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Introduction to Linear Maps in 2D

2D linear maps (rotation and scaling)
applied repeatedly to a square

Geometry has two parts

1 description of the objects

2 how these objects can be
changed (transformed)

Transformations also called maps
May be described using the tools of
matrix operations: linear maps

Matrices first introduced by H.
Grassmann in 1844
Became basis of linear algebra
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Skew Target Boxes

Revisit unit square to a rectangular target box mapping
Examine part of mapping that is a linear map

Unit square defined by e1 and e2
Vector v in [e1, e2]-system defined as

v = v1e1 + v2e2

v is now mapped to a vector v′ by

v′ = v1a1 + v2a2

Duplicates the [e1, e2]-geometry in
the [a1, a2]-system
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Skew Target Boxes

Example: linear combination
[a1, a2]-coordinate system: origin and

a1 =

[
2
1

]

a2 =

[
−2
4

]

Given v =

[
1/2
1

]

in [e1, e2]-system

v′ =
1

2
×
[
2
1

]

+ 1×
[
−2
4

]

=

[
−1
9/2

]

v′ has components

[
1/2
1

]

with

respect to [a1, a2]-system

v′ has components

[
−1
9/2

]

with

respect to [e1, e2]-system
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The Matrix Form

Components of a subscripted vector written with a double subscript

a1 =

[
a1,1
a2,1

]

The vector component index precedes the vector subscript

Components for v′ in [e1, e2]-system expressed as

[
−1
9/2

]

=
1

2
×

[
2
1

]

+ 1×
[
−2
4

]

Using matrix notation:

[
−1
9/2

]

=

[
2 −2
1 4

] [
1/2
1

]

2× 2 matrix: 2 rows and 2 columns
— Columns are vectors a1 and a2
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The Matrix Form

In general:

v′ =

[
a1,1 a1,2
a2,1 a2,2

] [
v1
v2

]

= Av

A is a 2× 2 matrix
Elements a1,1 and a2,2 form the diagonal

v′ is the image of v
v is the pre-image of v′

v′ is in the range of the map
v is in the domain of the map
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The Matrix Form

Product Av has two components:

Av =
[
v1a1 + v2a2

]
=

[
v1a1,1 + v2a1,2
v1a2,1 + v2a2,2

]

Each component obtained as a dot product between the corresponding
row of the matrix and v

Example:
[
0 −1
2 4

] [
−1
4

]

=

[
−4
14

]

Column space of A: all v′ formed as linear combination of the columns of
A
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The Matrix Form

[e1, e2]-system can be interpreted as a matrix with columns e1 and e2:

[e1, e2] ≡
[
1 0
0 1

]

Called the 2× 2 identity matrix

Neat way to write matrix-times-vector:

2
1/2

2 −2
1 4

3
4

Interior dimensions (both 2) must be identical
Outer dimensions (2 and 1) indicate the resulting vector or matrix size
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The Matrix Form

Matrix addition:
[
a1,1 a1,2
a2,1 a2,2

]

+

[
b1,1 b1,2
b2,1 b2,2

]

=

[
a1,1 + b1,1 a1,2 + b1,2
a2,1 + b2,1 a2,2 + b2,2

]

Matrices must be of the same dimensions

Distributive law
Av+ Bv = (A + B)v
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The Matrix Form

Transpose matrix denoted by AT

Formed by interchanging the rows and columns of A:

A =

[
1 −2
3 5

]

then AT =

[
1 3
−2 5

]

May think of a vector v as a matrix:

v =

[
−1
4

]

then vT =
[
−1 4

]

Identities:
[A+ B ]T = AT + BT

ATT
= A and [cA]T = cAT
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The Matrix Form

Symmetric matrix: A = AT

Example:
[
5 8
8 1

]

No restrictions on diagonal elements
All other elements equal to element about the diagonal with reversed
indices
For a 2× 2 matrix: a2,1 = a1,2

2× 2 zero matrix: [
0 0
0 0

]
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The Matrix Form

Matrix rank: number of linearly independent column (row) vectors

For 2× 2 matrix columns define an [a1, a2]-system
Full rank=2: a1 and a2 are linearly independent

Rank deficient: matrix that does not have full rank
If a1 and a2 are linearly dependent then matrix has rank 1
Also called a singular matrix

Only matrix with rank zero is zero matrix

Rank of A and AT are equal.

