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Introduction to Curves

Focus of this chapter: cubic Bézier curves
Invented for car design
— France early 1960s at Rénault and Citroën in Paris
— Techniques still in use today
— called Geometric Modeling or Computer Aided Geometric Design

Apply linear algebra and geometric concepts to the study of curves
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Parametric Curves

Straight line in parametric form:

x(t) = (1− t)a+ tb ⇒ x(0) = a and x(1) = b

Interpret t as time and x(t) as a moving point
Coefficients (1− t) and t are linear polynomials ⇒ linear interpolation

A parametric curve: a curve that can be written as

x(t) =

[

f (t)
g(t)

]

where f (t) and g(t) are functions of the parameter t

Linear interpolant: f (t) = (1− t)a1 + tb1 and g(t) = (1− t)a2 + tb2
In general: f and g can be any functions
— polynomial, trig, exponential, ...
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Parametric Curves

Next: study motion along curves

Cubic Bézier curves:
Start with four points in 2D or 3D

b0,b1,b2,b3

Bézier control points
⇒ Bézier controls polygon

— not assumed to be closed
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Parametric Curves

To create plots: evaluate the cubic curve at many t-parameters
— t ∈ [0, 1]
— Example: evaluate at 50 points

t = 0, 1/50, 2/50, . . . , 49/50, 1

Evaluation points connected by straight line segments
Choose enough t-parameters so the curve looks smooth
⇒ plotting a discrete approximation of the curve

Two examples that differ in the location of b0 only
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Parametric Curves

Evaluation: the de Casteljau algorithm

Generate one point
— Pick a parameter value t ∈ [0, 1]
— Linear interpolation on each leg

b1
0(t) = (1− t)b0 + tb1

b1
1(t) = (1− t)b1 + tb2

b1
2(t) = (1− t)b2 + tb3

Repeat on new polygon

b2
0 = (1− t)b1

0(t) + tb1
1(t)

b2
1 = (1− t)b1

1(t) + tb1
2(t)

Repeat

b3
0(t) = (1 − t)b2

0(t) + tb2
1(t)

⇒ Point on the Bézier curve
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Parametric Curves

Points bji are called intermediate Bézier points

Schematic

b0
b1 b10
b2 b11 b20
b3 b12 b21 b30

stage : 1 2 3

Except for (input) Bézier polygon each point is a function of t
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Parametric Curves

Example: de Casteljau algorithm at t = 1/2

b0 =

[

4
4

]

b1 =

[

0
8

]

b2 =

[

8
8

]

b3 =

[

8
0

]

b1
0 =

1

2
b0 +

1

2
b1 =

[

2
6

]

b1
1 =

1

2
b1 +

1

2
b2 =

[

4
8

]

b1
2 =

1

2
b2 +

1

2
b3 =

[

8
4

]

b2
0 =

1

2
b1
0 +

1

2
b1
1 =

[

3
7

]

b2
1 =

1

2
b1
1 +

1

2
b1
2 =

[

6
6

]

b3
0 =

1

2
b2
0 +

1

2
b2
1 =

[

9
2
13
2

]
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Parametric Curves

Equation for a cubic Bézier curve

Expand: b30(t) = (1− t)b20(t) + tb21(t)

b30 = (1− t)b20 + tb21

= (1− t)
[

(1− t)b10 + tb11
]

+ t
[

(1− t)b11 + tb12
]

= (1− t) [(1− t) [(1− t)b0 + tb1] + t [(1− t)b1 + tb2]]

+ t [(1− t) [(1− t)b1 + tb2] + t [(1− t)b2 + tb3]]

Collect terms with the same bi

b30(t) = (1− t)3b0 + 3(1 − t)2tb1 + 3(1− t)t2b2 + t3b3

General form of a cubic Bézier curve
b30(t) traces out a curve as t traces out values between 0 and 1
Shorter notation: b(t) instead of b30(t)
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Parametric Curves

Bernstein basis functions

B
3
0

B
3
1 B

3
2

B
3
3

Cubic polynomials — degree 3

B3
0 (t) = (1− t)3

B3
1 (t) = 3(1− t)2t

B3
2 (t) = 3(1− t)t2

B3
3 (t) = t3

b30(t) = B3
0 (t)b0 + B3

1 (t)b1

+ B3
2 (t)b2 + B3

3 (t)b3

All cubic polynomials can be
expressed in terms of Bernstein
polynomials
⇒ form a basis for all cubic
polynomials
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Parametric Curves

