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Introduction to Points and Vectors in 2D

Hurricane Katrina approaching south Louisiana
Air is moving rapidly – spiraling counterclockwise
Moving faster as it approaches the eye of the hurricane

Air movement can be described by

points: location

vectors: direction and speed

2D slices – cross sections – provide
depth information

This chapter introduces points and
vectors in 2D
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Points and Vectors

Point: reference to a location
Notation: boldface lowercase letters

p =

[

p1
p2

]

p1 and p2 are coordinates

2D points “live” in
2D Euclidean space E

2
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Points and Vectors

Vector: difference of two points
Notation: boldface lowercase letters

v =

[

v1
v2

]

v1 and v2 are components
Move from p to q:

q = p+ v

Calculate each component separately

[

q1
q2

]

=

[

p1
p2

]

+

[

v1
v2

]

=

[

p1 + v1
p2 + v2

]
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Points and Vectors

Vector: direction and distance
(displacement)

v = q− p

Length can be interpreted in variety
of ways
Examples: distance, speed, force
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Points and Vectors

Vector has a tail and a head

Unlike a point, a vector does not
define a position

Two vectors are equal if have the
same component values

Any number of vectors have same
direction and length
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Points and Vectors

Special examples:

Zero vector 0 =

[

0
0

]

This vector has no direction or length

e1 =

[

1
0

]

and e2 =

[

0
1

]

2D vectors “live” in 2D linear space R
2

Other names for R2: real space or vector spaces

Farin & Hansford Practical Linear Algebra 8 / 48



What’s the Difference?

Notation and data structure for
points and vectors the same
Can they be used interchangeably?
No!

Point lives in E
2

Vector lives in R
2

Euclidean and linear spaces
illustrated separately and together.
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What’s the Difference?

Primary reason for differentiating between points and vectors:
achieve geometric constructions that are coordinate independent

⇒ Manipulations applied to geometric objects produce the same result
regardless of location of the coordinate origin

Example: the midpoint of two points

Idea becomes clearer by analyzing some fundamental manipulations of
points and vectors

Let p,q ∈ E
2 and v,w ∈ R

2
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What’s the Difference?

Coordinate Independent Operation

Subtracting a point from another
point:
(q− p) yields a vector v
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What’s the Difference?

Coordinate Independent Operation

Adding or subtracting two vectors
yields another vector

Parallelogram rule:
Vectors v − w and v + w are the
diagonals of the parallelogram
defined by v and w

This is a coordinate independent
operation since vectors are defined as
a difference of points
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What’s the Difference?

Coordinate Independent Operation

Scaling: multiplying a vector by a
scalar s

Scaling a vector is a well-defined
operation

Result sv adjusts the length by the
scaling factor

Direction unchanged if s > 0
Direction reversed for s < 0
If s = 0 result is the zero vector
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What’s the Difference?

Coordinate Independent Operation

Adding a vector to a point (p+ v)
yields another point

Any coordinate independent
combination of two or more points
and/or vectors is formed from one or
more of the coordinate independent
operations
Example: p+ 1

2w
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What’s the Difference?

Coordinate Dependent Operation

Scaling a point (sp) is not a
well-defined operation because it is
not coordinate independent

Scaling the solid black point by
one-half with respect to two different
coordinate systems results in two
different points
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What’s the Difference?

Coordinate Dependent Operation

Adding two points (p+ q) is not a
well-defined operation

Result of adding the two solid black
points is dependent on the
coordinate origin
(Parallelogram rule used here to
construct the results of the additions)

Some special combinations of points
are allowed – more on that later
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Vector Fields

Vector field: every point in a given
region is assigned a vector

Example: simulating air velocity –
lighter gray indicates greater velocity

Visualization of a vector field
requires discretizing it: finite number
of point and vector pairs selected
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Vector Fields

Other important applications of
vector fields: automotive and
aerospace design

Before a car or an airplane is built, it
undergoes extensive aerodynamic
simulations

In these simulations, the vectors that
characterize the flow around an
object are computed from complex
differential equations
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Length of a Vector

Length or magnitude of a vector can represent distance, velocity, or
acceleration

Denote length of v as ‖v‖
Pythagorean theorem:

‖v‖2 = v21 + v22

‖v‖ =
√

v21 + v22

Euclidean norm of a vector
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Length of a Vector

Scale the vector by an amount k then ‖kv‖ = |k |‖v‖
Normalized vector w has unit length: ‖w‖ = 1
Normalized vectors also known as unit vectors

