Practical Linear Algebra: A GEOMETRY TOOLBOX

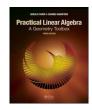
Third edition

Chapter 7: Eigen Things

Gerald Farin & Dianne Hansford

CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

©2013



Outline

- Introduction to Eigen Things
- Fixed Directions
- 3 Eigenvalues
- 4 Eigenvectors
- **5** Striving for More Generality
- The Geometry of Symmetric Matrices
- Quadratic Forms
- Repeating Maps
- WYSK

Introduction to Eigen Things

Tacoma Narrows Bridge:

Nov 1940 – swayed violently during mere 42-mile-per-hour winds It collapsed seconds later

Linear map described by a matrix Geometric properties?

— Phoenix figures showed circle mapped to ellipse: action ellipse

This stretching and rotating is the geometry of a linear map

Captured by its eigen things: eigenvectors and eigenvalues

Introduction to Eigen Things

Tacoma Narrows Bridge: view from shore shortly before collapsing Careful eigenvalue analysis carried-out before any bridge is built!

Eigenvalues and eigenvectors play important role in analysis of mechanical structures

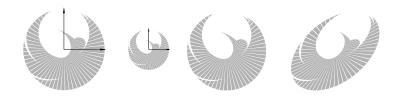
Essentials of eigen-theory present in 2D case — topic of this chapter

Higher-dimensional case covered in Chapter 15

Fixed Directions

Uniform scaling: \mathbf{e}_1 -axis is mapped to itself; \mathbf{e}_2 -axis mapped to itself \Rightarrow Any vector $c\mathbf{e}_1$ or $d\mathbf{e}_2$ mapped to multiple of itself

Shear in e_1 : any vector ce_1 mapped to multiple of itself



Fixed Directions

Fixed directions: directions not changed by the map All vectors in fixed directions change only in length

Given matrix A: which vectors **r** mapped to a multiple of itself?

$$A\mathbf{r} = \lambda \mathbf{r} \qquad \lambda \in \mathbb{R}$$

Disregard the "trivial solution" ${f r}={f 0}$

In 2D: at most two directions

Symmetric matrices: directions orthogonal (more on that later)

Fixed directions called the eigenvectors

— from the German word "eigen" meaning special or proper

Factor λ called its eigenvalue

Key to understanding geometry of a matrix

Eigenvalues

How to find the eigenvalues of a 2×2 matrix A

$$A\mathbf{r} = \lambda \mathbf{r} = \lambda I\mathbf{r}$$

$$[A - \lambda I]\mathbf{r} = \mathbf{0}$$

Matrix $[A - \lambda I]$ maps a nonzero vector \mathbf{r} to the zero vector $\Rightarrow [A - \lambda I]$ rank deficient matrix \Rightarrow

$$p(\lambda) = \det[A - \lambda I] = 0$$

Characteristic equation: polynomial equation in λ — 2D: characteristic equation is quadratic $p(\lambda)$ called the characteristic polynomial

Eigenvalues

Example:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$p(\lambda) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$

$$p(\lambda) = \lambda^2 - 4\lambda + 3 = 0$$

$$\lambda_1 = 3 \qquad \lambda_2 = 1$$

Recall quadratic equation: $a\lambda^2 + b\lambda + c = 0$ has the solutions

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Eigenvalues

Eigenvalues of a 2×2 matrix:

Find the zeroes of the quadratic equation

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = 0$$

Convention: eigenvalues ordered $|\lambda_1| \ge |\lambda_2|$

 λ_1 called the dominant eigenvalue

Since $p(\lambda) = \det[A - \lambda I]$:

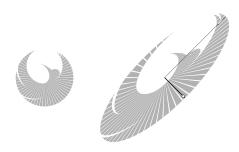
$$p(0) = \det[A] = \lambda_1 \cdot \lambda_2$$

Brings together concepts of the determinant and eigenvalues:

- Determinant measures change in area of unit square mapped to parallelogram
- Eigenvalues indicate a scaling of certain fixed directions defined by A

Eigenvectors

Example continued



Find ${\bf r}_1$ and ${\bf r}_2$ corresponding to $\lambda_1=3$ and $\lambda_2=1$

$$\begin{bmatrix} 2-3 & 1 \\ 1 & 2-3 \end{bmatrix} \mathbf{r}_1 = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \mathbf{r}_1 = \mathbf{0}$$

