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Introduction to 2 × 2 Linear Systems

Two families of lines are shown

Intersections of corresponding line
pairs marked

For each intersection:
solve a 2 × 2 linear system
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Skew Target Boxes Revisited

Geometry of a 2 × 2 system
a1 and a2 define a skew target box

Given b with respect to the
[e1, e2]-system:
What are the components of b with
respect to the [a1, a2]-system?

a1 =

[

2
1

]

, a2 =

[

4
6

]

, b =

[

4
4

]

1×

[

2
1

]

+
1

2
×

[

4
6

]

=

[

4
4

]
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Skew Target Boxes Revisited

Two equations in the two unknowns u1 and u2

2u1 + 4u2 = 4

u1 + 6u2 = 4

Solution: u1 = 1 and u2 = 1/2

This chapter dedicated to solving these equations
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The Matrix Form

Two equations

a1,1u1 + a1,2u2 = b1

a2,1u1 + a2,2u2 = b2

Also called a linear system

[

a1,1 a1,2
a2,1 a2,2

] [

u1
u2

]

=

[

b1
b2

]

Au = b

u called the solution of linear system

Previous example:
[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]
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The Matrix Form

Recall geometric interpretation of Au = b:
Express b as a linear combination of a1 and a2

u1a1 + u2a2 = b

At least one solution: linear system called consistent
Otherwise: called inconsistent

Three possibilities for solution space:

1 Exactly one solution vector u
|A| 6= 0
matrix has full rank and is non-singular

2 No solution (system is inconsistent)

3 Infinitely many solutions

(Sketches of each case to come)
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A Direct Approach: Cramer’s Rule

u1 =
area(b, a2)

area(a1, a2)
u2 =

area(a1,b)

area(a1, a2)

Ratios of areas

Shear parallelogram formed by
— b, a2 onto a1
— b, a1 onto a2
(Shears preserve areas)

Signed area of a parallelogram given
by determinant
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A Direct Approach: Cramer’s Rule

Example:
[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]

u1 =

∣

∣

∣

∣

4 4
4 6

∣

∣

∣

∣

∣

∣

∣

∣

2 4
1 6

∣

∣

∣

∣

=
8

8
u2 =

∣

∣

∣

∣

2 4
1 4

∣

∣

∣

∣

∣

∣

∣

∣

2 4
1 6

∣

∣

∣

∣

=
4

8

What if area spanned by a1 and a2 is zero?

Cramer’s rule primarily of theoretical importance
For larger systems: expensive and numerically unstable
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Gauss Elimination

Special 2× 2 linear system:

[

a1,1 a1,2
0 a2,2

]

u = b

Matrix is called upper triangular

Solve with back substitution:

u2 = b2/a2,2

u1 =
1

a1,1
(b1 − u2a1,2)

Diagonal elements key: called pivots

Farin & Hansford Practical Linear Algebra 10 / 34



Gauss Elimination

Any linear system with non-singular
matrix may be transformed to upper
triangular via forward elimination

Process of forward elimination
followed by back substitution is
called Gauss elimination

Example:

u1

[

2
1

]

+ u2

[

4
6

]

=

[

4
4

]

Key fact: linear maps do not change

linear combinations
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Gauss Elimination

Apply the same linear map to all
vectors in system
— factors u1 and u2 won’t change:

S

[

u1

[

2
1

]

+ u2

[

4
6

]]

= S

[

4
4

]

Shear parallel to the e2-axis so that

[

2
1

]

is mapped to

[

2
0

]

Shear matrix:

S1 =

[

1 0
−1/2 1

]
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Gauss Elimination

Transformed system:
[

2 4
0 4

] [

u1
u2

]

=

[

4
2

]

Next: back substitution

u2 = 2/4 = 1/2,

u1 =
1

2

(

4− 4×
1

2

)

= 1

2× 2 linear systems:
only one matrix entry to zero in the forward elimination procedure
More algorithmic approach in Chapter 12 Gauss for Linear Systems
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Pivoting

Example:
[

0 1
1 0

] [

u1
u2

]

=

[

1
1

]

