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Tacoma Narrows Bridge:

Nov 1940 — swayed violently during mere 42-mile-per-hour winds
It collapsed seconds later

Linear map described by a matrix
Geometric properties?

— Phoenix figures showed circle
mapped to ellipse: action ellipse

This stretching and rotating is the
geometry of a linear map

Captured by its eigen things:
eigenvectors and eigenvalues

o = E = = 9ac
T racicl Linear Algeva VE



Tacoma Narrows Bridge: view from shore shortly before collapsing
Careful eigenvalue analysis carried-out before any bridge is built!

Eigenvalues and eigenvectors play
important role in analysis of
mechanical structures

Essentials of eigen-theory present in
2D case — topic of this chapter

Higher-dimensional case covered in
Chapter 15

o = E = = 9ac
T racicl Linear Algeva e



Uniform scaling: ej-axis is mapped to itself; ey-axis mapped to itself
=- Any vector ce; or de, mapped to multiple of itself

Shear in e;: any vector ce; mapped to multiple of itself

«4O0>» «Fr «=Z» « =) = o>



Fixed Directions

directions not changed by the map
All vectors in fixed directions change only in length

Given matrix A: which vectors r mapped to a multiple of itself?
Ar = Ar AeR
Disregard the “trivial solution” r =0

In 2D: at most two directions
Symmetric matrices: directions orthogonal (more on that later)

Fixed directions called the

— from the German word “eigen” meaning special or proper
Factor A called its

Key to understanding geometry of a matrix
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Eigenvalues

How to find the eigenvalues of a 2 x 2 matrix A

Ar = Ar = \ir
[A—M]r=0

Matrix [A — AI] maps a nonzero vector r to the zero vector
= [A — A] rank deficient matrix =

p(A\) =det[A—X]=0
polynomial equation in A

— 2D: characteristic equation is quadratic
p()\) called the
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Example:
2 1
A=l

p(A)=‘2_)‘ '

1 2—,\‘:0
p(\) =X —4X+3=0

A1=3

=1
Recall quadratic equation:

a\2 + b) + ¢ = 0 has the solutions

) —b+Vb?2 — 4ac
12 =

2a
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Eigenvalues

Eigenvalues of a 2 x 2 matrix:
Find the zeroes of the quadratic equation

pP(A) = (A= A1)(A—A2) =0

Convention: eigenvalues ordered |A1| > |\2]
A1 called the

Since p(\) = det[A — A/
p(0) = det[A] = A1 - A2

Brings together concepts of the determinant and eigenvalues:
— Determinant measures change in area of unit square mapped to

parallelogram
— Eigenvalues indicate a scaling of certain fixed directions defined by A
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Example continued

Find r; and ry corresponding to
A =3and A =1

2-3 1 o -1 1 =0
1 2-3/ ' |1 -1t
Homogeneous system and rank 1
matrix

= infinitely many solutions
Forward elimination results in

101
[0 J”ZO



Eigenvectors

Next: Ao =1, find ry

21 1 R L
1 2-1|1"7 |1 1|"™7

sl

Recheck Figure: [ L is not stretched — it is mapped to itself

-1
Often eigenvectors normalized for degree of uniqueness

o 1 |1 o 1 |-1
eigenvector corresponding to dominant eigenvalue
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Striving for More Generality

Quadratic polynomials have either no, one, or two real zeroes

N\

If there are no zeroes: then A has no fixed directions
Example: rotations — rotate every vector; no direction unchanged

Rotation by —90°
0 1
-1 0

':o = M4+1=0

Characteristic equation

No real solutions
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Striving for More Generality

If there is one double root: then A has only one fixed direction
Example: A shear in the e;-direction

112

A=l ]

Characteristic equation
1-X 1/2| 2 N
0 1_)\—0 = (1-X)"=0 = M=X=1

To find the eigenvectors — solve

0 1/2|

[0 0 } r=0

(Column pivoting)

1/2 0| [n| _
7 ol la] -0
1
Set 1 =1, thenr:c{ow
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Striving for More Generality

If one eigenvalue is zero: example — projection matrix

0.5 0.5
A=os o5

Characteristic equation: A(A—1)=0= X1 =1, A2 =0
Eigenvector corresponding to Ao:

05 05] [0
05 05| 2 |0

Forward elimination = 0.5 0’5r—0$ r = -1
orward eliminatio 0.0 00l7”= y=¢C

Matrix maps multiples of r, to the zero vector

= reduces dimensionality = rank one

Eigenvector corresponding to zero eigenvalue is in the or
of the matrix
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Striving for More Generality

Projection matrix and eigenvalues:

Rank one matrices are idempotent: A% = A
One eigenvalue is zero — let A be the nonzero one with eigenvector r

Ar = Ar
A%r = \Ar
Ar = A\°r,
=\=1

A 2D projection matrix always has eigenvalues 0 and 1

General statement: a 2 x 2 matrix with one zero eigenvalue has rank one
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The Geometry of Symmetric Matrices

Symmetric matrices: A = AT

Arise often in practical problems — examples: conics and least squares
approximation

Many more practical examples in classical mechanics, elasticity theory,
quantum mechanics, and thermodynamics

Real symmetric matrices advantages:

@ eigenvalues are real

@ interesting geometric interpretation (eigendecomposition — next)

@ structure allows for stable and efficient numerical algorithms
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The Geometry of Symmetric Matrices

Two basic equations for eigenvalues and eigenvectors:

Al’l = )\1!’1 (*) AI’2 = )\2I‘2

Since A is symmetric
(Ar)T = ()"
rf AT =i\

T T
rl A )\1r1

Multiply both sides by ry

rlTArz = AlrlTrz
Multiply both sides of (**) by r{

rlTArz = )\zrlTrz

Equating last two equations

Arir = dorir or (M — )\2)r1Tr2 =0
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The Geometry of Symmetric Matrices

()\1 — )\2)r1Tr2 =0
If A1 # A2 (the standard case): rlTr2 = 0 = orthogonal
Condense (%) and (xx) into one matrix equation

[Arl Arg] = [Alrl )\2I‘2]

Define

R=[rn r] and /\:[Al 0]

0 X

then
AR = RA

Revisit Example:

23l [ve el =[ve LD )
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The Geometry of Symmetric Matrices

Assume eigenvectors are normalized: rir; =1and rir, =1
They are orthogonal: r{ra =rjr; =0
Two conditions = ry and ry are orthonormal

These four equations written in matrix form
RTR=1 = R'=RT Risan

Now AR = RA becomes
A= RAR"
The of A
May transform A to diagonal matrix A = R~YAR: Ais
fundamental tool in linear algebra
— gives insight into the action of a matrix
— for building stable and efficient methods to solve linear systems
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The Geometry of Symmetric Matrices

Geometric meaning of the eigendecomposition A = RAR™

2 1 .
A:|:1 2:| with A1 =3, =1

Top: I, A

Bottom: /, RT (rotate —45°), AR™ (scale), RAR™ (rotate 45°)
R: rotation, a reflection, or combination = RT: reversal of R
These linear maps preserve lengths and angles

Diagonal matrix A is a scaling along each of the coordinate axes

Farin & Hansford Practical Linear Algebra

20 / 35



The Geometry of Symmetric Matrices

Another look at the action of the map A on a vector x:

Ax = RARTx
T
= [I‘l I‘z] A |::ir:| X
Arix
- [A;;TJ

= )\1r1r1Tx + Azrzr;fx

. T . . .
Each matrix rir, is a projection onto ry

Action of A can be interpreted as a linear combination of projections onto
the orthogonal eigenvectors
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The Geometry of Symmetric Matrices

Example: action of A on x as a linear combination of projections

=[] -l

3Pyx Projection matrices:
o 1/2 1)2
AX — T _
2 1/2  —-1)/2
— el —
Py =ror, = [_1/2 1/2 }
Iy t 5
//'x Action of the map:
Ax = 3P1X + P2X

[ (-0
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Quadratic Forms

a function f with two arguments f (v, v2) or f(v)
Special bivariate functions defined in terms of a 2 x 2 symmetric matrix C:

f(v) =vICv
Such functions are called — all terms are quadratic:
_ 2 2
f(v) =ciivi +2c1v1iva + G ovs

Graph of a quadratic form is a 3D point set [vy, va, f(vi, v2)]T
forming a quadratic surface
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Quadratic Forms

Ellipsoid, paraboloid, hyperboloid evaluated over the unit circle
Contour plot communicates additional shape information
Color map extents: min f(v) colored black and max f(v) colored white

