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Introduction to 3D Geometry

With 3D geometry concepts we can create and analyze 3D objects
Guggenheim Museum in Bilbao, Spain. Designed by Frank Gehry

Introduction to essential building blocks of 3D geometry
— Extend 2D tools
— Encounter concepts without 2D counterparts
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From 2D to 3D

[e1, e2, e3]-coordinate system

e1 =





1
0
0



 e2 =





0
1
0



 e3 =





0
0
1





Vector in 3D: v =





v1
v2
v3





Components of v indicate
displacement along each axis

v lives in 3D space R
3

shorter: v ∈ R
3
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From 2D to 3D

Point p =





p1
p2
p3





Coordinates indicate the point’s
location in [e1, e2, e3]-system

p lives in Euclidean 3D-space E
3

shorter: p ∈ E
3
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From 2D to 3D

Basic 3D vector properties

3D zero vector: 0 =





0
0
0





Sketch shows components v
Notice the two right triangles
ApplyPythagorean theorem twice
length or Euclidean norm of v

‖v‖ =
√

v21 + v22 + v23

Interpret as distance, speed, or force
Scaling by k : ‖kv‖ = |k |‖v‖
Normalized vector: ‖v‖ = 1.
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From 2D to 3D

Example:

Normalize the vector v =





1
2
3





Calculate ‖v‖ =
√
12 + 22 + 32 =

√
14 Normalized vector w is

w =
v

‖v‖ =
1√
14





1
2
3



 ≈





0.27
0.53
0.80





Check that ‖w‖ = 1

Scale v by k = 2:

2v =





2
4
6



 ‖2v‖ =
√

22 + 42 + 62 = 2
√
14

Verified that ‖2v‖ = 2‖v‖
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From 2D to 3D

There are infinitely many 3D unit
vectors
Sketch is a sphere of radius one

All the rules for combining points
and vectors in 2D carry over to 3D

Dot product:

v ·w = v1w1 + v2w2 + v3w3

Cosine of the angle θ between two
vectors:

cos θ =
v ·w

‖v‖‖w‖
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Cross Product

Multiplication for two vectors
Dot product reveals angle between
vectors
Cross product reveals orientation in
R
3

— Two vectors define a plane
— Cross product defines a 3rd vector

to complete a 3D coordinate
system embedded in
the [e1, e2, e3]-system

u = v ∧w =





v2w3 − w2v3
v3w1 − w3v1
v1w2 − w1v2




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Cross Product

u = v ∧w

Produces vector u that satisfies:

1 u is perpendicular to v and w

u · v = 0 and u ·w = 0

2 Orientation of u follows the right-hand rule (see Sketch)

3 Magnitude of u is area of parallelogram defined by v and w

Cross product produces a vector — also called a vector product

v and w orthogonal and unit length ⇒ orthonormal u, v,w
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Cross Product

u = v ∧ w =





v2w3 − w2v3
v3w1 − w3v1
v1w2 − w1v2





Each component is a 2× 2 determinant
For the i th component, omit the i th component of v and w

and negate the middle determinant:

v ∧ w =

















∣

∣

∣

∣

v2 w2

v3 w3

∣

∣

∣

∣

−
∣

∣

∣

∣

v1 w1

v3 w3

∣

∣

∣

∣

∣

∣

∣

∣

v1 w1

v2 w2

∣

∣

∣

∣
















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Cross Product

Example:

Compute the cross product of

v =





1
0
2



 and w =





0
3
4





u = v ∧ w =





0× 4− 3× 2
2× 0− 4× 1
1× 3− 0× 0



 =





−6
−4
3




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Cross Product

Area of a parallelogram defined by two vectors

P = ‖v ∧w‖
(Analogous to 2D)
P also defined by measuring a height
and side length of the parallelogram

Height h = ‖w‖ sin θ
Side length is ‖v‖

Resulting in

P = ‖v‖‖w‖ sin θ

Equating two expressions:

‖v ∧ w‖ = ‖v‖‖w‖ sin θ
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Cross Product

Example:

Compute the area of the parallelogram formed by

v =





2
2
0



 and w =





0
0
1





v ∧ w =





2
−2
0



 then area P = ‖v ∧ w‖ = 2
√
2

(Verify: parallelogram is a rectangle ⇒ area is product of edge lengths)

Also: P = 2
√
2 sin 90◦ = 2

√
2
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Cross Product

Lagrange’s identity

Start with ‖v ∧ w‖ = ‖v‖‖w‖ sin θ
Square both sides

‖v ∧ w‖2 = ‖v‖2‖w‖2 sin2 θ
= ‖v‖2‖w‖2(1− cos2 θ)

= ‖v‖2‖w‖2 − ‖v‖2‖w‖2 cos2 θ
= ‖v‖2‖w‖2 − (v · w)2

An expression for the area of a parallelogram in terms of a dot product
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Cross Product