Homogeneous system and rank 1 matrix

 \Rightarrow infinitely many solutions Forward elimination results in

$$\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{r}_1 = \mathbf{0}$$

Assign
$$r_{2,1}=1$$
, then $\mathbf{r}_1=cegin{bmatrix}1\\1\end{bmatrix}$

Eigenvectors

Next: $\lambda_2=1$, find ${\bf r}_2$

$$\begin{bmatrix} 2-1 & 1 \\ 1 & 2-1 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \mathbf{r}_2 = \mathbf{0}$$
$$\mathbf{r}_2 = c \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

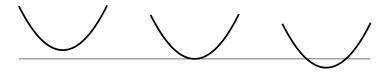
Recheck Figure: $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is not stretched – it is mapped to itself Often eigenvectors normalized for degree of uniqueness

$$\mathbf{r}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{r}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Dominant eigenvector: eigenvector corresponding to dominant eigenvalue

4 D F 4 D F 4 D F 9 0 0

Quadratic polynomials have either no, one, or two real zeroes



If there are no zeroes: then A has no fixed directions Example: rotations — rotate every vector; no direction unchanged Rotation by -90°

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Characteristic equation

$$\begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad \lambda^2 + 1 = 0$$

No real solutions

If there is one double root: then A has only one fixed direction **Example:** A shear in the \mathbf{e}_1 -direction

$$A = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix}$$

Characteristic equation

$$\begin{vmatrix} 1-\lambda & 1/2 \\ 0 & 1-\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad (1-\lambda)^2 = 0 \quad \Rightarrow \quad \lambda_1 = \lambda_2 = 1$$

To find the eigenvectors — solve

$$\begin{bmatrix} 0 & 1/2 \\ 0 & 0 \end{bmatrix} \mathbf{r} = \mathbf{0}$$

(Column pivoting)

$$\begin{bmatrix} 1/2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r_2 \\ r_1 \end{bmatrix} = \mathbf{0}$$

Set
$$r_1 = 1$$
, then $\mathbf{r} = c \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

4 D > 4 B > 4 B > 4 B > 9 Q C

Practical Linear Algebra

If one eigenvalue is zero: example — projection matrix

$$A = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$$

Characteristic equation: $\lambda(\lambda-1)=0 \Rightarrow \lambda_1=1, \ \lambda_2=0$ Eigenvector corresponding to λ_2 :

$$\begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Forward elimination
$$\Rightarrow$$

Forward elimination
$$\Rightarrow$$
 $\begin{bmatrix} 0.5 & 0.5 \\ 0.0 & 0.0 \end{bmatrix} \mathbf{r}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{r}_2 = c \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Matrix maps multiples of \mathbf{r}_2 to the zero vector

 \Rightarrow reduces dimensionality \Rightarrow rank one

Eigenvector corresponding to zero eigenvalue is in the kernel or null space of the matrix

Farin & Hansford Practical Linear Algebra 14 / 35

Projection matrix and eigenvalues:

Rank one matrices are idempotent: $A^2 = A$

One eigenvalue is zero – let λ be the nonzero one with eigenvector ${\bf r}$

$$A\mathbf{r} = \lambda \mathbf{r}$$

$$A^2 \mathbf{r} = \lambda A \mathbf{r}$$

$$\lambda \mathbf{r} = \lambda^2 \mathbf{r},$$

$$\Rightarrow \lambda = 1$$

A 2D projection matrix always has eigenvalues 0 and 1

General statement: a 2×2 matrix with one zero eigenvalue has rank one

Symmetric matrices: $A = A^{T}$

Arise often in practical problems — examples: conics and least squares approximation

Many more practical examples in classical mechanics, elasticity theory, quantum mechanics, and thermodynamics

Real symmetric matrices advantages:

- eigenvalues are real
- interesting geometric interpretation (eigendecomposition next)
- structure allows for stable and efficient numerical algorithms

Two basic equations for eigenvalues and eigenvectors:

$$A\mathbf{r}_1 = \lambda_1 \mathbf{r}_1 \quad (*) \qquad \qquad A\mathbf{r}_2 = \lambda_2 \mathbf{r}_2 \quad (**)$$

Since A is symmetric

$$(A\mathbf{r}_1)^{\mathrm{T}} = (\lambda_1\mathbf{r}_1)^{\mathrm{T}}$$
$$\mathbf{r}_1^{\mathrm{T}}A^{\mathrm{T}} = \mathbf{r}_1^{\mathrm{T}}\lambda_1$$
$$\mathbf{r}_1^{\mathrm{T}}A = \lambda_1\mathbf{r}_1^{\mathrm{T}}$$

