linear Algebra 18 / 36

Turning angle: rotation at vertices as boundary traversed

For convex polygons:

- All turning angles have the same orientation
- Same as exterior angle

For nonconvex polygons:

Turning angles do not have same orientation

Turning angle application

Given: 2D polygon living in the $[e_1, e_2]$ -plane with vertices

$$\mathbf{p}_1, \mathbf{p}_2, \dots \mathbf{p}_n$$

Find: Is the polygon is convex?

Solution: Embed the 2D vectors in 3D

$$\mathbf{p}_i = egin{bmatrix} p_{1,i} \\ p_{2,i} \\ 0 \end{bmatrix}$$
 then $\mathbf{u}_i = (\mathbf{p}_{i+1} - \mathbf{p}_i) \wedge (\mathbf{p}_{i+2} - \mathbf{p}_{i+1}) = egin{bmatrix} 0 \\ 0 \\ u_{3,i} \end{bmatrix}$

Or use the scalar triple product:

$$u_{3,i}=\mathbf{e}_3\cdot((\mathbf{p}_{i+1}-\mathbf{p}_i)\wedge(\mathbf{p}_{i+2}-\mathbf{p}_{i+1}))$$

Polygon is convex if the sign of $u_{3,i}$ is the same for all angles

⇒ Consistent orientation of the turning angles

20 / 36

Farin & Hansford Practical Linear Algebra

Consistent orientation of the turning angles can be determined from the *determinant* of the 2D vectors as well 3D approach needed if vertices lie in an *arbitrary* plane with normal **n** 3D polygon convexity test:

$$\mathbf{u}_i = (\mathbf{p}_{i+1} - \mathbf{p}_i) \wedge (\mathbf{p}_{i+2} - \mathbf{p}_{i+1})$$
 (has direction $\pm \mathbf{n}$)

Extract a signed scalar value $\mathbf{n} \cdot \mathbf{u}_i$ Polygon is convex if all scalar values are the same sign

Total turning angle: sum of all turning angles

Convex polygon: 2π

E = Sum of signed turning angles

Winding number of the polygon

$$W = \frac{E}{2\pi}$$

- Convex polygon: W=1
- Decremented for each clockwise loop
- Incremented for each counterclockwise loop

22 / 36

Signed area of a 2D polygon

Polygon defined by vertices \mathbf{p}_i

- Triangulate the polygon (consistent orientation)
- Sum of the signed triangle areas

Form
$$\mathbf{v}_i = \mathbf{p}_i - \mathbf{p}_1$$

$$\begin{split} A &= \frac{1}{2}(\text{det}[\mathbf{v}_2,\mathbf{v}_3] + \text{det}[\mathbf{v}_3,\mathbf{v}_4] \\ &+ \text{det}[\mathbf{v}_4,\mathbf{v}_5]) \end{split}$$

Signed area of a nonconvex 2D polygon

Use of signed area makes sum of triangle areas method work for non-convex polygons

Negative areas cancel duplicate and extraneous areas

Determinants representing edges of triangles within the polygon cancel

$$A = \frac{1}{2}(\det[\mathbf{p}_1, \mathbf{p}_2] + \ldots + \det[\mathbf{p}_{n-1}, \mathbf{p}_n] + \det[\mathbf{p}_n, \mathbf{p}_1])$$

Geometric meaning? Yes: consider each point to be $\mathbf{p}_i - \mathbf{o}$

Which equation is better?

- Amount of computation for each is similar
- Drawback of point-based: If polygon is far from the origin then numerical problems can occur vectors \mathbf{p}_i and \mathbf{p}_{i+1} will be close to parallel
- Advantage of vector-based: intermediate computations meaningful
- ⇒ Reducing an equation to its "simplest" form not always "optimal"!

Farin & Hansford

Generalized determinant:

$$A = \frac{1}{2} \begin{vmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,n} & p_{1,1} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,n} & p_{2,1} \end{vmatrix}$$

Compute by adding products of "downward" diagonals and subtracting products of "upward" diagonals

Example:
$$\mathbf{p}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $\mathbf{p}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\mathbf{p}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{p}_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (square)
$$A = \frac{1}{2} \begin{vmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{vmatrix} = \frac{1}{2} [0 + 1 + 1 + 0 - 0 - 0 - 0 - 0] = 1$$
Example: $\mathbf{p}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\mathbf{p}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{p}_4 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (nonsimple)
$$A = \frac{1}{2} \begin{vmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{vmatrix} = \frac{1}{2} [0 + 1 + 0 + 0 - 0 - 0 - 1 - 0] = 0$$

Area of a planar polygon specified by 3D points \mathbf{p}_i

Recall: cross product \Rightarrow parallelogram area

Let
$$\mathbf{v}_i = \mathbf{p}_i - \mathbf{p}_1$$
 and $\mathbf{u}_i = \mathbf{v}_i \wedge \mathbf{v}_{i+1}$ for $i = 2, n-1$

