Practical Linear Algebra: A GEOMETRY TOOLBOX Third edition

Chapter 6: Moving Things Around: Affine Maps in 2D

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013

Outline

- 1 Introduction to Affine Maps in 2D
- Coordinate Transformations
- Affine and Linear Maps
- Translations
- **5** More General Affine Maps
- 6 Mapping Triangles to Triangles
- Composing Affine Maps
- WYSK

Introduction to Affine Maps in 2D

Moving things around: affine maps in 2D applied to an old and familiar video game character

Imagine playing a video game
Objects are moving around
— shift position, rotate, zoom in/out

These transformations are *affine* maps

Coordinate Transformations

Linear maps take \mathbf{v} in $[\mathbf{e}_1, \mathbf{e}_2]$ -system to \mathbf{v}' in the $[\mathbf{a}_1, \mathbf{a}_2]$ -system:

$$\mathbf{v}' = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 = A \mathbf{v}$$

Skew target box defined by a point \mathbf{p} and vectors $\mathbf{a}_1, \mathbf{a}_2$ Affine map: point \mathbf{x} mapped to point \mathbf{x}' by

$$\mathbf{x}' = \mathbf{p} + A(\mathbf{x} - \mathbf{o})$$

Translation + linear map (Will omit \mathbf{o} when $\mathbf{0}$)

Coordinate Transformations

Example: define $[a_1, a_2]$ -system

$$\textbf{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad \textbf{a}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \textbf{a}_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Point $\mathbf{x} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$ in $[\mathbf{e}_1, \mathbf{e}_2]$ -system

In $[a_1, a_2]$ -system: coordinates of x define new point x'

With respect to the $[\mathbf{e}_1, \mathbf{e}_2]$ -system:

$$\mathbf{x}' = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

Coordinate Transformations

Example: define $[a_1, a_2]$ -system

$$\mathbf{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \quad \mathbf{a}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \mathbf{a}_2 = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

Point $\mathbf{r} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$ in $[\mathbf{e}_1, \mathbf{e}_2]$ -system What are coordinates of \mathbf{r} in $[\mathbf{a}_1, \mathbf{a}_2]$ -system? Linear system $A\mathbf{u} = (\mathbf{r} - \mathbf{p})$:

$$\begin{bmatrix} 2 & 4 \\ 1 & 6 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} 1 \\ 1/2 \end{bmatrix}$$

Affine and Linear Maps

Ratios are invariant under linear maps and affine maps

Let
$$\mathbf{p}_2 = (1 - t)\mathbf{p}_1 + t\mathbf{p}_3$$

Affine map: $\mathbf{x}' = A\mathbf{x} + \mathbf{p}$

$$\begin{aligned} \mathbf{p}_2' &= A((1-t)\mathbf{p}_1 + t\mathbf{p}_3) + \mathbf{p} \\ &= (1-t)A\mathbf{p}_1 + tA\mathbf{p}_3 \\ &+ [(1-t)+t]\mathbf{p} \\ &= (1-t)[A\mathbf{p}_1 + \mathbf{p}] + t[A\mathbf{p}_3 + \mathbf{p}] \\ &= (1-t)\mathbf{p}_1' + t\mathbf{p}_3'. \end{aligned}$$

Makes use of fact (1-t)+t=1Combining points using *barycentric* combinations

Affine and Linear Maps

Affine maps map parallel lines to parallel lines

- If two lines do not intersect before mapped, then will not intersect afterwards
- Two lines that intersect before the map will also intersect afterwards

Translations

If an object is moved without changing its orientation, then it is translated

How is this action covered by the general affine map?

Recall *identity matrix* and Ix = xTranslation as a general affine map:

$$\mathbf{x}' = \mathbf{p} + I\mathbf{x}$$

Translations do not change areas Translation is a *rigid body motion*

More General Affine Maps

Constructive approach to affine maps

Problem: Rotate point \mathbf{x} by α degrees about point \mathbf{r} Translate given geometry:

$$\bar{\mathbf{r}} = \mathbf{r} - \mathbf{r} = \mathbf{0}, \quad \bar{\mathbf{x}} = \mathbf{x} - \mathbf{r}$$

Rotate vector $\bar{\mathbf{x}} \ \alpha$ degrees:

$$\mathbf{\bar{\bar{x}}} = A\mathbf{\bar{x}}$$

Translate $\bar{\bar{x}}$ back to the center r of rotation:

$$\mathbf{x}' = A\bar{\mathbf{x}} + \mathbf{r} = A(\mathbf{x} - \mathbf{r}) + \mathbf{r}$$

