
Practical Linear Algebra: A Geometry Toolbox
Third edition

Chapter 18: Putting Lines Together: Polylines and Polygons

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book
www.farinhansford.com/books/pla

c©2013

Farin & Hansford Practical Linear Algebra 1 / 36



Outline

1 Introduction to Putting Lines Together: Polylines and Polygons

2 Polylines

3 Polygons

4 Convexity

5 Types of Polygons

6 Unusual Polygons

7 Turning Angles and Winding Numbers

8 Area

9 Application: Planarity Test

10 Application: Inside or Outside?

11 WYSK

Farin & Hansford Practical Linear Algebra 2 / 36



Introduction to Putting Lines Together: Polylines and

Polygons

Left Figure shows a polygon
— just about every computer-generated drawing consists of polygons

Add an “eye” and apply a sequence of rotations and translations
⇒ Right Figure: copies of the bird polygon can cover the whole plane
Technique is present in many illustrations by M. C. Escher
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Polylines

2D polyline examples

Polyline: edges connecting an
ordered set of vertices

First and last vertices not necessarily
connected

Vertices are ordered and edges are
oriented
⇒ edge vectors

Polyline can be 3D
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Polylines

Polylines are a primary output primitive in graphics standards
— Example: GKS (Graphical Kernel System)
— Postscript (printer language) based on GKS

Polylines used to outline a shape 2D or 3D – see Figure
— Surface evaluated in an organized fashion ⇒ polylines
— Gives feeling of the “flow” of the surface
Modeling application: polylines approximate a complex curve or data
⇒ analysis easier and less costly
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Polygons

Polygon: polyline with first and last vertices connected

Here: Polygon encloses an area ⇒ planar polygons only

Polygon with n edges is given by an ordered set of 2D points

p1,p2, . . . ,pn

Edge vectors
vi = pi+1 − pi i = 1, . . . , n

where pn+1 = p1 — cyclic numbering convention

— Edge vectors sum to the zero vector

— Number of vertices equals the number of edges
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Polygons

Interior and exterior angles

Polygon is closed ⇒ divides the
plane into two parts:
1) a finite part: interior
2) an infinite part: exterior

Traverse the boundary of a polygon:
Move along the edges and
at each vertex rotate angle αi

— turning angle or exterior angle

Interior angle: π − αi
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Polygons

A minmax box is a polygon

Polygons are used a lot!

Fundamental Examples:

Extents of geometry:
the minmax box

Triangles forming a
polygonal mesh of a 3D model
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Convexity

Left Sketch: Polygon classification
— Left polygon: convex Right polygon: nonconvex

Convexity tests:
1) Rubberband test described in right Sketch
2) Line connecting any two points in/on polygon never leaves polygon
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Convexity

Some algorithms simplified
or specifically designed for
convex polygons

Example: polygon clipping

Given: two polygons
Find: intersection of polygon areas

If both polygons are convex
results in one convex polygon

Nonconvex polygons need more
record keeping
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Convexity

n-sided convex polygon

Sum of interior angles:

I = (n − 2)π

Triangulate ⇒ n − 2 triangles
Triangle: sum of interior angles is π

Sum of the exterior angles:

E = nπ − (n − 2)π = 2π

Each interior and exterior angle
sums to π
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Convexity

More convexity tests for an n-sided polygon

The barycenter of the vertices

b =
1

n
(p1 + . . .+ pn) center of gravity

Construct the implicit line equation for each edge vector
— Needs to be done in a consistent manner
Polygon convex if b on “same” side of every line
— Implicit equation evaluations result in all positive or all negative values

Another test for convexity:
— Check if there is a re-entrant angle: an interior angle > π
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Types of Polygons

Variety of special polygons

equilateral: all sides equal length

equiangular: all interior angles
at vertices equal

regular: equilateral and
equiangular

Rhombus:
equilateral but not equiangular

Rectangle:
equiangular but not equilateral

Square: equilateral and equiangular
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Types of Polygons

Regular polygon also referred to as
an n-gon

a 3-gon is an equilateral triangle

a 4-gon is a square

a 5-gon is a pentagon

a 6-gon is a hexagon

an 8-gon is an octagon
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Types of Polygons

Circle approximation: using an n-gon to represent a circle
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Unusual Polygons

Nonsimple polygon: edges intersecting other than at the vertices
Can cause algorithms to fail

