Practical Linear Algebra: A GEOMETRY TOOLBOX

Third edition

Chapter 3: Lining Up: 2D Lines

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- Introduction to 2D Lines
- 2 Defining a Line
- Parametric Equation of a Line
- Implicit Equation of a Line
- Explicit Equation of a Line
- 6 Converting Between Parametric and Implicit Equations
- Distance of a Point to a Line
- The Foot of a Point
- A Meeting Place: Computing Intersections
- **WYSK**

Introduction to 2D Lines

2D lines are the building blocks for many geometric constructions

Two sets of parallel lines overlaid Interference pattern called *Moiré pattern*Used in optics for checking the properties of lenses

Chapter focus:

- representations for lines
- distance from a line
- intersections

Defining a Line

Two elements of 2D geometry define a line:

Elements can be

- two points
- a point and a vector parallel to the line
- a point and a vector perpendicular to the line

Normal to a line: unit vector that is perpendicular (or orthogonal) to a line

Defining a Line

Families of lines

One family of lines shares a common point The other family of lines shares the same normal

$$\mathbf{I}(t) = \mathbf{p} + t\mathbf{v}$$

where $\textbf{p} \in \mathbb{E}^2$ and $\textbf{v} \in \mathbb{R}^2$

Scalar value t is the parameter

Evaluating for specific parameter generates a point on the line

Parametric form $\mathbf{I}(t) = \mathbf{p} + t\mathbf{v}$ in terms of barycentric coordinates:

Let
$$\mathbf{v} = \mathbf{q} - \mathbf{p}$$
, then

$$\mathbf{I}(t) = (1-t)\mathbf{p} + t\mathbf{q}$$

(1-t) and t are the barycentric coordinates of a point on the line with respect to \mathbf{p} and \mathbf{q} , resp.

Typically referred to as linear interpolation

Barycentric combination: sum of coefficients of points is one

$$\mathbf{I}(t) = (1-t)\mathbf{p} + t\mathbf{q}$$

For $t \in [0,1]$: generates points on line between **p** and **q**

This is a convex combination

t < 0 generates points on the line "behind" ${f p}$ t > 1 generates points "past" ${f q}$

(Intermed as assistant for in I(t)

(Interpret as scaling of ${f v}$ in ${f I}(t)={f p}+t{f v})$

This is extrapolation

Parametric form very good for computing points on a line

Example: compute ten equally spaced points on line segment through ${\bf p}$ and ${\bf q}$

$$I(t) = (1 - t)\mathbf{p} + t\mathbf{q}$$

 $t = i/9, \qquad i = 0, \dots, 9$

$$i = 0 \rightarrow t = 0 \rightarrow \mathbf{p}$$

 $i = 9 \rightarrow t = 1 \rightarrow \mathbf{q}$

Equally spaced parameter values correspond to equally spaced points

Parametrization: speed line is traversed

Point \mathbf{p} and a vector \mathbf{a} perpendicular to the line For any point \mathbf{x} on the line

$$\mathbf{a}\cdot(\mathbf{x}-\mathbf{p})=0$$

a and $(\mathbf{x} - \mathbf{p})$ are perpendicular If **a** unit length, called point normal form

Expand:

 $a_1x_1 + a_2x_2 + (-a_1p_1 - a_2p_2) = 0$ Results in familiar form:

$$ax_1 + bx_2 + c = 0$$

Given: two points on the line

$$\mathbf{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad \text{and} \quad \mathbf{q} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Find: implicit line $ax_1 + bx_2 + c = 0$

$$\mathbf{v} = \mathbf{q} - \mathbf{p} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

$$c = 2 \times 2 - 4 \times 2 = -4$$

Implicit equation of the line:

$$-2x_1 + 4x_2 - 4 = 0$$

(Not point normal form)

Implicit form good for deciding if an arbitrary point lies on the line

For given point x

$$f = ax_1 + bx_2 + c$$

If f = 0 then the point is on the line

Numerical caveat:

Checking equality f = 0.0 with floating point numbers not recommended

Tolerance ϵ needed Meaningful tolerance: true distance of **x** to line

$$d = \frac{f}{\|\mathbf{a}\|}$$

Sign of d indicates side of the line

Explicit form is closely related to the implicit form $ax_1 + bx_2 + c = 0$ Expresses x_2 as a function of x_1

$$x_2 = -\frac{a}{h}x_1 - \frac{c}{h}$$

Simpler: $x_2 = \hat{a}x_1 + \hat{b}$

Geometric meaning of coefficients:

â is the slope "rise/run"

 \hat{b} is the \mathbf{e}_2 -intercept

Example: $x_2 = 1/3x_1 + 1$

Drawback: vertical line has infinite

slope

Advantages to both the parametric and implicit representations of a line

Depending on the geometric algorithm may be convenient to use one form rather than the other

Ignore the explicit form: not very useful for general 2D geometry

15 / 27

Parametric to Implicit

Given: I(t) = p + tv

Find: coefficients a, b, c of $ax_1 + bx_2 + c = 0$

Solution: Form a vector $\mathbf{a} = \begin{bmatrix} -v_2 \\ v_1 \end{bmatrix}$ perpendicular to vector \mathbf{v}

