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Introduction to Curves

Focus of this chapter: cubic Bézier curves

Invented for car design
— France early 1960s at Rénault and Citroén in Paris

— Techniques still in use today
— called Geometric Modeling or Computer Aided Geometric Design

Apply linear algebra and geometric concepts to the study of curves
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Parametric Curves

Straight line in parametric form:
x(t)=(1—t)a+tbh = x(0)=aand x(1)=b

Interpret t as time and x(t) as a moving point
Coefficients (1 — t) and t are linear polynomials = linear interpolation

A : a curve that can be written as
f(t)}
X(t) =
(t) [g(t)

where f(t) and g(t) are functions of the parameter t

Linear interpolant: f(t) = (1 — t)a; + thy and g(t) = (1 — t)ax + tho
In general: f and g can be any functions
— polynomial, trig, exponential, ...
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Next: study motion along curves

Cubic Bézier curves:

Start with four points in 2D or 3D

bo, by, b2, b3
Bézier control points
= Bézier controls polygon

— not assumed to be closed
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Parametric Curves

To create plots: the cubic curve at many t-parameters
—te|0,1]
— Example: evaluate at 50 points

t =0,1/50,2/50,...,49/50,1

Evaluation points connected by straight line segments
Choose enough t-parameters so the curve looks smooth
= plotting a of the curve

Two examples that differ in the location of by only
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Parametric Curves

Evaluation: the

Generate one point
— Pick a parameter value t € [0, 1]
— Linear interpolation on each leg

bg(t) = (1 — t)bg + tby
bi(t) = (1 — t)b; + tby
b3(t) = (1 — t)by + tbs
Repeat on new polygon
bZ = (1 — t)b}(t) + thi(t)
b? = (1 — t)bi(t) + tb3(t)
Repeat
b3(t) = (1 — t)b3(t) + thi(t)

= Point on the Bézier curve
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Parametric Curves

Points bjl are called

bo

bg
b
b

b,
b
b

stage :

2
0
2
1

b
b

1
1
1
2

1

2
Except for (input) Bézier polygon each point is a function of ¢

3

Schematic

2
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Parametric Curves

Example: de Casteljau algorithm at t = 1/2

o= [f] o= 1] o= [} 3= []

- | b} — %bm—%bl: 2
bl — %bl + %bg - g
b; = %b2 + %b3 = i
b3 = 3bh+ 5b = 3
b} = %b?ﬁ—%b% = 2
b3 = %b§+ %b2 = %
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Parametric Curves

Equation for a cubic Bézier curve

Expand: b3(t) = (1 — t)b3(t) + th3(t)

by = (1-—t)b2+ tb?
= (1—1t)[(1 - t)by + tbi] +t [(1 — t)b} + tb}]
= (]. - t) [(1 - t) [(1 - t)bo + tbl] +t [(1 - t)bl + tb2]]

+t[(1—¢t)[(1 — t)by + thy] 4+ t[(1 — t)by + th3]]
Collect terms with the same b;
b3(t) = (1 — t)*bg + 3(1 — t)?tby + 3(1 — t)tby + t°b3

General form of a cubic Bézier curve
b3(t) traces out a curve as t traces out values between 0 and 1
Shorter notation: b(t) instead of b(t)
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Parametric Curves

Cubic polynomials — degree 3

B, B,

Bs(t) = (1 —t)?

B3(t) =3(1 — t)°t
g B3(t) = 3(1 — t)t?
: B3(t) =t3

b3(t) = Bg(t)bo + Bi(t)bs
+ B3(t)b2 + B3(t)bs

All cubic polynomials can be
expressed in terms of Bernstein

Farin & Hansford
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Parametric Curves

A subset of intermediate Bézier
points form two cubic polygons
— Mimic the curve's shape

Curve segment from by to b3(t)

bo, b}, b3, b3

Curve segment from bj(t) to bs
bgv b%v b%? b3

Identify polygons in schematic

bo
b bl
b, bl b

b; bl b2 b}
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Properties of Bézier Curves

b(O) = bo and b(].) = b3

affine map of the control polygon
then curve undergoes the same transformation
= Bernstein polynomials sum to one

(1—t)P+31-t)’t+31-t)?+t3=[1—-t)+t]PP=1

Every point on the curve is a barycentric combination of the control points
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Bernstein polynomials are nonnegative for ¢ € [0, 1]

= Every point on the curve is a convex combination of the control points
= Convex hull property: for t € [0, 1] the curve lies in the convex hull of
the control polygon

Extrapolation: evaluate the curve for t-values outside of [0, 1]
— Can no longer predict the shape of the curve

convex hull minmax box
The convex hull lies inside the minmax box
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The Matrix Form

Bézier curve expressed using dot products:

(1—1)3
2
b(t)=[bo by by b;] 28 _ Z;tg
+3

Most well-known: cubic polynomials as combinations of the
1,t,t2, 3
Rewrite the Bézier curve:
b(t) = bg + 3t(b; — bg) + 3t%(by — 2by + bg) + t3(bs — 3by + 3b; — by)

= Matrix form of a Bézier curve

1 -3 3 -1 1
0 3 -6 3 t
b(t):[bo b1 b2 b3] 0 0 3 _3 t2
0 0 0 1 t3
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The Matrix Form

A curve in monomial form:

b(t) = by + 3t(b; — bg) + 3t%(by — 2by + bg) + t3(bs — 3by + 3b; — by)
=ag + a;t + art? + ast’

Geometrically: ag = by is a point ai, ap, as are vectors

Using the dot product form:

1

t

b(t):[ao a; as 33] t2

t3

= the monomial a; are defined as

1 -3 3 -1
0 3 -6 3
[ao a; ap a3]:[b0 b1 b2 b3] 0 0 3 _3
0 O 0 1
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The Matrix Form

The inverse process:
Given a curve in monomial form, how to write it as a Bézier curve?