Normalize a vector: scale so that it has unit length
If w is unit length version of v then

w =
v

‖v‖

Each component of v is divided by the nonnegative scalar value ‖v‖
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Length of a Vector

Unit vector: vector of length 1

There are infinitely many unit
vectors.
Imagine drawing them all ...
Resulting figure: a circle of radius
one
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Length of a Vector

Distance between two points
Form a vector defined by two
points: v = q− p

Then calculate ‖v‖
Example:

q =

[

−1
2

]

and p =

[

1
0

]

q− p =

[

−2
2

]

‖q−p‖ =
√

(−2)2 + 22 =
√
8 ≈ 2.83
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Combining Points

Combine two points to get a (meaningful) third one

Example: form midpoint r
of two points p and q

p =

[

1
6

]

r =

[

2
3

]

q =

[

3
0

]
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Combining Points

Construct midpoint using coordinate independent operations

Define r by adding an appropriately scaled version of vector v = q− p to
point p:

r = p+
1

2
v

[

2
3

]

=

[

1
6

]

+
1

2

[

2
−6

]

r can also be defined as

r =
1

2
p+

1

2
q

[

2
3

]

=
1

2

[

1
6

]

+
1

2

[

3
0

]

This is a legal expression for a combination of points
Nothing magical about the factor 1/2 ...
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Combining Points

Point r = p+ t(q− p) is on the line
through p and q

Equivalently

r = (1− t)p+ tq

Sketch: r = 2
3p+ 1

3q

Scalar values (1− t) and t are
coefficients
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Combining Points

Barycentric combination: a weighted sum of points where the coefficients
sum to one

r = (1− t)p+ tq

When one point r is expressed in terms of two others p and q:
coefficients 1− t and t are called the barycentric coordinates of r

Can construct r anywhere on the line defined by p and q

Also called linear interpolation
In this context, t is called a parameter

If we restrict r to the line segment between p and q

then we allow only convex combinations: 0 ≤ t ≤ 1

Define r outside of the line segment between p and q

then t < 0 or t > 1
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Combining Points

Position of r is in the ratio of
t : (1− t) or t/(1− t)

ratio =
||r− p||
||q− r||

In physics r is known as the center of

gravity of p and q with weights 1− t

and t, resp.
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Combining Points

What are the barycentric coordinates of r with respect to p and q?

Ratio of r with respect to p and q is
s1 : s2
Scale ratio values so that they sum
to one –
resulting in (1− t) : t

t =
||r − p||
||q− p||

Then r = (1− t)p+ tq
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Combining Points

Example:

[

6.5
7

]

= (1− t)

[

2
4

]

+ t

[

8
8

]

l1 = ‖r − p‖ ≈ 5.4

l2 = ‖q− r‖ ≈ 1.8

l3 = l1 + l2 ≈ 7.2

t = l1/l3 = 0.75

(1− t) = l2/l3 = 0.25

Verify:
[

6.5
7

]

= 0.25×
[

2
4

]

+ 0.75 ×
[

8
8

]
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Combining Points

Barycentric combinations with more than two points
Given: three noncollinear points
p, q, and r

Any point s can be formed from

s = r + t1(p− r) + t2(q− r)

Coordinate independent operation:
point + vector + vector

s = t1p+ t2q+ (1− t1 − t2)r

= t1p+ t2q+ t3r

t1, t2, t3 are barycentric coordinates
of s with respect to p,q, r
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Combining Points

Combine points so result is a vector
⇒ Coefficients must sum to zero

Example:

e = r − 2p+ q, r,p,q ∈ E
2

Does e have a geometric meaning?

Sum of the coefficients: 1− 2 + 1 = 0 ⇒ e is a vector

How to see this? Rewrite as

e = (r − p) + (q− p)

e is a vector formed from (vector + vector)
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Independence

Two vectors v and w describe a
parallelogram
If this parallelogram has zero area
then the two vectors are parallel

v = cw

Vectors parallel
⇒ linearly dependent
Vectors not parallel
⇒ linearly independent

Farin & Hansford Practical Linear Algebra 32 / 48



Independence

Two linearly independent vectors may be used to write any other vector u
as a linear combination:

u = rv + sw

Two linearly independent vectors in 2D are also called a basis for R2

If v and w are linearly dependent
then cannot write all vectors as a linear combination of them

Next: an example
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Independence

Example:

Let v =

[

1
2

]

and w =

[

2
4

]

Want to write

u =

[

1
0

]

as u = rv + sw

1 = r + 2s

0 = 2r + 4s

No r , s satisfies both equations
⇒ u cannot be written as a linear
combination of v and w
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Dot Product

Given two vectors v and w:

Are they the same vector?