Farin & Hansford Practical Linear Algebra 13 / 51



Linear Spaces

2D linear maps act on vectors in 2D linear spaces
Also known as 2D vector spaces

Standard operations in a linear space are addition and scalar multiplication
of vectors
v′ = v1a1 + v2a2 — linearity property

Linear maps – matrices – characterized by preservation of linear
combinations:

A(au+ bv) = aAu+ bAv.

Let’s break this statement down into the two basic elements:
scalar multiplication and addition
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Linear Spaces

Matrices preserve scalings
Example:

A =

[
−1 1/2
0 −1/2

]

u =

[
1
2

]

v =

[
−1
4

]

A(cu) = cAu

Let c = 2
[
−1 1/2
0 −1/2

](

2×
[
1
2

])

= 2×
[
−1 1/2
0 −1/2

] [
1
2

]

=

[
0
−2

]
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Linear Spaces

Matrices preserve sums
(distributive law):

A(u+ v) = Au+ Av
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Linear Spaces

Matrices preserve linear combinations
A(3u+ 2v)

=

[
−1 1/2
0 −1/2

](

3

[
1
2

]

+ 2

[
−1
4

])

=

[
6
−7

]

3Au+ 2Av

= 3

[
−1 1/2
0 −1/2

] [
1
2

]

+2

[
−1 1/2
0 −1/2

] [
−1
4

]

=

[
6
−7

]
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Scalings

Uniform scaling:

v′ =

[
1/2 0
0 1/2

]

v =

[
v1/2
v2/2

]
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Scalings

General scaling: v′ =

[
s1,1 0
0 s2,2

]

v Example: v′ =

[
1/2 0
0 2

]

v

Scaling affects the area of the object:
— Scale by s1,1 in e1-direction, then area changes by a factor s1,1
— Similarly for s2,2 and e2-direction
Total effect: factor of s1,1s2,2

Action of matrix: action ellipse
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Reflections

Special scaling:

v′ =

[
1 0
0 −1

]

v =

[
v1
−v2

]

v reflected about e1-axis or the line x1 = 0

Reflection maps each vector about a line through the origin
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Reflections

Reflection about line x1 = x2:

v′ =

[
0 1
1 0

]

v =

[
v2
v1

]

Reflections change the sign of the area due to a change in orientation
— Rotate e1 into e2: move in a counterclockwise
— Rotate a1 into a2: move in a clockwise
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Reflections

Reflection?

v′ =

[
−1 0
0 −1

]

v

Check a1 rotate to a2 orientation: counterclockwise
— same as e1, e2 orientation
This is a 180◦ rotation

Action ellipse: circle
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Rotations

Rotate e1 and e2 around the origin to

e′1 =

[
cosα
sinα

]

and e′2 =

[
− sinα
cosα

]

These are the column vectors of the
rotation matrix

R =

[
cosα − sinα
sinα cosα

]
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Rotations

Rotation matrix for α = 45◦:

R =

[√
2/2 −

√
2/2√

2/2
√
2/2

]

Rotations: special class of transformations called rigid body motions

Action ellipse: circle

Rotations do not change areas
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Shears

Map a rectangle to a parallelogram

Example:

v =

[
0
1

]

−→ v′ =

[
d1
1

]

A shear in matrix form:
[
d1
1

]

=

[
1 d1
0 1

] [
0
1

]

Application: generate italic fonts
from standard ones.
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Shears

Shear along the e1-axis applied to an arbitrary vector:

v′ =

[
1 d1
0 1

] [
v1
v2

]

=

[
v1 + v2d1

v2

]
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Shears

Shear along the e2-axis:

v′ =

[
1 0
d2 1

] [
v1
v2

]

=

[
v1

v1d2 + v2

]
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Shears

What is the shear that achieves

v =

[
v1
v2

]

−→ v′ =

[
v1
0

]

?