More General Affine Maps

Rotate point ${\bf x}$ by α degrees about point ${\bf r}$

Example:

$$\mathbf{r} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \quad \alpha = 90^{\circ}$$

Solution:

$$\mathbf{x}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

More General Affine Maps

Constructive approach to affine maps

Problem: Let I be a line and x be a point

Reflect x across I resulting in x'

Foot of a point algorithm: find closest point **p** on a line **l** to **x p** is midpoint of **x** and **x**':

$$\mathbf{p} = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{x}'$$

$$\mathbf{x}' = 2\mathbf{p} - \mathbf{x}$$

Best approach not always in standard affine map form

Given:

- Triangle T with vertices $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$
- Triangle T' with vertices $\mathbf{a}_1', \mathbf{a}_2', \mathbf{a}_3'$

What affine map takes T to T'? Point x in T mapped to which point x' in T'?

Find A:

$$\mathbf{x}' = A[\mathbf{x} - \mathbf{a}_1] + \mathbf{a}_1'$$

Given x in T, find x' in T'

$$\mathbf{x}' = A[\mathbf{x} - \mathbf{a}_1] + \mathbf{a}_1'$$

Steps to find *A*:

$$\mathbf{v}_2 = \mathbf{a}_2 - \mathbf{a}_1$$
 $\mathbf{v}_3 = \mathbf{a}_3 - \mathbf{a}_1$ $\mathbf{v}_2' = \mathbf{a}_2' - \mathbf{a}_1'$ $\mathbf{v}_3' = \mathbf{a}_3' - \mathbf{a}_1'$ $A\mathbf{v}_2 = \mathbf{v}_2'$ $A\mathbf{v}_3 = \mathbf{v}_3'$

Combine into one matrix equation:

$$A \begin{bmatrix} \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_2' & \mathbf{v}_3' \end{bmatrix}$$
$$AV = V'$$
$$A = V'V^{-1}$$

Example:

Triangle
$$T$$
: $\mathbf{a}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Triangle T' : $\mathbf{a}_1' = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{a}_2' = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\mathbf{a}_3' = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Construct matrices

$$V = \begin{bmatrix} -1 & 1 \\ -2 & -2 \end{bmatrix} \quad \text{and} \quad V' = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$$
$$V^{-1} = \begin{bmatrix} -1/2 & -1/4 \\ 1/2 & -1/4 \end{bmatrix}$$
$$A = V'V^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

Recognize the map?

Example continued:

$$\mathbf{x}' = A[\mathbf{x} - \mathbf{a}_1] + \mathbf{a}_1'$$

$$\textit{A} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \textbf{a}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Sample point $\mathbf{x} = \begin{bmatrix} 0 \\ -1/3 \end{bmatrix}$ in T mapped to

$$\mathbf{x}' = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 0 \\ -1/3 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 7/3 \end{bmatrix}$$

in T'

Affine map: $\mathbf{x}' = A(\mathbf{x} - \mathbf{o}) + \mathbf{p}$ Apply twice: $\mathbf{x}'' = A(\mathbf{x}' - \mathbf{o}) + \mathbf{p}$ Repeat several times \rightarrow interesting images

Left:affine map is defined by

$$A = \begin{bmatrix} \cos 45^\circ & -\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ \end{bmatrix} \begin{bmatrix} 0.5 & 0.0 \\ 0 & 0.5 \end{bmatrix} \quad \text{and} \quad \mathbf{p} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Right: A and translation $\mathbf{p} = \begin{bmatrix} 0.2 \\ 0 \end{bmatrix}$

Farin & Hansford Practical Linear Algebra 17 / 21

Left: affine map defined by

$$A = \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} 0.5 & 0.0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{p} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Right: A and translation $\mathbf{p} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$

18 / 21

Rotations: the letter **S** is rotated several times — the origin is at the lower left of the letter

Rotations: the letter ${\bf S}$ is rotated several times A nonuniform scaling and translation is also applied:

$$\mathbf{x}' = \mathcal{S}[R\mathbf{x} + \mathbf{p}]$$

WYSK

- linear map
- affine map
- translation
- identity matrix
- barycentric combination
- invariant ratios
- rigid body motion
- rotate a point about another point
- reflect a point about a line
- three points mapped to three points
- mapping triangles to triangles