1 -3 3 -1
[bo b1 b2 b3]:[ao a; ar a3] 8 8 _36 _33
0 0 0 1

A matrix inversion is all that is needed here!
— Matrix is nonsingular
=- Any cubic curve can be written in either Bézier or monomial form
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Derivatives

Cubic Bézier curve: two (in 2D) or three (in 3D) cubic equations in t

b3(t) = (1 — t)*bg + 3(1 — t)%tby + 3(1 — t)t?by + t°bs
. derivative in each of the components

—2 = —3(1-1t)*bg — 6(1 — t)tby + 3(1 — t)?by
—3t%by + 6(1 — t)thy + 3t2b3

- db "
Rearrange and use abbreviation d(tt) = b(t)

b(t) = 3(1 — t)?[by — bo] + 6(1 — t)t[by — by] + 3t2[bs — by]

= Derivative curve is degree two
= Derivative curve has control vectors
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Derivatives

One very nice feature of the de Casteljau algorithm:
intermediate Bézier points lead to simple expression of the derivative

b(t) = 3 [bi(t) — b3(t)]
Very simple form at the endpoints
b(0) = 3[by — by] b(1) = 3[bs — by]

Control polygon is tangent to the curve at the curve's endpoints
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Derivatives

Example: Compute first derivative vector for t = 1/2
Evaluate the direct equation

R
)

{61
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S8 BT
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Derivatives

The derivative of a curve is a vector
— It is tangent to the curve

Can interpret it as a velocity vector
— Interpret parameter t as time
then arrive at b(t) at time t with velocity b(t)
— Large magnitude of the tangent vector = moving fast

If we rotate the control polygon, the curve will follow
— And so will all of its derivative vectors

In calculus: a "horizontal tangent” has a special meaning

— It indicates an extreme value of a function

— Notion of an extreme value is meaningless for parametric curves
o Term "horizontal tangent” depends on the curve's orientation
¢ Not a property of the curve itself
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Derivatives

. may interpret as acceleration

b(t) = 3(1 — t)?[by — bo] + 6(1 — t)t[by — by] + 3t%[bs — by]
b(t) = —6(1 — t)[b; — bo] — 6t[by — by] + 6(1 — t)[ba — by] + 6t[bs — by]
= 6(1 — t)[by — 2by + bo] + 6t[bs — 2bs + by]
Via the de Casteljau algorithm:

b(t) = 6 [b3(t) — 2b1(t) + bg(t)]
Simple form at endpoints: b(0) = 6[by — 2b; + bg]
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For “real” shapes need to use many cubic Bézier curves

— Smooth overall curve = pieces must join smoothly

The letter “D” as a collection of cubic Bézier curves

— Only one Bézier polygon of many is shown s
" Farin&Hansfod  Practical Linear Algebra
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Smoothly joining Bézier curves

Two Bézier curves:
bo, b1, b2, b3 and ¢, c1,c2, €3
Common point bs = ¢

Same tangent vector direction:

Ci1 —Cyp = C[b3 — bz]

For some positive real number ¢
= by, bz = cg, c; collinear
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The Geometry of Planar Curves

Farin & Hansford

Practical Linear Algebra

Imagine driving with constant speed
Curviness of road proportional to
turning of steering wheel

Sample tangents at various points
— Successive tangents differ
significantly

= curvature is high
— Successive tangents are almost

identical
= curvature is low

rate of change of
tangents
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The Geometry of Planar Curves

Tangent determined by the first derivative
= its rate of change should also involve the second derivative

Curvature: k(t) =

2D: can use special formula

= 2D curvature is signed

Farin & Hansford Practical Linear Algebra 26 / 32



The Geometry of Planar Curves

a point where Kk =0
— Curvature changes sign on either side of the inflection point
— First and second derivative vectors are parallel or linearly dependent
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Curve motions: “B" sliding along a Bézier curve

«Or <F» A

a



Position an object at a point on a 2D curve

Point on curve: b(t)

Tangent b

Vector n perpendicular to tangent

= Local coordinate system
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Position an object at a point on a 3D curve

Frenet frame

(b

LIG]]

_ b(t) A b(t)
[b(t) A b(2)]

fr=fHAH
Osculating plane:

defined by b(t) and b(t)
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Moving along a Curve

Suppose an object is in some local coordinate system with axes uz, u, us
Any point of the object has coordinates u

Mapped to:  x(t,u) = b(t) + uifi + wofr + usfs

A typical application: robot motion

— A robot arm is moved along a curve
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WYSK

linear interpolation
parametric curve

de Casteljau algorithm
cubic Bézier curve
subdivision

affine invariance
convex hull property
Bernstein polynomials
basis function
barycentric combination
matrix form

cubic monomial curve
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Bernstein and monomial
conversion

nonsingular

first derivative

second derivative
parallelogram rule
composite Bézier curves
curvature

inflection point

Frenet frame

osculating plane
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