Multiply both sides by \mathbf{r}_2

$$\mathbf{r}_1^{\mathrm{T}} A \mathbf{r}_2 = \lambda_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2$$

Multiply both sides of (**) by $\mathbf{r}_1^{\mathrm{T}}$

$$\mathbf{r}_1^{\mathrm{T}} A \mathbf{r}_2 = \lambda_2 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2$$

Equating last two equations

$$\lambda_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2 = \lambda_2 \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2$$
 or $(\lambda_1 - \lambda_2) \mathbf{r}_1^{\mathrm{T}} \mathbf{r}_2 = 0$

$$(\lambda_1 - \lambda_2)\mathbf{r}_1^{\mathrm{T}}\mathbf{r}_2 = 0$$

If $\lambda_1 \neq \lambda_2$ (the standard case): $\mathbf{r}_1^T \mathbf{r}_2 = 0 \Rightarrow \textit{orthogonal}$ Condense (*) and (**) into one matrix equation

$$\begin{bmatrix} A\mathbf{r}_1 & A\mathbf{r}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{r}_1 & \lambda_2\mathbf{r}_2 \end{bmatrix}$$

Define

$$R = \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix}$$
 and $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$

then

$$AR = R\Lambda$$

Revisit Example:

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

Assume eigenvectors are normalized: $\mathbf{r}_1^{\mathrm{T}}\mathbf{r}_1=1$ and $\mathbf{r}_2^{\mathrm{T}}\mathbf{r}_2=1$

They are orthogonal: $\mathbf{r}_1^{\mathrm{T}}\mathbf{r}_2 = \mathbf{r}_2^{\mathrm{T}}\mathbf{r}_1 = 0$

Two conditions \Rightarrow \mathbf{r}_1 and \mathbf{r}_2 are orthonormal

These four equations written in matrix form

$$R^{\mathrm{T}}R = I \quad \Rightarrow \quad R^{-1} = R^{\mathrm{T}}$$

R is an orthogonal matrix

Now $AR = R\Lambda$ becomes

$$A = R\Lambda R^{\mathrm{T}}$$

The eigendecomposition of A

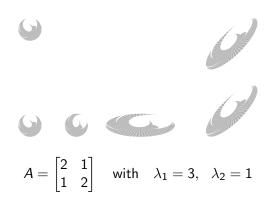
May transform A to diagonal matrix $\Lambda = R^{-1}AR$: A is diagonalizable Matrix decomposition: fundamental tool in linear algebra

- gives insight into the action of a matrix
- for building stable and efficient methods to solve linear systems

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - か Q (C)

19 / 35

Geometric meaning of the eigendecomposition $A = R\Lambda R^{T}$



Top: *I*, *A*

Bottom: I, $R^{\rm T}$ (rotate -45°), $\Lambda R^{\rm T}$ (scale), $R\Lambda R^{\rm T}$ (rotate 45°) R: rotation, a reflection, or combination $\Rightarrow R^{\rm T}$: reversal of R

These linear maps preserve lengths and angles

Diagonal matrix Λ is a scaling along each of the coordinate axes,

Another look at the action of the map A on a vector \mathbf{x} :

$$A\mathbf{x} = R\Lambda R^{\mathrm{T}}\mathbf{x}$$

$$= \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} \Lambda \begin{bmatrix} \mathbf{r}_1^{\mathrm{T}} \\ \mathbf{r}_2^{\mathrm{T}} \end{bmatrix} \mathbf{x}$$

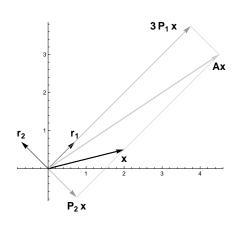
$$= \begin{bmatrix} \mathbf{r}_1 & \mathbf{r}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{x} \\ \lambda_2 \mathbf{r}_2^{\mathrm{T}} \mathbf{x} \end{bmatrix}$$

$$= \lambda_1 \mathbf{r}_1 \mathbf{r}_1^{\mathrm{T}} \mathbf{x} + \lambda_2 \mathbf{r}_2 \mathbf{r}_2^{\mathrm{T}} \mathbf{x}$$

Each matrix $\mathbf{r}_k \mathbf{r}_k^{\mathrm{T}}$ is a projection onto \mathbf{r}_k

Action of A can be interpreted as a linear combination of projections onto the orthogonal eigenvectors