Traverse along the boundary
At the mid-edge intersections
polygon’s interior switches sides

Nonsimple polygons can arise due to
an error
Example: polygon clipping algorithm
involves sorting vertices to form
polygon
— If sorting goes haywire result
could be a nonsimple polygon
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Unusual Polygons

Polygons with holes defined by
1) boundary polygon
2) interior polygons

Convention: The visible region

or the region that is not cut out
is to the “left”
⇒ Outer boundary oriented
counterclockwise
⇒ Inner boundaries are oriented
clockwise
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Unusual Polygons

Trimmed surface: an application of polygons with holes
Left: trimmed surface
Right: rectangular parametric domain with polygonal holes

A Computer-Aided Design and Manufacturing (CAD/CAM) application
Polygons define parts of the material to be cut or punched out
This allows other parts to fit to this one
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Turning Angles and Winding Numbers

Turning angle: rotation at vertices as
boundary traversed

For convex polygons:
— All turning angles have the same
orientation
— Same as exterior angle

For nonconvex polygons:
— Turning angles do not have same
orientation
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Turning Angles and Winding Numbers

Turning angle application

Given: 2D polygon living in the [e1, e2]-plane with vertices

p1,p2, . . . pn

Find: Is the polygon is convex?
Solution: Embed the 2D vectors in 3D

pi =





p1,i
p2,i
0



 then ui = (pi+1 − pi) ∧ (pi+2 − pi+1) =





0
0
u3,i





Or use the scalar triple product:

u3,i = e3 · ((pi+1 − pi ) ∧ (pi+2 − pi+1))

Polygon is convex if the sign of u3,i is the same for all angles
⇒ Consistent orientation of the turning angles
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Turning Angles and Winding Numbers

Consistent orientation of the turning angles can be determined from the
determinant of the 2D vectors as well
3D approach needed if vertices lie in an arbitrary plane with normal n

3D polygon convexity test:

ui = (pi+1 − pi ) ∧ (pi+2 − pi+1) (has direction ± n)

Extract a signed scalar value n · ui
Polygon is convex if all scalar values are the same sign
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Turning Angles and Winding Numbers

Total turning angle:
sum of all turning angles

Convex polygon: 2π

E = Sum of signed turning angles

Winding number of the polygon

W =
E

2π

— Convex polygon: W = 1
— Decremented for each clockwise
loop
— Incremented for each
counterclockwise loop
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Area

Signed area of a 2D polygon

Polygon defined by vertices pi
— Triangulate the polygon

(consistent orientation)
— Sum of the signed triangle areas

Form vi = pi − p1

A =
1

2
(det[v2, v3] + det[v3, v4]

+ det[v4, v5])
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Area

Signed area of a nonconvex 2D
polygon

Use of signed area
makes sum of triangle areas method
work for non-convex polygons

Negative areas cancel duplicate and
extraneous areas
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Area

Determinants representing edges of triangles within the polygon cancel

A =
1

2
(det[p1,p2] + . . . + det[pn−1,pn] + det[pn,p1])

Geometric meaning? Yes: consider each point to be pi − o

Which equation is better?
— Amount of computation for each is similar
— Drawback of point-based: If polygon is far from the origin

then numerical problems can occur
vectors pi and pi+1 will be close to parallel

— Advantage of vector-based: intermediate computations meaningful

⇒ Reducing an equation to its “simplest” form not always “optimal”!
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Area

Generalized determinant:

A =
1

2

∣

∣

∣

∣

p1,1 p1,2 · · · p1,n p1,1
p2,1 p2,2 · · · p2,n p2,1

∣

∣

∣

∣

Compute by adding products of “downward” diagonals and subtracting
products of “upward” diagonals

Example: p1 =

[

0
0

]

p2 =

[

1
0

]

p3 =

[

1
1

]

p4 =

[

0
1

]

(square)

A =
1

2

∣

∣

∣

∣

0 1 1 0 0
0 0 1 1 0

∣

∣

∣

∣

=
1

2
[0 + 1 + 1 + 0− 0− 0− 0− 0] = 1

Example: p1 =

[

0
0

]

p2 =

[

1
1

]

p3 =

[

0
1

]

p4 =

[

1
0

]

(nonsimple)

A =
1

2

∣

∣

∣

∣

0 1 0 1 0
0 1 1 1 0

∣

∣

∣

∣

=
1

2
[0 + 1 + 0 + 0− 0− 0− 1− 0] = 0
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Area