Unit normal to the polygon is \mathbf{n} — shares same direction as \mathbf{u}_i

$$A = \frac{1}{2}\mathbf{n} \cdot (\mathbf{u}_2 + \ldots + \mathbf{u}_{n-1})$$
 (sum of scalar triple products)

Example: Four coplanar 3D points

$$\mathbf{p}_1 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \quad \mathbf{p}_2 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{p}_3 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \quad \mathbf{p}_4 = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} -1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

$$\mathbf{u}_2 = \mathbf{v}_2 \wedge \mathbf{v}_3 = \begin{bmatrix} -6 \\ -6 \\ 0 \end{bmatrix} \quad \text{and} \quad \mathbf{u}_3 = \mathbf{v}_3 \wedge \mathbf{v}_4 = \begin{bmatrix} -6 \\ -6 \\ 0 \end{bmatrix}$$

$$A = \frac{1}{2}\mathbf{n} \cdot (\mathbf{u}_2 + \mathbf{u}_3) = 6\sqrt{2}$$

Normal estimation method:

Good average normal to a non-planar polygon:

$$\mathbf{n} = \frac{(\mathbf{u}_2 + \mathbf{u}_3 + \ldots + \mathbf{u}_{n-2})}{\|\mathbf{u}_2 + \mathbf{u}_3 + \ldots + \mathbf{u}_{n-2}\|}$$

This method is a weighted average based on the areas of the triangles — To eliminate this weighting normalize each \mathbf{u}_i before summing

Example: Estimate a normal to the non-planar polygon

$$\mathbf{p}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \mathbf{p}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{p}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \mathbf{p}_4 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \quad \mathbf{u}_3 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{n} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Application: Planarity Test

CAD file exchange scenario:

- Given a polygon oriented arbitrarily in 3D
- For your application the polygon must be 2D
- How do you verify that the data points are *coplanar*?

Many ways to solve this problem

Considerations in comparing algorithms:

- numerical stability
- speed
- ability to define a meaningful tolerance
- size of data set
- maintainability of the algorithm

Order of importance?

Application: Planarity Test

Three methods to solve this planarity test

Volume test:

- Choose first polygon vertex as a base point
- Form vectors to next three vertices
- Calculate volume spanned by three vectors
- If less than tolerance then four points are coplanar
- Continue for all other sets

• Plane test:

- Construct plane through first three vertices
- If all vertices lie in this plane (within tolerance) then points coplanar

• Average normal test:

- Find centroid **c** of all points
- Compute all normals $\mathbf{n}_i = [\mathbf{p}_i \mathbf{c}] \wedge [\mathbf{p}_{i+1} \mathbf{c}]$
- If all angles formed by two subsequent normals less than tolerance then points coplanar

Tolerance types: ♦ volume ♦ distance ♦ angle

Inside/outside test or Visibility test

Given: a polygon in the $[e_1, e_2]$ -plane and a point **p** Determine if **p** lies inside the polygon

This problem important for

— Polygon fill— CAD trimmed surfaces

Polygon can have one or more holes

Important element of visibility algorithms: trivial reject test

 If a point is "obviously" not in the polygon then output result immediately with minimal calculation

Here: trivial reject based on minmax box around the polygon

 \Rightarrow Simple comparison of e_1 - and e_2 -coordinates

Even-Odd Rule

From point \mathbf{p} construct a parametric line in any direction \mathbf{r}

$$I(t) = p + tr$$

Count the number of intersections with the polygon edges for $t \ge 0$

Number of intersections

- Odd if **p** is inside
- Even if **p** is outside

Best to avoid $\mathbf{I}(t)$ passing through vertex or coincident with edge

Nonzero Winding Number Rule

Point \mathbf{p} and any direction \mathbf{r}

$$I(t) = p + tr$$

Count intersections for $t \geq 0$ Counting method depends on the orientation of the polygon edges

- Start with a winding number W = 0
- "right to left" polygon edge W = W + 1
- "left to right" polygon edge W = W 1

If final W = 0 then point outside

Visibility test applied to polygon fill

Even-Odd Rule

Nonzero Winding Rule

35 / 36

Three examples to highlight differences in the algorithms

Convex polygons: allow for a simple visibility test

— Inside if ${f p}$ is on the same side of all oriented edges,

WYSK

- polygon
- polyline
- cyclic numbering
- turning angle
- exterior angle
- interior angle
- polygonal mesh
- convex
- concave
- polygon clipping
- sum of interior angles
- sum of exterior angles

- re-entrant angle
- equilateral polygon
- equiangular polygon
- regular polygon
- *n*-gon
- rhombus
- simple polygon
- trimmed surface
- visible region
- total turning angle
- winding number

- polygon area
- planarity test
- trivial reject
- inside/outside test
- scalar triple product