Example: action of A on x as a linear combination of projections



$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$$

Projection matrices:

$$P_1 = \mathbf{r}_1 \mathbf{r}_1^{\mathrm{T}} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

$$P_2 = \mathbf{r}_2 \mathbf{r}_2^{\mathrm{T}} = \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

Action of the map:

$$A\mathbf{x} = 3P_1\mathbf{x} + P_2\mathbf{x}$$

$$= \begin{bmatrix} 15/4 \\ 15/4 \end{bmatrix} + \begin{bmatrix} 3/4 \\ -3/4 \end{bmatrix} = \begin{bmatrix} 9/2 \\ 3 \end{bmatrix}$$

Bivariate function: a function f with two arguments $f(v_1, v_2)$ or $f(\mathbf{v})$ Special bivariate functions defined in terms of a 2×2 symmetric matrix C:

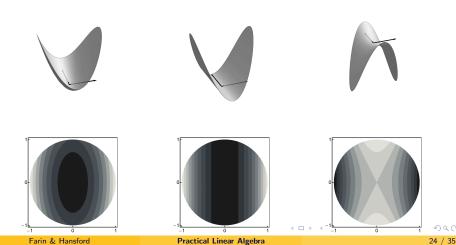
$$f(\mathbf{v}) = \mathbf{v}^{\mathrm{T}} C \mathbf{v}$$

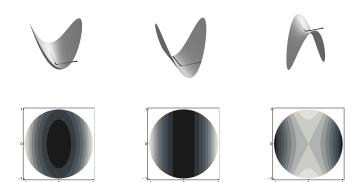
Such functions are called quadratic forms — all terms are quadratic:

$$f(\mathbf{v}) = c_{1,1}v_1^2 + 2c_{2,1}v_1v_2 + c_{2,2}v_2^2$$

Graph of a quadratic form is a 3D point set $[v_1, v_2, f(v_1, v_2)]^T$ forming a quadratic surface

Ellipsoid, paraboloid, hyperboloid evaluated over the unit circle Contour plot communicates additional shape information Color map extents: $\min f(\mathbf{v})$ colored black and $\max f(\mathbf{v})$ colored white





Corresponding matrices and quadratic forms are

$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix} \qquad C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \qquad C_3 = \begin{bmatrix} -2 & 0 \\ 0 & 0.5 \end{bmatrix}$$

$$f_1(\mathbf{v}) = 2v_1^2 + 0.5v_2^2 \qquad f_2(\mathbf{v}) = 2v_1^2 \qquad f_3(\mathbf{v}) = -2v_1^2 + 0.5v_2^2$$

4□ > 4個 > 4 差 > 4 差 > 差 め Q (*)

$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$
 $C_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ $C_3 = \begin{bmatrix} -2 & 0 \\ 0 & 0.5 \end{bmatrix}$

Determinant and eigenvalues:

Positive definite matrix:

$$f(\mathbf{v}) = \mathbf{v}^{\mathrm{T}} A \mathbf{v} > 0 \quad \text{for } \mathbf{v} \neq \mathbf{0} \in \mathbb{R}^2 \qquad (*)$$

Quadratic form is positive everywhere except for ${f v}={f 0}$ Example ellipsoid in Figure

$$C_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix}$$
 $f_1(\mathbf{v}) = 2v_1^2 + 0.5v_2^2$

Positive definite symmetric matrices: special class of matrices

- arise in a number of applications
- lend themselves to numerically stable and efficient algorithms

Geometric handle on (*): consider only unit vectors

- Angle between ${\bf v}$ and $A{\bf v}$ is between -90° and 90°
 - \Rightarrow A constrained in its action on **v**

Not sufficient to only consider unit vectors

— for a general matrix: difficult condition to $\text{verify} \rightarrow \text{Period} = \text{Period}$

Farin & Hansford Practical Linear Algebra 27 /

Suppose A is not necessarily symmetric

 $A^{T}A$ and AA^{T} are symmetric and positive definite For example:

 $\mathbf{v}^{\mathrm{T}}A^{\mathrm{T}}A\mathbf{v} = (A\mathbf{v})^{\mathrm{T}}(A\mathbf{v}) = \mathbf{y}^{\mathrm{T}}\mathbf{y} > 0$

These matrices at the heart the singular value decomposition (SVD) — topic of Chapter 16

Determinant of a positive definite 2×2 matrix is always positive

— this matrix is always nonsingular

These concepts apply to $n \times n$ matrices, however there are additional requirements on the determinant