Determines the coefficients $a = a_1$ and $b = a_2$

Use **p** from $\mathbf{I}(t)$ to compute $c = -(a_1p_1 + a_2p_2)$

Implicit to Parametric

Given: $ax_1 + bx_2 + c = 0$

Find: I(t) = p + tv

Solution: Need one point on the line and a vector parallel to the line

Vector $\mathbf{v} = \begin{bmatrix} b \\ -a \end{bmatrix}$ is perpendicular to \mathbf{a}

Point candidates: intersections with the e_1 - or e_2 -axis

$$\begin{bmatrix} -c/a \\ 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 \\ -c/b \end{bmatrix}$$

For numerical stability, choose the intersection closest to the origin

Farin & Hansford

Non-uniqueness of representations

Two parametric representations for the same line Lines will be *traced* will differently

Conversion process – for example parametric \rightarrow implicit \rightarrow parametric Original and final parametric form different in general

Distance of a Point to a Line

Robot will travel along the line (thick black)
Points represent objects in the room
Verify needed robot clearance (gray)
by computing distance of point to line

Smallest distance $d(\mathbf{r}, \mathbf{l})$ of a point to a line is the orthogonal or perpendicular distance

Distance of a Point to a Line

Starting with an Implicit Line

Given: I: $ax_1 + bx + c$ and point **r**

Find: $d(\mathbf{r}, \mathbf{l})$

Solution: let $\mathbf{a} = \begin{bmatrix} a \\ b \end{bmatrix}$

$$d = \frac{ar_1 + br_2 + c}{\|\mathbf{a}\|} = \frac{\mathbf{a} \cdot (\mathbf{r} - \mathbf{p})}{\|\mathbf{a}\|}$$

Let
$$\mathbf{w} = \mathbf{r} - \mathbf{p}$$

 $\mathbf{v} = \mathbf{a} \cdot \mathbf{w} = \|\mathbf{a}\| \|\mathbf{w}\| \cos(\theta)$

$$\cos(\theta) = \frac{d}{\|\mathbf{w}\|}$$
 then $v = \|\mathbf{a}\|d$

$$d = \frac{ar_1 + br_2 + c}{\|\mathbf{a}\|}$$

Distance of a Point to a Line

Starting with a Parametric Line

Given: I(t) = p + tv and a point r

Find: $d(\mathbf{r}, \mathbf{l})$

Solution: Let $\mathbf{w} = \mathbf{r} - \mathbf{p}$

$$d = \|\mathbf{w}\|\sin(\alpha)$$

$$\sin(\alpha) = \sqrt{1 - \cos(\alpha)^2}$$

$$\cos(\alpha) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

The Foot of a Point

Which point on the line is closest to a given point? This point is the foot of the given point

Given: I(t) = p + tv and point r

Find: q, the foot of **r**

Solution: t such that $\mathbf{q} = \mathbf{p} + t\mathbf{v}$

Define $\mathbf{w} = \mathbf{r} - \mathbf{p}$

$$\cos(\theta) = \frac{\|t\mathbf{v}\|}{\|\mathbf{w}\|} = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

Solve for t

$$t = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|^2}$$

Intersection problems important in many applications Fun figure: finding intersections to create an artistic image

Possible questions:

- Do the lines intersect?
- At what point do they intersect?
- At what parameter value on one or both lines is the intersection point?

Question(s) + line representation(s) ⇒ best method

Parametric and Implicit

Given:

$${f I}_1(t) = {f p} + t{f v}$$

 ${f I}_2: ax_1 + bx_2 + c = 0$

Find: intersection point i Solution: $\mathbf{i} = \mathbf{p} + \hat{t}\mathbf{v}$ $a[p_1 + \hat{t}v_1] + b[p_2 + \hat{t}v_2] + c = 0$ One equation and one unknown

$$\hat{t} = \frac{-c - ap_1 - bp_2}{av_1 + bv_2}$$

$$\mathbf{i} = \mathbf{I}_1(\hat{t})$$

What if the lines are parallel?

Both Parametric

Given:

$$\mathbf{I}_1(t) = \mathbf{p} + t\mathbf{v}$$
 $\mathbf{I}_2(s) = \mathbf{q} + s\mathbf{w}$

Find: intersection point i Solution: \hat{t} and \hat{s} such that

$$\mathbf{p} + \hat{t}\mathbf{v} = \mathbf{q} + \hat{s}\mathbf{w}.$$

Rewritten:

$$\hat{t}\mathbf{v} - \hat{s}\mathbf{w} = \mathbf{q} - \mathbf{p}$$

Two equations and two unknowns

If \mathbf{v} and \mathbf{w} linearly dependent: no solution

Geometric meaning?

Both Implicit

Given:

$$\mathbf{I}_1 : ax_1 + bx_2 + c = 0$$

 $\mathbf{I}_2 : \bar{a}x_1 + \bar{b}x_2 + \bar{c} = 0$

Find: intersection point $\mathbf{i} = \hat{\mathbf{x}}$ that satisfies \mathbf{I}_1 and \mathbf{I}_2 Solution:

$$a\hat{x}_1 + b\hat{x}_2 = -c$$
$$\bar{a}\hat{x}_1 + \bar{b}\hat{x}_2 = -\bar{c}$$

Two equations and two unknowns

Lines parallel

 \Rightarrow **a** and **ā** linearly dependent

26 / 27

WYSK

- parametric form of a line
- linear interpolation
- point normal form
- implicit form of a line
- explicit form of a line
- line through two points
- line defined by a point and a vector parallel to the line
- line defined by a point and a vector perpendicular to the line
- distance of a point to a line
- line form conversions
- foot of a point
- intersection of lines