Shearing a1 onto e1-axis will not
work
Solution: exchange two equations

[

1 0
0 1

] [

u1
u2

]

=

[

1
1

]

Exchanging equations (rows) so pivot
is the largest in absolute value called
{row, partial} pivoting
Used to improve numerical stability
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Pivoting

Example:
[

0.0001 1
1 1

] [

u1
u2

]

=

[

1
2

]

Shear a1 onto the e1-axis
[

0.0001 1
0 −9999

] [

u1
u2

]

=

[

1
−9998

]

Performing back substitution

ut =

[

1.0001
0.99989̄

]

(“true” solution)

Suppose machine only stores three digits — system stored as
[

0.0001 1
0 −10000

] [

u1
u2

]

=

[

1
−10000

]

,

ur =

[

0
1

]

(“round-off” solution)

Not very close to the true solution ut : ‖ut − ur‖ = 1.0001
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Pivoting

Pivoting dampers effects of round-off

[

1 1
0.0001 1

] [

u1
u2

]

=

[

2
1

]

Forward elimination
[

1 1
0 0.9999

] [

u1
u2

]

=

[

2
0.9998

]

up =

[

1
1

]

(“pivoting” solution)

Closer to “true” solution: ‖ut − up‖ = 0.00014
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Unsolvable Systems

a1 and a2 are linearly dependent
[

2 1
4 2

] [

u1
u2

]

=

[

1
1

]

Forward elimination (shear a1 onto
e1-axis):

[

2 1
0 0

] [

u1
u2

]

=

[

1
−1

]

Last equation: 0 = −1
System is inconsistent ⇒ no solution

Approximate solution via least
squares methods
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Underdetermined Systems

b a multiple of a1 or a2
[

2 1
4 2

] [

u1
u2

]

=

[

3
6

]

Forward elimination (shear a1 onto
e1-axis):

[

2 1
0 0

] [

u1
u2

]

=

[

3
0

]

Last equation:0 = 0 — true, but a
bit trivial
One equation written twice
System underdetermined

System consistent: at least one
solution exists
— example: set u2 = 1 then u1 = 1
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Homogeneous Systems

Au = 0
Trivial solution solution: u = 0

— usually of little interest

If solution u 6= 0 exists
then all cu are solutions
⇒ infinite number of solutions

Not all homogeneous systems have a
nontrivial solution
— only rank 1 2× 2 maps
⇒ a1 and a2 linearly dependent

Only trivial solution ⇒ A invertible

Farin & Hansford Practical Linear Algebra 19 / 34



Homogeneous Systems

Au = 0
[

1 2
2 4

]

u =

[

0
0

]

a2 = 2a1 ⇒ A maps all vectors onto
line defined by 0, a1
Forward elimination:

[

1 2
0 0

]

u =

[

0
0

]

Pick u2 = 1 then
back substitution gives u1 = −2
Any cu perpendicular to a1 a
solution: a1 · u = 0
— make up kernel or null space of A
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Homogeneous Systems

Example: only the trivial solution:

[

1 2
2 1

]

u =

[

0
0

]

Columns of A are linearly independent
A does not reduce dimensionality
⇒ cannot map u 6= 0 to 0

Forward elimination:
[

1 2
0 −3

]

u =

[

0
0

]

Back substitution: u =

[

0
0

]
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Homogeneous Systems

Example: row pivoting not helpful – need column pivoting

[

0 1/2
0 0

]

u = 0.

Column pivoting:
[

1/2 0
0 0

] [

u2
u1

]

= 0.

(Exchange unknowns too)
Set u1 = 1 and back substitution results in u2 = 0

Solutions: u = c

[

1
0

]
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Undoing Maps: Inverse Matrices

How to undo a linear map
Given Au = b

what matrix B maps b back to u: u = Bb? B is the inverse map

Recall: shears can be used to zero matrix elements

S1Au = S1b.