More detail in Chapters 12 and 15

Examine quadratic forms where C is positive definite: $C = A^{T}A$ Contour: all \mathbf{v} for which

$$\mathbf{v}^{\mathrm{T}} C \mathbf{v} = 1$$

Example: contour for C_1 is an ellipse $2v_1^2 + 0.5v_2^2 = 1$ Set $v_1 = 0 \Rightarrow \mathbf{e}_2$ -axis extents of the ellipse: $\pm 1/\sqrt{0.5}$

Set $v_2 = 0 \Rightarrow \mathbf{e}_1$ -axis extents: $\pm 1/\sqrt{2}$

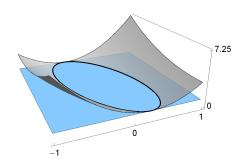
Major axis — longest — here: \mathbf{e}_2 -direction

Eigenvalues: $\lambda_1 = 2, \lambda_2 = 0.5$ Eigenvectors $\mathbf{r}_1 = [1 \ 0]^T$, $\mathbf{r}_2 = [0 \ 1]^T$

 \Rightarrow minor axis corresponds to the dominant eigenvector

See last Figure (left): interpret contour plot as a terrain map
— minor axis (dominant eigenvector direction) indicates steeper ascent

Example:



$$A = \begin{bmatrix} 2 & 0.5 \\ 0 & 1 \end{bmatrix} \qquad C_4 = A^{\mathrm{T}}A = \begin{bmatrix} 4 & 1 \\ 1 & 1.25 \end{bmatrix}$$

Eigendecomposition $C_4 = R\Lambda R^{\mathrm{T}}$

$$R = \begin{bmatrix} -0.95 & -0.30 \\ -0.30 & -0.95 \end{bmatrix} \qquad \Lambda = \begin{bmatrix} 4.3 & 0 \\ 0 & 0.92 \end{bmatrix}$$

Ellipse defined by $\mathbf{v}^{\mathrm{T}} C_4 \mathbf{v} = 4v_1^2 + 2v_1v_2 + 1.25v_2^2 = 1$

Example continued: Ellipse

$$\mathbf{v}^{\mathrm{T}}C_{4}\mathbf{v} = 4v_{1}^{2} + 2v_{1}v_{2} + 1.25v_{2}^{2} = 1$$

Major and minor axis not aligned with coordinate axes

To find major and minor axis lengths

use eigendecomposition to perform a coordinate transformation align ellipse with the coordinate axes

$$\mathbf{v}^{\mathrm{T}}R\Lambda R^{\mathrm{T}}\mathbf{v} = 1$$

$$\hat{\mathbf{v}}^{\mathrm{T}}\Lambda\hat{\mathbf{v}} = 1$$

$$\lambda_1\hat{v}_1^2 + \lambda_2\hat{v}_2^2 = 1$$

Minor axis: length $1/\sqrt{\lambda_1}=0.48$ on ${\bf e}_1$ axis Major axis: length $1/\sqrt{\lambda_2}=1.04$ on ${\bf e}_2$ axis

Repeating Maps

Matrices map the unit circle to an ellipse Map the ellipse using the same map — Repeat

$$A = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}$$

Repeating Maps

$$A = \begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}$$

Symmetric \Rightarrow two real eigenvalues and orthogonal eigenvectors As map repeated resulting ellipses stretched:

elongated in direction ${\bf r}_1$ by $\lambda_1=1.3$ compacted in the direction of ${\bf r}_2$ by a factor of $\lambda_2=0.7$

$$\mathbf{r}_1 = egin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \qquad \mathbf{r}_2 = egin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

$$AA\mathbf{r}_1 = A\lambda_1\mathbf{r}_1 = \lambda_1^2\mathbf{r}_1$$
$$A^n\mathbf{r}_1 = \lambda_1^n\mathbf{r}_1$$

Same holds for \mathbf{r}_2 and λ_2

Repeating Maps

$$A = \begin{bmatrix} 0.7 & 0.3 \\ -1 & 1 \end{bmatrix}$$

Matrix does not have real eigenvalues — related to a rotation matrix figures do not line up along any (real) fixed directions

Farin & Hansford Practical Linear Algebra

WYSK

- fixed direction
- eigenvalue
- eigenvector
- characteristic equation
- dominant eigenvalue
- dominant eigenvector
- homogeneous system
- kernel or null space
- orthogonal matrix
- eigen-theory of a symmetric matrix
- matrix with real eigenvalues

- diagonalizable matrix
- eigendecomposition
- quadratic form
- contour plot
- positive definite matrix
- repeated linear map