Practical Linear Algebra: A GEOMETRY TOOLBOX

Third edition

Chapter 5: 2 × 2 Linear Systems

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- 1 Introduction to 2×2 Linear Systems
- Skew Target Boxes Revisited
- The Matrix Form
- 4 A Direct Approach: Cramer's Rule
- Gauss Elimination
- 6 Pivoting
- Unsolvable Systems
- Underdetermined Systems
- Momogeneous Systems
- 10 Undoing Maps: Inverse Matrices
- Defining a Map
- A Dual View
- **13** WYSK

Introduction to 2×2 Linear Systems

Two families of lines are shown

Intersections of corresponding line pairs marked

For each intersection: solve a 2×2 linear system

Skew Target Boxes Revisited

Geometry of a 2 \times 2 system

 \mathbf{a}_1 and \mathbf{a}_2 define a skew target box

Given **b** with respect to the $[e_1, e_2]$ -system:

What are the components of ${\boldsymbol b}$ with respect to the $[{\boldsymbol a}_1,{\boldsymbol a}_2]$ -system?

$$\mathbf{a}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 4 \\ 6 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$1 \times \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{2} \times \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

Skew Target Boxes Revisited

Two equations in the two unknowns u_1 and u_2

$$2u_1 + 4u_2 = 4$$
$$u_1 + 6u_2 = 4$$

Solution: $u_1 = 1$ and $u_2 = 1/2$

This chapter dedicated to solving these equations

The Matrix Form

Two equations

$$a_{1,1}u_1 + a_{1,2}u_2 = b_1$$

 $a_{2,1}u_1 + a_{2,2}u_2 = b_2$

Also called a linear system

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
$$A\mathbf{u} = \mathbf{b}$$

u called the solution of linear system

Previous example:

$$\begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

The Matrix Form

Recall geometric interpretation of $A\mathbf{u} = \mathbf{b}$: Express \mathbf{b} as a linear combination of \mathbf{a}_1 and \mathbf{a}_2

$$u_1\mathbf{a}_1+u_2\mathbf{a}_2=\mathbf{b}$$

At least one solution: linear system called consistent Otherwise: called inconsistent

Three possibilities for solution space:

- ① Exactly one solution vector \mathbf{u} $|A| \neq 0$ matrix has full rank and is non-singular
- No solution (system is inconsistent)
- Infinitely many solutions

(Sketches of each case to come)

A Direct Approach: Cramer's Rule

$$u_1 = rac{\operatorname{area}(\mathbf{b}, \mathbf{a}_2)}{\operatorname{area}(\mathbf{a}_1, \mathbf{a}_2)}$$
 $u_2 = rac{\operatorname{area}(\mathbf{a}_1, \mathbf{b})}{\operatorname{area}(\mathbf{a}_1, \mathbf{a}_2)}$

Ratios of areas

Shear parallelogram formed by

- $-\mathbf{b}, \mathbf{a}_2 \text{ onto } \mathbf{a}_1$
- \mathbf{b} , \mathbf{a}_1 onto \mathbf{a}_2

(Shears preserve areas)

Signed area of a parallelogram given by determinant

A Direct Approach: Cramer's Rule

Example:

$$\begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$u_1 = \frac{\begin{vmatrix} 4 & 4 \\ 4 & 6 \end{vmatrix}}{\begin{vmatrix} 2 & 4 \\ 1 & 6 \end{vmatrix}} = \frac{8}{8} \qquad u_2 = \frac{\begin{vmatrix} 2 & 4 \\ 1 & 4 \end{vmatrix}}{\begin{vmatrix} 2 & 4 \\ 1 & 6 \end{vmatrix}} = \frac{4}{8}$$

What if area spanned by \mathbf{a}_1 and \mathbf{a}_2 is zero?

Cramer's rule primarily of theoretical importance For larger systems: expensive and numerically unstable

Special 2×2 linear system:

$$\begin{bmatrix} a_{1,1} & a_{1,2} \\ 0 & a_{2,2} \end{bmatrix} \mathbf{u} = \mathbf{b}$$

Matrix is called *upper triangular* Solve with back substitution:

$$u_2 = b_2/a_{2,2}$$

 $u_1 = \frac{1}{a_{1,1}}(b_1 - u_2a_{1,2})$

Diagonal elements key: called pivots

Any linear system with non-singular matrix may be *transformed* to upper triangular via forward elimination

Process of forward elimination followed by back substitution is called *Gauss elimination*

Example:

$$u_1\begin{bmatrix}2\\1\end{bmatrix}+u_2\begin{bmatrix}4\\6\end{bmatrix}=\begin{bmatrix}4\\4\end{bmatrix}$$

Key fact: linear maps do not change linear combinations

Apply the same linear map to all vectors in system

— factors u_1 and u_2 won't change:

$$S\left[u_1\begin{bmatrix}2\\1\end{bmatrix}+u_2\begin{bmatrix}4\\6\end{bmatrix}\right]=S\begin{bmatrix}4\\4\end{bmatrix}$$