L L

-1
-1 0 1 -1 0 1 =}
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Quadratic Forms

N

Corresponding matrices and quadratic forms are
2 0
Q= [o 0.5]

20 -2
fi(v) = 2vZ + 0.5v3

0
0 05
H(v)=2v f(v) =
Farin & Hansford

[}
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—2v +0.5v3
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QudnticFoms
SHARS

-2 0
00 &7 [ 0 0.5]
Determinant and eigenvalues:
|G| =1 AM=2, X=05
|G =0 AM=2, X=0
|G| =—1 A =-2, =05

«0)>» «Fr «=Z»r « > = o>



Quadratic Forms
matrix:
f(v) =vFAv >0 forv#0cR? (%)

Quadratic form is positive everywhere except for v =0

Example ellipsoid in Figure
- [2 0]

0 05

Positive definite symmetric matrices: special class of matrices

— arise in a number of applications

— lend themselves to numerically stable and efficient algorithms

Geometric handle on (x): consider only unit vectors

— Angle between v and Av is between —90° and 90°

= A constrained in its action on v
Not sufficient to only consider unit vectors
— for a general matrix: difficult condition to verify
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Quadratic Forms

Suppose A is not necessarily symmetric

ATA and AAT are symmetric and positive definite
For example:
viATAv = (AV)T(Av) =yTy >0

These matrices at the heart the singular value decomposition (SVD)
— topic of Chapter 16

Determinant of a positive definite 2 x 2 matrix is always positive

— this matrix is always nonsingular

These concepts apply to n x n matrices, however there are additional
requirements on the determinant

More detail in Chapters 12 and 15
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Quadratic Forms

Examine quadratic forms where C is positive definite: C = ATA

Contour: all v for which
vicv=1

Example: contour for Cj is an ellipse 2vZ + 0.5v3 = 1
Set v = 0 = ep-axis extents of the ellipse: +1/4/0.5
Set v, = 0 = ej-axis extents: +1/v/2

Major axis — longest — here: ex-direction
Eigenvalues: \; =2, )\, = 0.5 Eigenvectors r; = [1 0]T, rp,=[0 1]T
= minor axis corresponds to the dominant eigenvector

See last Figure (left): interpret contour plot as a terrain map
— minor axis (dominant eigenvector direction) indicates steeper ascent
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Example:

-1

2 05
A=l %

Cy=ATA
Eigendecomposition C3 = RART

41
|1 1.25

—0.95

43 0
A= [ 0 0.92]
Ellipse defined by vI' Cav = 4v? +2viv, +1.25v3 =1 P
~ Farin&Hansfod  Practical Linear Alggbra ~ 30/35
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Quadratic Forms

Example continued: Ellipse

viCv = 4v12 +2vivo + 1.25v22 =1

Major and minor axis not aligned with coordinate axes
To find major and minor axis lengths

use eigendecomposition to perform a coordinate transformation
align ellipse with the coordinate axes

vIRARTv =1

TAu =1

MUZ+ \bs =1

Minor axis: length 1/4/\; = 0.48 on e; axis
Major axis: length 1/y/Ao = 1.04 on e; axis
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Matrices map the unit circle to an ellipse
Map the ellipse using the same map — Repeat

1 03
A=los %)

1

DA

N =
u]
v -
a
v
N .
!
v
a
it
v
!



Repeating Maps

1 03
A_[o.s 1]

Symmetric = two real eigenvalues and orthogonal eigenvectors
As map repeated resulting ellipses stretched:

elongated in direction r; by A\; = 1.3

compacted in the direction of ry by a factor of \» = 0.7

A e[

AAr; = Air; = X2y
Anl’l = /\’fl‘l
Same holds for ro and A»

Farin & Hansford Practical Linear Algebra

33/35



0.7 03
S

Matrix does not have real eigenvalues — related to a rotation matrix
figures do not line up along any (real) fixed directions




WYSK

fixed direction
eigenvalue

eigenvector
characteristic equation
dominant eigenvalue
dominant eigenvector
homogeneous system
kernel or null space

orthogonal matrix

diagonalizable matrix
eigendecomposition
quadratic form
contour plot

positive definite matrix

repeated linear map

eigen-theory of a symmetric

matrix

matrix with real eigenvalues
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