A shear parallel to the e2-axis:

v′ =

[
v1
0

]

=

[
1 0

−v2/v1 1

] [
v1
v2

]

Shears do not change areas
(See rectangle to parallelogram sketch: both have the same base and the
same height)
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Projections

Parallel projections: all vectors are projected in a parallel direction
2D: all vectors are projected onto a line

Example:

[
3
0

]

=

[
1 0
0 0

] [
3
1

]

Orthogonal projection: angle of
incidence with the line is 90◦

Otherwise: oblique projection

Perspective projection: projection
direction is not constant — not a
linear map
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Projections

Orthogonal projections important for best approximation
Oblique projections important to applications in fields such as computer
graphics and architecture

Main property of a projection: reduces dimensionality

Action ellipse: straight line segment which is covered twice
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Projections

Construction:

Choose unit vector u to define a line onto which to project
Projections of e1 and e2 are column vectors of matrix A

a1 =
u · e1
‖u‖2 u = u1u

a2 =
u · e2
‖u‖2 u = u2u

A =
[
u1u u2u

]
= uuT

u

Example: u = [cos 30◦ sin 30◦]T

Farin & Hansford Practical Linear Algebra 31 / 51



Projections

Projection matrix A =
[
u1u u2u

]
= uuT

Columns of A linearly dependent ⇒ rank one
Map reduces dimensionality ⇒ area after map is zero

Projection matrix is idempotent: A = AA

Geometrically: once a vector projected onto a line, application of same
projection leaves result unchanged

Example: u =

[
1/
√
2

1/
√
2

]

then A =

[
0.5 0.5
0.5 0.5

]
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Projections

Action of projection matrix on a vector x:

Ax = uuTx = (u · x)u

Same result as orthogonal projections in Chapter 2

Let y be projection of x onto u then x = y + y⊥

Ax = uuTy + uuTy⊥

Since uTy = ‖y‖ and uTy⊥ = 0

Ax = ‖y‖u
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Areas and Linear Maps: Determinants

2D linear map takes
[e1, e2] to [a1, a2]
How does linear map affect area?

area(e1, e2) = 1
(Square spanned by [e1, e2])

P = area of parallelogram spanned
by [a1, a2]
P = 2T
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Areas and Linear Maps: Determinants

Area T of triangle formed by
a1 and a2:

T = a1,1a2,2 − T1 − T2 − T3

Observe that

T1 =
1

2
a1,1a2,1

T2 =
1

2
(a1,1 − a1,2)(a2,2 − a2,1)

T3 =
1

2
a1,2a2,2

T =
1

2
a1,1a2,2 −

1

2
a1,2a2,1

P = a1,1a2,2 − a1,2a2,1
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Areas and Linear Maps: Determinants

P: (signed) area of the parallelogram
spanned by A = [a1, a2]
This is the determinant of A
— Notation: detA or |A|

|A| =
∣
∣
∣
∣

a1,1 a1,2
a2,1 a2,2

∣
∣
∣
∣
= a1,1a2,2−a1,2a2,1
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Areas and Linear Maps: Determinants

Determinant characterizes a linear map:

If |A| = 1 then linear map does not change areas

If 0 ≤ |A| < 1 then linear map shrinks areas

If |A| = 0 then matrix is rank deficient

If |A| > 1 then linear map expands areas

If |A| < 0 then linear map changes the orientation of objects

∣
∣
∣
∣

1 5
0 1

∣
∣
∣
∣
= (1)(1) − (5)(0) = 1

∣
∣
∣
∣

1 0
0 −1

∣
∣
∣
∣
= (1)(−1) − (0)(0) = −1

∣
∣
∣
∣

0.5 0.5
0.5 0.5

∣
∣
∣
∣
= (0.5)(0.5) − (0.5)(0.5) = 0
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Areas and Linear Maps: Determinants

|ca1, a2| = c |a1, a2| = c |A|

If one column of A scaled by c

then A’s determinant scaled by c

Sketch: c = 2
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Areas and Linear Maps: Determinants

|ca1, ca2| = c2|a1, a2| = c2|A|

If both columns of A scaled by c

then A’s determinant scaled by c2

Sketch: c = 1/2
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Areas and Linear Maps: Determinants

Two 2D vectors whose determinant
is positive: right-handed
Standard example: e1 and e2

Two 2D vectors whose determinant
is negative are called left-handed

Area sign change when columns
interchanged: |a1, a2| = −|a2, a1|
Verified using the definition of a
determinant:

|a2, a1| = a1,2a2,1 − a2,2a1,1
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Composing Linear Maps

Matrix product used to compose linear maps:

v′ = Av

v′′ = Bv′ = B(Av) = BAv = Cv

C =

[
b1,1 b1,2
b2,1 b2,2

] [
a1,1 a1,2
a2,1 a2,2

]

