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Linear Maps in 3D

Flight simulator: 3D linear maps are necessary to create the twists and
turns in a flight simulator(Image is from NASA)

Change the (simulated) position of your plane — simulation software must
recompute a new view of the terrain, clouds, or other aircraft

Done through the application of 3D affine and linear maps
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Matrices and Linear Maps

General concept of a linear map in
3D same as that for 2D

Let v be a vector in the standard
[e1, e2, e3]-coordinate system

v = v1e1 + v2e2 + v3e3.
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Matrices and Linear Maps

[a1, a2, a3]-coordinate system:
origin 0 and vectors a1, a2, a3
What vector v′ in the
[a1, a2, a3]-system corresponds to v

in the [e1, e2, e3]-system?

v′ = v1a1 + v2a2 + v3a3

Example:

v =





1
1
2



 a1 =





2
0
1



 a2 =





0
1
0



 a3 =





0
0

1/2





v′ = 1 ·





2
0
1



+1 ·





0
1
0



+2 ·





0
0

1/2



 =





2
1
2




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Matrices and Linear Maps

Matrix equation in 3D: v′ = Av





v ′1
v ′2
v ′3



 =





a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3









v1
v2
v3





All matrix properties from Linear Maps in 2D (Chapter 4) carry over
almost verbatim
Returning to example:





2 0 0
0 1 0
1 0 1/2









1
1
2



 =





2
1
2





Multiply a matrix A by a vector v: the ith component of the result vector
obtained as the dot product of the ith row of A and v
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Matrices and Linear Maps

Transpose AT of a matrix A

Same idea as 2D: interchange rows and columns





2 3 −4

3 9 −4
−1 −9 4





T

=





2 3 −1
3 9 −9
−4 −4 4





Boldface row of A has become the boldface column of AT:

aTi ,j = aj ,i .
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Linear Spaces

Set of all 3D vectors is referred to as a
3D linear space or vector space— denoted as R3

We associate with R
3 the operation of forming linear combinations

⇒ if v and w are two vectors in this linear space, then any vector

u = rv + sw

is also in this space
u is a linear combination of v and w

— combines scalar multiplication and vector addition
This is also called the linearity property
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Linear Spaces

With arbitrary scalars s, t — consider all vectors

u = sv + tw

They form a subspace of the linear space of all 3D vectors

If vectors u1 and u2 are in this space then

u1 = s1v + t1w and u2 = s2v + t2w

And any linear combination can be written as

αu1 + βu2 = (αs1 + βs2)v + (αt1 + βt2)w

which is again in the same space
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Linear Spaces

Subspace u = sv + tw has dimension 2 since it is spanned by two vectors
These vectors have to be non-collinear
— otherwise they define a line, or a 1D subspace

Example: orthogonal projection of w onto v — projection lives in 1D
subspace formed by v

If vectors v,w collinear — called linearly dependent and v = sw

If they are not collinear — called linearly independent

Suppose v1, v2, v3 are linearly independent, then no solution set s1, s2 for

v3 = s1v1 + s2v2

Only way to express the zero vector

0 = s1v1 + s2v2 + s3v3 is if s1 = s2 = s3 = 0
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Linear Spaces

Three linearly independent vectors in R
3 span the entire space

The vectors form a basis for R3

Given linearly independent vectors v and w

Is u is in the subspace spanned by v and w?
— Calculate the volume of the parallelepiped formed by u, v,w
— Check if volume is zero (within a round-off tolerance)
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Scalings

Scalings in 3D: the large torus is scaled by 1/3 in each coordinate to form
the small torus

Scaling is a linear map which
enlarges or reduces vectors:

v′ =





s1,1 0 0
0 s2,2 0
0 0 s3,3



 v

All scale factors
si ,i > 1 all vectors enlarged
0 < si ,i < 1 all vectors shrunk
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Scalings

Non-uniform scalings in 3D: the “standard” torus is scaled by 1/3, 1, 3 in
the e1, e2, e3-directions, respectively

Scaling matrix





1/3 0 0
0 1 0
0 0 3





How do scalings affect volumes?
Unit cube given by e1, e2, e3
⇒ Volume 1
Scale
Rectangular box with side lengths
s1,1, s2,2, s3,3
⇒ Volume is s1,1s2,2s3,3

Farin & Hansford Practical Linear Algebra 13 / 53



Scalings

2D: Geometric understanding of the map through illustrations of the
action ellipse

3D: Examine what happens to 3D unit vectors forming a sphere
Mapped to an ellipsoid—the action ellipsoid

For uniform scale si ,i = 1/3: a sphere that is smaller than the unit
sphere

For non-uniform scale s1,1 = 1/3, s2,2 = 1, s3,3 = 3: an ellipsoid with
major axis in the e3-direction and minor axis in the e1-direction

Study the action ellipsoid in more detail in Chapter 16 (The Singular Value
Decomposition)

Farin & Hansford Practical Linear Algebra 14 / 53



Reflections

Reflection of a vector about the e2, e3-plane

First component should change in
sign:





v1
v2
v3



 −→





−v1
v2
v3





This reflection achieved by scaling
matrix:





−v1
v2
v3



 =





−1 0 0
0 1 0
0 0 1









v1
v2
v3




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Reflections

Reflection of a vector about the x1 = x3 plane
Interchange the first and third
component of a vector





v1
v2
v3



 −→





v3
v2
v1





Map achieved by





v3
v2
v1



 =





0 0 1
0 1 0
1 0 0









v1
v2
v3





Reflections do not change volumes
—but they do change their signs
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Shears

A 3D shear parallel to the e1, e2-plane
A shear maps a cube to a
parallelepiped
A shear that maps e1 and e2 to

themselves and e3 to a3 =





a

b

1





S1 =





1 0 a

0 1 b

0 0 1





v′ = S1v =





v1 + av3
v2 + bv3

v3





Sketch: a = 1, b = 1
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Shears

Shears in 3D: a paraboloid is sheared in the e1- and e2-directions
The e3-direction runs through the center of the left paraboloid

(Same shear as previous sketch)

S1 =





1 0 1
0 1 1
0 0 1



 v′ = Sv =





v1 + av3
v2 + bv3

v3




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Shears

What shear maps e2 and e3 to themselves, and also maps





a

b

c



 to





a

0
0



?