Subdivision

A subset of intermediate Bézier
points form two cubic polygons
— Mimic the curve’s shape
Curve segment from b0 to b30(t)

b0,b
1
0,b

2
0,b

3
0

Curve segment from b30(t) to b3

b30,b
2
1,b

1
2,b3

Identify polygons in schematic

b0

b1 b1
0

b2 b1
1 b2

0

b3 b1
2 b2

1 b3
0
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Properties of Bézier Curves

Endpoint interpolation: b(0) = b0 and b(1) = b3

Affine invariance: affine map of the control polygon
then curve undergoes the same transformation
⇒ Bernstein polynomials sum to one

(1− t)3 + 3(1 − t)2t + 3(1 − t)t2 + t3 = [(1− t) + t]3 = 1

Every point on the curve is a barycentric combination of the control points
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Properties of Bézier Curves

Bernstein polynomials are nonnegative for t ∈ [0, 1]
⇒ Every point on the curve is a convex combination of the control points
⇒ Convex hull property: for t ∈ [0, 1] the curve lies in the convex hull of
the control polygon

Extrapolation: evaluate the curve for t-values outside of [0, 1]
— Can no longer predict the shape of the curve

convex hull minmax box
The convex hull lies inside the minmax box
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The Matrix Form

Bézier curve expressed using dot products:

b(t) =
[

b0 b1 b2 b3
]









(1− t)3

3(1 − t)2t
3(1 − t)t2

t3









Most well-known: cubic polynomials as combinations of the monomials:

1, t, t2, t3

Rewrite the Bézier curve:

b(t) = b0 + 3t(b1 − b0) + 3t2(b2 − 2b1 + b0) + t3(b3 − 3b2 + 3b1 − b0)

⇒ Matrix form of a Bézier curve

b(t) =
[

b0 b1 b2 b3
]









1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1

















1
t

t2

t3









Farin & Hansford Practical Linear Algebra 15 / 32



The Matrix Form

A curve in monomial form:

b(t) = b0 + 3t(b1 − b0) + 3t2(b2 − 2b1 + b0) + t3(b3 − 3b2 + 3b1 − b0)

= a0 + a1t + a2t
2 + a3t

3

Geometrically: a0 = b0 is a point a1, a2, a3 are vectors

Using the dot product form:

b(t) =
[

a0 a1 a2 a3
]









1
t

t2

t3









⇒ the monomial ai are defined as

[

a0 a1 a2 a3
]

=
[

b0 b1 b2 b3
]









1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1








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The Matrix Form

The inverse process:
Given a curve in monomial form, how to write it as a Bézier curve?

[

b0 b1 b2 b3
]

=
[

a0 a1 a2 a3
]









1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1









−1

A matrix inversion is all that is needed here!
— Matrix is nonsingular

⇒ Any cubic curve can be written in either Bézier or monomial form
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Derivatives

Cubic Bézier curve: two (in 2D) or three (in 3D) cubic equations in t

b30(t) = (1− t)3b0 + 3(1 − t)2tb1 + 3(1− t)t2b2 + t3b3

First derivative vector: derivative in each of the components

db(t)

dt
= −3(1− t)2b0 − 6(1− t)tb1 + 3(1− t)2b1

− 3t2b2 + 6(1− t)tb2 + 3t2b3

Rearrange and use abbreviation db(t)
dt

= ḃ(t)

ḃ(t) = 3(1 − t)2[b1 − b0] + 6(1− t)t[b2 − b1] + 3t2[b3 − b2]

⇒ Derivative curve is degree two
⇒ Derivative curve has control vectors
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Derivatives

One very nice feature of the de Casteljau algorithm:
intermediate Bézier points lead to simple expression of the derivative

ḃ(t) = 3
[

b21(t)− b20(t)
]

Very simple form at the endpoints

ḃ(0) = 3[b1 − b0] ḃ(1) = 3[b3 − b2]

Control polygon is tangent to the curve at the curve’s endpoints
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Derivatives

Example: Compute first derivative vector for t = 1/2

Evaluate the direct equation

ḃ

(

1

2

)

= 3 ·
1

4

[[

0
8

]

−

[

4
4

]]

+ 6 ·
1

4

[[

8
8

]

−

[

0
8

]]

+ 3 ·
1

4

[[

8
0

]