Are they perpendicular to each other?

What angle do they form?

The dot product resolves these questions
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Dot Product

Two perpendicular vectors v and w

From the Pythagorean theorem

‖v − w‖2 = ‖v‖2 + ‖w‖2

Expanding and bringing all terms to
the left-hand side results in

v1w1 + v2w2 = 0 or v · w = 0

Immediate application:

w perpendicular to v when

w =

[

−v2
v1

]
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Dot Product

The dot product of arbitrary vectors v and w is

s = v ·w = v1w1 + v2w2

Dot product returns a scalar s
Called a scalar product or inner product

Symmetry property:
v ·w = w · v
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Dot Product

Geometric meaning
From “left” triangle:

h2 = ‖w‖2(1− cos2(θ))

From “right” triangle:

h2 = ‖v − w‖2 − (‖v‖ − ‖w‖ cos θ)2

Equate ⇒ Law of Cosines

‖v − w‖2 = ‖v‖2 + ‖w‖2

− 2‖v‖‖w‖ cos θ

generalized Pythagorean theorem
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Dot Product

Geometric meaning (con’t)

Explicitly write ‖v −w‖2

‖v − w‖2 = ‖v‖2 − 2v ·w + ‖w‖2

Equating the expressions for
‖v − w‖2 results in:

v · w = ‖v‖‖w‖ cos θ

a very useful expression for the dot
product
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Dot Product

Cosine function:

cos θ =
v · w

‖v‖‖w‖ values range between ± 1

180˚90˚

cos(θ)

θ

1

-1

Perpendicular vectors: cos(90◦) = 0
Same/opposite direction v = kw:

cos θ =
kw ·w

‖kw‖‖w‖ =
k‖w‖2

|k |‖w‖‖w‖ = ±1 ⇒ θ = 0◦ or θ = 180◦
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Dot Product

Three types of angles:

right: cos(θ) = 0 ⇒ v · w = 0

acute: cos(θ) > 0 ⇒ v ·w > 0

obtuse: cos(θ) < 0 ⇒ v ·w < 0

If θ needed
then use arccosine function

θ = acos(
v ·w

‖v‖‖w‖ )
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Dot Product

Example:

v =

[

2
1

]

and w =

[

−1
0

]

Calculate the length of each vector

‖v‖ =
√

22 + 12 =
√
5

‖w‖ =
√

−12 + 02 = 1

cos(θ) =
(2×−1) + (1× 0)√

5× 1
≈ −0.8944

arccos(−0.8944) ≈ 153.4◦

Degrees to radians:

153.4◦ × π

180◦
≈ 2.677 radians
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Orthogonal Projections

Projection of w onto v creates a
footprint of length

b = ||w|| cos(θ)

From basic trigonometry:
cos(θ) = b/hypotenuse Orthogonal

projection of w onto v:

u = (||w|| cos(θ)) v

||v||
=

v · w
||v||2 v
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Orthogonal Projections

u =
v ·w
||v||2 v = projV1

w

V1 is the set of all 2D vectors kv
V1 is a 1D subspace of R2

u is the best approximation
to w in V1

Concept of best approximation
is important for many applications
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Orthogonal Projections

Decompose w into a sum of two perpendicular vectors:

w = u+ u⊥

w resolved into components with respect to two other vectors

u⊥ = w − v · w
||v||2 v

This can also be written as

u⊥ = w − projV1
w

u⊥ is component of w orthogonal to the space of u

Orthogonal projections and vector decomposition are at the core of
constructing the orthonormal coordinate frames
Vector decompostion is key to Fourier analysis, quantum mechanics,
digital audio, video recording
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Inequalities

Cauchy-Schwartz Inequality

(v · w)2 ≤ ‖v‖2‖w‖2

Derived from:

v · w = ‖v‖‖w‖ cos θ
Squaring both sides

(v ·w)2 = ‖v‖2‖w‖2 cos2 θ

and note that 0 ≤ cos2 θ ≤ 1
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Inequalities

The triangle inequality

‖v + w‖ ≤ ‖v‖ + ‖w‖
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WYSK

point versus vector

coordinates versus components

E
2 versus R2

coordinate independent

vector length

unit vector

zero divide tolerance

Pythagorean theorem

distance between two points

parallelogram rule

scaling

ratio

barycentric combination

linear interpolation

convex combination

barycentric coordinates

linearly dependent vectors

linear combination

basis for R2

dot product

Law of Cosines

perpendicular vectors

angle between vectors

orthogonal projection

vector decomposition

Cauchy-Schwartz inequality

triangle inequality
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