=

[
b1,1a1,1 + b1,2a2,1 b1,1a1,2 + b1,2a2,2
b2,1a1,1 + b2,2a2,1 b2,1a1,2 + b2,2a2,2

]

Element ci ,j computed as dot product of B ’s i th row and A’s jth column
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Composing Linear Maps

Example:

v =

[
2
−1

]

, A =

[
−1 2
0 3

]

, B =

[
0 −2
−3 1

]

v′Av ==

[
−1 2
0 3

] [
2
−1

]

=

[
−4
−3

]

v′′ = Bv′ =

[
0 −2
−3 1

] [
−4
−3

]

=

[
6
9

]

Compute v′′ using the matrix product BA:

C = BA =

[
0 −2
−3 1

] [
−1 2
0 3

]

=

[
0 −6
3 −3

]

Verify that v′′ = Cv
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Composing Linear Maps

Neat way to arrange two matrices when forming their product

−1 2
0 3

0 −2
−3 1 3

−1 2
0 3

0 −2
−3 1

0 −6
3 −3
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Composing Linear Maps

Linear map composition is order dependent

Top: rotate by −120◦, then reflect about the (rotated) e1-axis
Bottom: reflect, then rotate

Matrix products differs significantly from products of real numbers:
Matrix products are not commutative

AB 6= BA

Some maps to commute – example: 2D rotations
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Composing Linear Maps

Rank of a composite map:

rank(AB) ≤ min{rank(A), rank(B)}

Matrix multiplication does not increase rank

Special composition: idempotent matrix A = AA or A = A2

Thus Av = AAv
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More on Matrix Multiplication

Vectors as matrices: uTv = u · v

Example: Let u =

[
3
4

]

and v =

[
−3
6

]

uTv = u · v = 15

(uTv)T = vTu

[uTv]T = (
[
3 4

]
[
−3
6

]

)T = [15]T = 15

vTu =
[
−3 6

]
[
3
4

]

= [15] = 15
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More on Matrix Multiplication

(AB)T = BTAT

(AB)T =

([
a1,1 a1,2
a2,1 a2,2

] [
b1,1 b1,2
b2,1 b2,2

])T

=

[
c1,1 c1,2
c2,1 c2,2

]

BTAT =

[
bT1,1 bT1,2
bT2,1 bT2,2

]

)

[
aT1,1 aT1,2
aT2,1 aT2,2

]

=

[
c1,1 c1,2
c2,1 c2,2

]

Since bi ,j = bTj ,i identical dot product calculated to form c1,2
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More on Matrix Multiplication

Determinant of a product matrix

|AB | = |A||B |

B scales objects by |B | and A scales objects by |A|
Composition of the maps scales by the product of the individual scales
Example: two scalings

A =

[
1/2 0
0 1/2

]

B =

[
4 0
0 4

]

|A| = 1/4 and |B | = 16 ⇒ A scales down, and B scales up
Effect of B ’s scaling greater than A’s

AB =

[
2 0
0 2

]

scales up: |AB | = |A||B | = 4

Exponents for matrices:Ar = A · . . . · · ·A
︸ ︷︷ ︸

r times

Some rules: Ar+s = ArAs Ars = (Ar )s A0 = I
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Matrix Arithmetic Rules

Matrix sizes must be compatible for operations to be performed

— matrix addition: matrices to have the same dimensions
— matrix multiplication: “inside” dimensions to be equal

Let A’s dimensions be m × r and B ’s are r × n

Product C = AB is permissible since inside dimension r is shared
Resulting matrix C dimension m × n

Commutative Law for Addition: A+ B = B + A

Associative Law for Addition: A+ (B + C ) = (A+ B) + C

No Commutative Law for Multiplication: AB 6= BA

Associative Law for Multiplication: A(BC ) = (AB)C
Distributive Law: A(B + C ) = AB + AC

Distributive Law: (B + C )A = BA+ CA
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Matrix Arithmetic Rules

Rules involving scalars:

a(B + C ) = aB + aC

(a + b)C = aC + bC

(ab)C = a(bC )

a(BC ) = (aB)C = B(aC )

Rules involving the transpose:

(A+ B)T = AT + BT

(bA)T = bAT

(AB)T = BTAT

ATT
= A
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WYSK
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