−

[

8
8

]]

=

[

9
−3

]

Use intermediate control points

ḃ

(

1

2

)

= 3

[

b2
1

(

1

2

)

− b2
0

(

1

2

)]

= 3

[[

6
6

]

−

[

3
7

]]

=

[

9
−3

]
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Derivatives

The derivative of a curve is a vector

— It is tangent to the curve

Can interpret it as a velocity vector

— Interpret parameter t as time
then arrive at b(t) at time t with velocity ḃ(t)

— Large magnitude of the tangent vector ⇒ moving fast

If we rotate the control polygon, the curve will follow
— And so will all of its derivative vectors

In calculus: a “horizontal tangent” has a special meaning
— It indicates an extreme value of a function
— Notion of an extreme value is meaningless for parametric curves

⋄ Term “horizontal tangent” depends on the curve’s orientation
⋄ Not a property of the curve itself
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Derivatives

Second derivative vector: may interpret as acceleration

ḃ(t) = 3(1− t)2[b1 − b0] + 6(1− t)t[b2 − b1] + 3t2[b3 − b2]

b̈(t) = −6(1− t)[b1 − b0]− 6t[b2 − b1] + 6(1− t)[b2 − b1] + 6t[b3 − b2]

= 6(1− t)[b2 − 2b1 + b0] + 6t[b3 − 2b2 + b1]

Via the de Casteljau algorithm:

b̈(t) = 6
[

b12(t)− 2b11(t) + b10(t)
]

Simple form at endpoints: b̈(0) = 6[b2 − 2b1 + b0]
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Composite Curves

For “real” shapes need to use many cubic Bézier curves
— Smooth overall curve ⇒ pieces must join smoothly

The letter “D” as a collection of cubic Bézier curves
— Only one Bézier polygon of many is shown
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Composite Curves

Smoothly joining Bézier curves

Two Bézier curves:
b0,b1,b2,b3 and c0, c1, c2, c3
Common point b3 = c0

Same tangent vector direction:

c1 − c0 = c[b3 − b2]

For some positive real number c
⇒ b2, b3 = c0, c1 collinear
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The Geometry of Planar Curves

Imagine driving with constant speed
Curviness of road proportional to
turning of steering wheel

Sample tangents at various points
— Successive tangents differ
significantly

⇒ curvature is high
— Successive tangents are almost
identical

⇒ curvature is low

Curvature: rate of change of
tangents
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The Geometry of Planar Curves

Tangent determined by the first derivative
⇒ its rate of change should also involve the second derivative

Curvature: κ(t) =

∥

∥ḃ ∧ b̈
∥

∥

∥

∥ḃ
∥

∥

3

2D: can use special formula

κ(t) =

∣

∣ḃ b̈
∣

∣

∥

∥ḃ
∥

∥

3

⇒ 2D curvature is signed
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The Geometry of Planar Curves

Inflection point: a point where κ = 0
— Curvature changes sign on either side of the inflection point
— First and second derivative vectors are parallel or linearly dependent
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Moving along a Curve

Curve motions: “B” sliding along a Bézier curve

B B B B B B B B B B B B B B B
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Moving along a Curve

Position an object at a point on a 2D curve

Point on curve: b(t)

Tangent ḃ

Vector n perpendicular to tangent

⇒ Local coordinate system
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Moving along a Curve

Position an object at a point on a 3D curve

Frenet frame

f1 =
ḃ(t)

∥

∥ḃ(t)
∥

∥

f3 =
ḃ(t) ∧ b̈(t)

∥

∥ḃ(t) ∧ b̈(t)
∥

∥

f2 = f3 ∧ f1

Osculating plane:
defined by ḃ(t) and b̈(t)
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Moving along a Curve

Suppose an object is in some local coordinate system with axes u1,u2,u3
Any point of the object has coordinates u

Mapped to: x(t,u) = b(t) + u1f1 + u2f2 + u3f3

A typical application: robot motion

— A robot arm is moved along a curve
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WYSK

linear interpolation

parametric curve

de Casteljau algorithm

cubic Bézier curve

subdivision

affine invariance

convex hull property

Bernstein polynomials

basis function

barycentric combination

matrix form

cubic monomial curve

Bernstein and monomial
conversion

nonsingular

first derivative

second derivative

parallelogram rule

composite Bézier curves

curvature

inflection point

Frenet frame

osculating plane
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