Example:

[

2 4
1 6

] [

u1
u2

]

=

[

4
4

]

⇒

[

2 4
0 4

] [

u1
u2

]

=

[

4
2

]
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Undoing Maps: Inverse Matrices

Second shear: S2S1Au = S2S1b (map new a2 to the e2-axis)

S2 =

[

1 −1
0 1

]

results in

[

2 0
0 4

] [

u1
u2

]

=

[

2
2

]

Non-uniform scaling S3 (map a1, a2 onto e1, e2)

S3 =

[

1/2 0
0 1/4

]

results in

[

1 0
0 1

] [

u1
u2

]

=

[

1
1/2

]

All together:

S3S2S1Au = S3S2S1b

Iu = A−1b

I called the identity matrix
A−1 called the inverse matrix and A called invertible
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Undoing Maps: Inverse Matrices

A−1A = I and AA−1 = I I−1 = I

Inverse of a scaling:

[

s 0
0 t

]

−1

=

[

1/s 0
0 1/t

]

Example:

[

1 0
0 0.5

]

Top: original Phoenix, scale, inverse
scale
Bottom: original Phoenix, inverse
scale, original scale

Farin & Hansford Practical Linear Algebra 25 / 34



Undoing Maps: Inverse Matrices

Top: original Phoenix, shear, inverse shear
Bottom: original Phoenix, inverse shear, original shear
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Undoing Maps: Inverse Matrices

Rotation matrices:
R−α = R−1

α
= RT

α

Rotation matrix is an orthogonal matrix:

A−1 = AT

Column vectors satisfy ‖a1‖ = 1, ‖a2‖ = 1 and a1 · a2 = 0
→ vectors called orthonormal
⇒ these linear maps called rigid body motions

Characterized by determinant = ±1
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Undoing Maps: Inverse Matrices

A−1−1
= A and A−1T = AT−1

Example:

A =

[

1 0
1 0.5

]

Top: I , A−1, A−1T

Bottom: I , AT, AT−1

Farin & Hansford Practical Linear Algebra 28 / 34



Undoing Maps: Inverse Matrices

How to compute A’s inverse?
Start with

AA−1 = I

Denote two (unknown) columns of A−1 by a1 and a2
Denote columns of I by e1 and e2

A
[

a1 a2
]

=
[

e1 e2
]

Short for two linear systems

Aa1 = e1 and Aa2 = e2

Both systems have the same matrix A
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Defining a Map

Matrices map vectors to vectors
If v1 and v2 mapped to v′1 and v′2, what matrix A did it?

Av1 = v′1 and Av2 = v′2

Combining:
A[v1, v2] = [v′1, v

′

2] or AV = V ′

Find V−1, then A = V ′V−1

v1 and v2 must be linearly independent for V−1 to exist
If vi and v′i each linearly independent,
then A represents a change of basis
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Defining a Map

Change of basis example

v1 =

[

1
1

]

and v2 =

[

−1
1

]

v′1 =

[

−1
−1

]

and v′2 =

[

1
−1

]

V−1 =

[

1/2 1/2
−1/2 1/2

]

Change of basis linear map

A = V ′V−1 =

[

−1 1
−1 −1

] [

1/2 1/2
−1/2 1/2

]

=

[

−1 0
0 −1

]
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A Dual View

Two interpretations of of a linear system

1 “column view”: coordinate system or linear combination approach

2 “row view”: focus on the row equations

Line intersection problems provide examples of both:
— parametric/parametric line ⇒ column view
— implicit/implicit line ⇒ row view
Choose the view that best suits given information

Farin & Hansford Practical Linear Algebra 32 / 34



A Dual View

-3 -2 -1 1 2 3
-1

1

2

-

1

2

1

2

1

2

-1 1 2

-1

1

2

3

4

5

Linear systems from this chapter interpreted as line intersection problems:
unique solution, inconsistent, underdetermined
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WYSK

linear system

solution spaces

consistent linear system

Cramer’s rule

upper triangular

Gauss elimination

forward elimination

back substitution

linear combination

inverse matrix

orthogonal matrix

orthonormal

rigid body motion

inconsistent system of equations

underdetermined system of
equations

homogeneous system

kernel

null space

row pivoting

column pivoting

complete pivoting

change of basis

column and row views of linear
systems
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