Shear parallel to the e_2 -axis so that

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{is mapped to} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

Shear matrix:

$$S_1 = \begin{bmatrix} 1 & 0 \\ -1/2 & 1 \end{bmatrix}$$

4□ > 4□ > 4 = > 4 = > = 90

Transformed system:

$$\begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Next: back substitution

$$u_2 = 2/4 = 1/2,$$

 $u_1 = \frac{1}{2} \left(4 - 4 \times \frac{1}{2} \right) = 1$

 2×2 linear systems:

only one matrix entry to zero in the forward elimination procedure More algorithmic approach in Chapter 12 Gauss for Linear Systems

Farin & Hansford

Pivoting

Example:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Shearing a_1 onto e_1 -axis will not work

Solution: exchange two equations

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Exchanging equations (rows) so pivot is the largest in absolute value called {row, partial} pivoting

Used to improve numerical stability

Pivoting

Example:

$$\begin{bmatrix} 0.0001 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Shear \mathbf{a}_1 onto the \mathbf{e}_1 -axis

$$\begin{bmatrix} 0.0001 & 1 \\ 0 & -9999 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -9998 \end{bmatrix}$$

Performing back substitution

$$\mathbf{u}_t = \begin{bmatrix} 1.0001\\0.9998\overline{9} \end{bmatrix}$$
 ("true" solution)

Suppose machine only stores three digits — system stored as

$$\begin{bmatrix} 0.0001 & 1 \\ 0 & -10000 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -10000 \end{bmatrix},$$

$$\mathbf{u}_r = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \text{("round-off" solution)}$$

Not very close to the true solution \mathbf{u}_t : $\|\mathbf{u}_t - \mathbf{u}_r\|_{\infty} = 1.0001$

Pivoting

Pivoting dampers effects of round-off

$$\begin{bmatrix} 1 & 1 \\ 0.0001 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Forward elimination

$$\begin{bmatrix} 1 & 1 \\ 0 & 0.9999 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0.9998 \end{bmatrix}$$

$$\mathbf{u}_p = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 ("pivoting" solution)

Closer to "true" solution: $\|\mathbf{u}_t - \mathbf{u}_p\| = 0.00014$

Farin & Hansford

Unsolvable Systems

a₁ and **a**₂ are linearly dependent

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Forward elimination (shear a_1 onto e_1 -axis):

$$\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Last equation: 0 = -1System is *inconsistent* \Rightarrow no solution

Approximate solution via least squares methods

Underdetermined Systems

 ${f b}$ a multiple of ${f a}_1$ or ${f a}_2$

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Forward elimination (shear \mathbf{a}_1 onto \mathbf{e}_1 -axis):

$$\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Last equation: 0 = 0 — true, but a bit trivial

One equation written twice System *underdetermined* System *consistent*: at least one solution exists

— example: set $u_2 = 1$ then $u_1 = 1$

18 / 34

Trivial solution solution: $\mathbf{u} = \mathbf{0}$ — usually of little interest

If solution $\mathbf{u} \neq \mathbf{0}$ exists then all $c\mathbf{u}$ are solutions \Rightarrow infinite number of solutions

Not all homogeneous systems have a nontrivial solution

- only rank 1.2×2 maps
- \Rightarrow \mathbf{a}_1 and \mathbf{a}_2 linearly dependent

Only trivial solution $\Rightarrow A$ invertible

$$Au = 0$$

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\mathbf{a}_2 = 2\mathbf{a}_1 \Rightarrow A$ maps all vectors onto line defined by $\mathbf{0}, \mathbf{a}_1$ Forward elimination:

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Pick $u_2=1$ then back substitution gives $u_1=-2$ Any $c\mathbf{u}$ perpendicular to \mathbf{a}_1 a solution: $\mathbf{a}_1 \cdot \mathbf{u} = 0$ — make up kernel or null space of A

20 / 34

Example: only the trivial solution:

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Columns of A are linearly independent

A does not reduce dimensionality

 \Rightarrow cannot map $\mathbf{u}
eq \mathbf{0}$ to $\mathbf{0}$

Forward elimination:

$$\begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Back substitution:
$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Example: row pivoting not helpful – need column pivoting

$$\begin{bmatrix} 0 & 1/2 \\ 0 & 0 \end{bmatrix} \mathbf{u} = \mathbf{0}.$$

Column pivoting:

$$\begin{bmatrix} 1/2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_2 \\ u_1 \end{bmatrix} = \mathbf{0}.$$

(Exchange unknowns too)

Set $u_1 = 1$ and back substitution results in $u_2 = 0$

Solutions:
$$\mathbf{u} = c \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

How to *undo* a linear map Given $A\mathbf{u} = \mathbf{b}$ what matrix B maps \mathbf{b} back to \mathbf{u} : $\mathbf{u} = B\mathbf{b}$? B is the *inverse map*

Recall: shears can be used to zero matrix elements

$$S_1A\mathbf{u}=S_1\mathbf{b}$$
.