Area of a planar polygon specified by 3D points pi

Recall: cross product ⇒ parallelogram area

Let vi = pi − p1 and ui = vi ∧ vi+1 for i = 2, n − 1

Unit normal to the polygon is n — shares same direction as ui

A =
1

2
n · (u2 + . . . + un−1) (sum of scalar triple products)
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Area

Example: Four coplanar 3D points

p1 =





0
2
0



 p2 =





2
0
0



 p3 =





2
0
3



 p4 =





0
2
3





n =





−1/
√
2

−1/
√
2

0



 v2 =





2
−2
0



 v3 =





2
−2
3



 v4 =





0
0
3





u2 = v2 ∧ v3 =





−6
−6
0



 and u3 = v3 ∧ v4 =





−6
−6
0





A =
1

2
n · (u2 + u3) = 6

√
2
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Area

Normal estimation method:
Good average normal to a non-planar polygon:

n =
(u2 + u3 + . . . + un−2)

‖u2 + u3 + . . . + un−2‖
This method is a weighted average based on the areas of the triangles
— To eliminate this weighting normalize each ui before summing

Example: Estimate a normal to the non-planar polygon

p1 =





0
0
1



 p2 =





1
0
0



 p3 =





1
1
1



 p4 =





0
1
0





u2 =





1
−1
1



 u3 =





−1
1
1





n =





0
0
1




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Application: Planarity Test

CAD file exchange scenario:
— Given a polygon oriented arbitrarily in 3D
— For your application the polygon must be 2D
— How do you verify that the data points are coplanar?

Many ways to solve this problem

Considerations in comparing algorithms:

numerical stability

speed

ability to define a meaningful tolerance

size of data set

maintainability of the algorithm

Order of importance?
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Application: Planarity Test

Three methods to solve this planarity test

Volume test:
— Choose first polygon vertex as a base point
— Form vectors to next three vertices
— Calculate volume spanned by three vectors
— If less than tolerance then four points are coplanar

— Continue for all other sets

Plane test:
— Construct plane through first three vertices

— If all vertices lie in this plane (within tolerance) then points coplanar

Average normal test:
— Find centroid c of all points
— Compute all normals ni = [pi − c] ∧ [pi+1 − c]

— If all angles formed by two subsequent normals less than tolerance then

points coplanar

Tolerance types: ⋄ volume ⋄ distance ⋄ angle
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Application: Inside or Outside?

Inside/outside test or Visibility test
Given: a polygon in the [e1, e2]-plane and a point p
Determine if p lies inside the polygon

This problem important for
— Polygon fill — CAD trimmed surfaces

Polygon can have one or more holes

Important element of visibility algorithms: trivial reject test
— If a point is “obviously” not in the polygon

then output result immediately with minimal calculation

Here: trivial reject based on minmax box around the polygon
⇒ Simple comparison of e1- and e2-coordinates
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Application: Inside or Outside?

Even-Odd Rule
From point p construct a parametric
line in any direction r

l(t) = p+ tr

Count the number of intersections
with the polygon edges for t ≥ 0

Number of intersections
— Odd if p is inside
— Even if p is outside

Best to avoid l(t) passing through
vertex or coincident with edge
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Application: Inside or Outside?

Nonzero Winding Number Rule
Point p and any direction r

l(t) = p+ tr

Count intersections for t ≥ 0
Counting method depends on the
orientation of the polygon edges
— Start with a winding number

W = 0
— “right to left” polygon edge

W = W + 1
— “left to right” polygon edge

W = W − 1
If final W = 0 then point outside
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Application: Inside or Outside?

Visibility test applied to polygon fill

Even-Odd Rule Nonzero Winding Rule

Three examples to highlight differences in the algorithms

Convex polygons: allow for a simple visibility test
— Inside if p is on the same side of all oriented edges
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WYSK

polygon

polyline

cyclic numbering

turning angle

exterior angle

interior angle

polygonal mesh

convex

concave

polygon clipping

sum of interior
angles

sum of exterior
angles

re-entrant angle

equilateral polygon

equiangular
polygon

regular polygon

n-gon

rhombus

simple polygon

trimmed surface

visible region

total turning angle

winding number

polygon area

planarity test

trivial reject

inside/outside test

scalar triple product
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