Properties

Parallel vectors result in the zero vector: v ∧ cv = 0

Homogeneous: cv ∧ w = c(v ∧ w)

Anti-symmetric: v ∧ w = −(w ∧ v)

Non-associative: u ∧ (v ∧ w) 6= (u ∧ v) ∧ w, in general

Distributive: u ∧ (v + w) = u ∧ v + u ∧ w

Right-hand rule:
e1 ∧ e2 = e3, e2 ∧ e3 = e1, e3 ∧ e1 = e2

Orthogonality:

v · (v ∧ w) = 0 v ∧ w is orthogonal to v

w · (v ∧ w) = 0 v ∧ w is orthogonal to w
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Cross Product

Example: test these properties of the cross product

u =





1
1
1



 v =





2
0
0



 w =





0
3
0





Parallel vectors:

v ∧ 3v =





0× 0− 0× 0
0× 6− 0× 2
2× 0− 6× 0



 = 0

Homogeneous:

4v ∧w =





0× 0− 3× 0
0× 0− 0× 8
8× 3− 0× 0



 =





0
0
24





4(v ∧ w) = 4





0× 0− 3× 0
0× 0− 0× 2
2× 3− 0× 0



 = 4





0
0
6



 =





0
0
24




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Cross Product

Anti-symmetric:

v ∧ w =





0
0
6



 and − (w ∧ v) = −









0
0
−6









Non-associative:

u ∧ (v ∧ w) =





1× 6− 0× 1
1× 0− 6× 1
1× 0− 0× 1



 =





6
−6
0





which is not the same as

(u ∧ v) ∧w =





0
2
−2



 ∧





0
3
0



 =





6
0
0





Farin & Hansford Practical Linear Algebra 18 / 38



Cross Product

Distributive:

u ∧ (v + w) =





1
1
1



 ∧





2
3
0



 =





−3
2
1





which is equal to

(u ∧ v) + (u ∧ w) =





0
2
−2



+





−3
0
3



 =





−3
2
1




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Lines

Specifying a line with 3D geometry differs a bit from 2D

Restricted to specifying

two points or

a point and a vector parallel to
the line

The 2D geometry item

a point and a vector
perpendicular to the line

no longer works
An entire family of lines satisfies this
— this family lies in a plane
⇒ concept of a normal to a 3D line
does not exist
⇒ no 3D implicit form
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Lines

Parametric form of a 3D line

l(t) = p+ tv

where p ∈ E
3 and v ∈ R

3

— same 2D line except 3D info

Points generated on line as
parameter t varies

2D: two lines either intersect or they
are parallel
3D: third possibility — lines are skew
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Lines

Intersection of two lines given in parametric form

l1 : l1(t) = p+ tv

l2 : l2(s) = q+ sw

where p,q ∈ E
3 and v,w ∈ R

3

Solve for t or s
Linear system

t̂v − ŝw = q− p

Three equations and two unknowns — overdetermined system
No solution exists when the lines are skew
Can find a best approximation – the least squares solution
— topic of Chapter 12

Still have concepts of perpendicular and parallel lines in 3D
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Planes

Point normal plane equation

Given information:
point p and vector n bound to p

Implicit form of a plane:
Locus of all points x that satisfy

n · (x− p) = 0

if ‖n‖ = 1
n called the normal to the plane

Farin & Hansford Practical Linear Algebra 23 / 38



Planes

Expanding n · (x− p) = 0

n1x1 + n2x2 + n3x3 − (n1p1 + n2p2 + n3p3) = 0

Typically written as Ax1 + Bx2 + Cx3 + D = 0 where

A = n1 B = n2 C = n3 D = −(n1p1 + n2p2 + n3p3)

Example: Find implicit form of plane through the point

p =





4
0
0



 that is perpendicular to vector n =





1
1
1





Compute D = −(1× 4 + 1× 0 + 1× 0) = −4
Plane equation is x1 + x2 + x3 − 4 = 0
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Planes

Origin to plane distance D
If coefficients A,B ,C correspond to
the normal to the plane
then |D| describes the distance of
the plane to the origin
— perpendicular distance

Equate

cos(θ) =
D

‖p‖ and cos(θ) =
n · p

‖n‖‖p‖

Since normal is unit length:

D = n · p
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Planes

Point x̂ to plane distance d

d = Ax̂1 + Bx̂2 + Cx̂3 + D

Convert a plane to point normal
form:
Normalize n and divide the implicit
equation by this factor

n · (x− p)

‖n‖ =
n · x
‖n‖ − n · p

‖n‖ = 0

Resulting in
A′ = A

‖n‖ ,B
′ = B

‖n‖ ,C
′ = C

‖n‖ ,D
′ =

D

‖n‖

Farin & Hansford Practical Linear Algebra 26 / 38



Planes

Example: Plane x1 + x2 + x3 − 4 = 0

Not in point normal form: n =





1
1
1



 and ‖n‖ = 1/
√
3

New coefficients of the plane equation:

A′ = B ′ = C ′ =
1√
3

D ′ =
−4√
3

Resulting in point normal plane equation

1√
3
x1 +

1√
3
x2 +

1√
3
x3 −

4√
3
= 0

Distance d of the point q =





4
4
4



 from the plane:

d =
1√
3
× 4 +

1√
3
× 4 +

1√
3
× 4− 4√

3
=

8√
3
≈ 4.6

d > 0 ⇒ q is on same side of plane as normal direction
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Planes

Parametric plane
Given:

three points, or

a point and two vectors

If start with points p,q, r, then form

v = q− p and w = r − p

P(s, t) = p+ sv + tw

In terms of barycentric coordinates

P(s, t) = p+ s(q− p) + t(r− p)

= (1− s − t)p+ sq+ tr

Strength: create points in a plane
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Planes

Family of planes through a point and vector

Cannot define plane with one point
and a vector in the plane
(analogous to implicit form of a
plane)

Not enough information to uniquely
define a plane
— Many planes fit that data
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Planes

A plane defined as the bisector of two points

Euclidean geometry definition:
locus of points equidistant from two
points

Line between two given points
defines the normal to the plane
The midpoint of this line segment
defines a point in the plane

With this information — implicit
form most natural
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Scalar Triple Product

Volume of a parallelepiped
Area P of a parallelogram formed by
v and w

P = ‖v ∧w‖

Volume is a product of a face area
height ‖u‖ cos θ

V = ‖u‖‖v ∧ w‖ cos θ

Substitute a dot product for cos θ

V = u · (v ∧ w)

This is called the scalar triple product
— signed volume
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Scalar Triple Product

Signed volume V = u · (v ∧ w)
Sign and orientation of the three vectors:
Let P be the plane formed by v and w

cos θ > 0: positive volume — u is on the same side of P as v ∧w

cos θ < 0: negative volume — u is on the opposite side of P as v ∧w

cos θ = 0: zero volume — u lies in P—the vectors are coplanar

Invariant under cyclic permutations

V = u · (v ∧ w) = w · (u ∧ v) = v · (w ∧ u)

Scalar triple product a fancy name for a 3× 3 determinant

— Get to that in Chapter 9
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Scalar Triple Product

Example: compute volume for a parallelepiped defined by

v =





2
0
0



 w =





0
1
0



 u =





3
3
3





Compute y = v ∧ w =





0
0
2



 then volume V = u · y = 6

Notice that if u3 = −3, then V = −6
— Sign reveals information about the orientation
Given parallelepiped is simply a 2× 1× 3 rectangular box
that has been sheared — Shears preserve volumes: confirms volume 6
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Application: Lighting and Shading

Hedgehog plot: the normal of each facet is drawn at the centroid

The normal to a planar facet:
basic element needed to calculate
lighting of a 3D object (model)

Normal + light source location +
our eye location
⇒ lighting (color) of each vertex

Determining the color of a facet is
called shading
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Application: Lighting and Shading

Flat shading: normal to each planar facets used to calculate the color of
each facet

Triangle defined by points p,q, r
Form vectors v and w from points
Normal

n =
v ∧ w

‖v ∧ w‖
By convention: unit length

Consistent orientation of vectors
(right-hand rule)
— v ∧ w versus w ∧ v

— Outside versus inside
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Application: Lighting and Shading

Smooth shading: a normal at each vertex is used to calculate the
illumination over each facet
Left: zoomed-in and displayed with triangles; Right: smooth shaded bugle

At each vertex lighting is calculated: Lighting vectors ip, iq, ir
— Each vector indicating red, green, and blue components of light
At point x = up+ vq+ wr assign color

ix = uip + v iq + w ir

Application of barycentric coordinates
Farin & Hansford Practical Linear Algebra 36 / 38



Application: Lighting and Shading

Normals for smooth shading: vertex normals

— Simple method: average of the triangle normals around the vertex

Direction of the normal n relative to our eye’s position can be used to
eliminate facets from the rendering pipeline
Process called culling ⇒ Great savings in rendering time
c: centroid of triangle e : eye’s position

v = (e− c)/‖e − c‖

If n · v < 0 then triangle is back-facing
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WYSK

3D vector

3D point

vector length

unit vector

dot product

cross product

right-hand rule

orthonormal

area

Lagrange’s identity

3D line

implicit form of a plane

parametric form of a plane

normal

point-normal plane equation

point-plane distance

plane-origin distance

barycentric coordinates

scalar triple product

volume

cyclic permutations of vectors

triangle normal

back-facing triangle

lighting model

flat and Gouraud shading

vertex normal

culling
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