Example:

$$\begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Second shear: $S_2S_1A\mathbf{u} = S_2S_1\mathbf{b}$ (map new \mathbf{a}_2 to the \mathbf{e}_2 -axis)

$$S_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$
 results in $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$

Non-uniform scaling S_3 (map \mathbf{a}_1 , \mathbf{a}_2 onto \mathbf{e}_1 , \mathbf{e}_2)

$$S_3 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/4 \end{bmatrix}$$
 results in $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \end{bmatrix}$

All together:

$$S_3S_2S_1A\mathbf{u} = S_3S_2S_1\mathbf{b}$$
$$/\mathbf{u} = A^{-1}\mathbf{b}$$

I called the identity matrix

 A^{-1} called the inverse matrix and A called invertible

Farin & Hansford Practical Linear Algebra 24 / 34

$$A^{-1}A = I$$
 and $AA^{-1} = I$ $I^{-1} = I$

Inverse of a scaling:

$$\begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix}^{-1} = \begin{bmatrix} 1/s & 0 \\ 0 & 1/t \end{bmatrix}$$

Example:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}$$

Top: original Phoenix, scale, inverse

scale

Bottom: original Phoenix, inverse scale, original scale

25 / 34

Top: original Phoenix, shear, inverse shear

Bottom: original Phoenix, inverse shear, original shear

Rotation matrices:

$$R_{-\alpha} = R_{\alpha}^{-1} = R_{\alpha}^{\mathrm{T}}$$

Rotation matrix is an orthogonal matrix:

$$A^{-1} = A^{\mathrm{T}}$$

Column vectors satisfy $\|\mathbf{a}_1\| = 1$, $\|\mathbf{a}_2\| = 1$ and $\mathbf{a}_1 \cdot \mathbf{a}_2 = 0$

- → vectors called orthonormal
- \Rightarrow these linear maps called *rigid body motions*

Characterized by determinant $=\pm 1$

$$A^{-1-1} = A$$
 and $A^{-1T} = A^{T-1}$

Example:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 0.5 \end{bmatrix}$$

Top: I, A^{-1} , A^{-1}

Bottom: I, A^{T} , A^{T-1}

How to compute *A*'s inverse? Start with

$$AA^{-1} = I$$

Denote two (unknown) columns of A^{-1} by $\overline{\mathbf{a}}_1$ and $\overline{\mathbf{a}}_2$ Denote columns of I by \mathbf{e}_1 and \mathbf{e}_2

$$A\begin{bmatrix} \overline{\mathbf{a}}_1 & \overline{\mathbf{a}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$$

Short for two linear systems

$$A\overline{\mathbf{a}}_1 = \mathbf{e}_1$$
 and $A\overline{\mathbf{a}}_2 = \mathbf{e}_2$

Both systems have the same matrix A

Defining a Map

Matrices map vectors to vectors If \mathbf{v}_1 and \mathbf{v}_2 mapped to \mathbf{v}_1' and \mathbf{v}_2' , what matrix A did it?

$$A\mathbf{v}_1 = \mathbf{v}_1'$$
 and $A\mathbf{v}_2 = \mathbf{v}_2'$

Combining:

$$A[\mathbf{v}_1, \mathbf{v}_2] = [\mathbf{v}_1', \mathbf{v}_2']$$
 or $AV = V'$

Find V^{-1} , then $A = V'V^{-1}$

 \mathbf{v}_1 and \mathbf{v}_2 must be linearly independent for V^{-1} to exist If \mathbf{v}_i and \mathbf{v}_i' each linearly independent, then A represents a change of basis

Defining a Map

Change of basis example

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$\mathbf{v}_1' = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2' = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$V^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

Change of basis linear map

$$A = V'V^{-1} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

<□ > < □ > < □ > < ≣ > < ≣ > ○ < ○

A Dual View

Two interpretations of of a linear system

- ① "column view": coordinate system or linear combination approach
- "row view": focus on the row equations

Line intersection problems provide examples of both:

- parametric/parametric line ⇒ column view
- implicit/implicit line ⇒ row view

Choose the view that best suits given information

A Dual View

Linear systems from this chapter interpreted as line intersection problems: unique solution, inconsistent, underdetermined

Farin & Hansford

WYSK

- linear system
- solution spaces
- consistent linear system
- Cramer's rule
- upper triangular
- Gauss elimination
- forward elimination
- back substitution
- linear combination
- inverse matrix
- orthogonal matrix
- orthonormal
- rigid body motion

- inconsistent system of equations
- underdetermined system of equations
- homogeneous system
- kernel
- null space
- row pivoting
- column pivoting
- complete pivoting
- change of basis
- column and row views of linear systems