This shear is given by the matrix

S2 =







1 0 0

−b
a

1 0

−c
a

0 1







This map shears parallel to the [e2, e3]-plane
This is the shear of the Gauss elimination step
— See Chapter 12
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Shears

Possible to shear in any direction
More common to shear parallel to a coordinate axis or coordinate plane

Another example: Shear parallel to the e1-axis





1 a b

0 1 0
0 0 1









v1
v2
v3



 =





v1 + av2 + bv3
v2
v3





All shears are volume preserving
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Rotations

Rotate a vector v around the e3-axis by 90◦ to a vector v′:

v =





2
0
1



 → v′ =





0
2
1





Rotation around e3 by any angle
leaves third component unchanged

Desired rotation matrix R3:
(similar to one from 2D)

R3 =





cosα − sinα 0
sinα cosα 0
0 0 1




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Rotations

Rotations in 3D: the letter “L” rotated about the e3-axis

Verify that R3 performs as promised
with α = 90◦:





0 −1 0
1 0 0
0 0 1









2
0
1



 =





0
2
1




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Rotations

Rotate around the e2-axis:

R2 =





cosα 0 sinα
0 1 0

− sinα 0 cosα





Notice the pattern: Rotation about ei -axis
⇒ i th row is ei and i th column is eTi

Rotation around the e1-axis:

R1 =





1 0 0
0 cosα − sinα
0 sinα cosα





Positive angle rotation follows the right-hand rule:
curl your fingers with the rotation, and your thumb points in the direction
of the rotation axis
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Rotations

Example: Rotation matrix about the e1-axis:

R1 =





1 0 0
0 cosα − sinα
0 sinα cosα





Column vectors form an orthonormal set of vectors
— Each column vector is a unit length vector
— They are orthogonal to each other
⇒ A rotation matrix is an orthogonal matrix

(These properties hold for the row vectors of the matrix too.)

RTR = I RT = R−1

If R rotates by θ then R−1 rotates by −θ
Rotations do not change volumes
Rotations are rigid body motions
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Rotations

Rotation α degrees about an arbitrary vector a

R =





a21 + C (1− a21) a1a2(1− C )− a3S a1a3(1− C ) + a2S

a1a2(1− C ) + a3S a22 + C (1− a22) a2a3(1− C )− a1S

a1a3(1− C )− a2S a2a3(1− C ) + a1S a23 + C (1− a23)





C = cosα and S = sinα
Necessary that ‖a‖ = 1 to avoid scaling
(Derivation is a bit tricky!)
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Rotations

Rotations in 3D: the letter “L” is rotated about axes that are not the
coordinate axes
Right: the point on the “L” that touches the rotation axes does not move
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Rotations

A simple example of a rotation about a vector

α = 90◦ a =





0
0
1



 v =





1
0
0





(In advance — we know R )
C = 0 and S = 1 then

R =





0 −1 0
1 0 0
0 0 1





v′ =





0
1
0




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Projections

Parallel projections in 3D
Left: orthogonal projection Right: oblique projection of 45◦





1 0 0
0 1 0
0 0 0









1 0 1/
√
2

0 1 1/
√
2

0 0 0




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Projections

Parallel projections are linear maps
(Perspective projection are not linear maps)

Parallel projections preserve relative dimensions of an object
⇒ used in drafting to produce accurate views of a design

Recall from 2D: a projection matrix P

— Reduces dimensionality (flattens) because P is rank deficient
In 3D: a vector is projected into a subspace ⇒ (2D) plane or (1D) line

— Is an idempotent map Pv = P2v

Leaves a vector in the subspace of the map unchanged by the map
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Projections

Construction of an orthogonal projection in 3D

Choose the subspace U into which to project
— Line: specify a unit vector u1
— Plane: specify two orthonormal vectors u1,u2

Form matrix Ak from the vectors defining the k-dimensional subspace U:

A1 = u1 or A2 =
[
u1 u2

]

Projection matrix Pk :
Pk = AkA

T

k

P1 very similar to the projection matrix from 2D:

P1 = A1A
T

1 =
[
u1,1u1 u2,1u1 u3,1u1

]
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Projections

Projection into a plane:

P2 = A2A
T

2 =
[
u1 u2

]
[
uT1
uT2

]

Expanding — columns of P2 are linear combinations of u1 and u2

P2 =
[
u1,1u1 + u1,2u2 u2,1u1 + u2,2u2 u3,1u1 + u3,2u2

]

The action of P1 and P2:

P1v = (u · v)u P2v = (u1 · v)u1 + (u2 · v)u2
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Projections

Construct orthogonal projection P2

into the [e1, e2]-plane

P2 =
[
e1 e2

]
[
eT1
eT2

]

=





1 0 0
0 1 0
0 0 0





Action of the map:




v1
v2
0



 =





1 0 0
0 1 0
0 0 0









v1
v2
v3





Projection direction is d = [0 0 ± 1]T

P2d = 0 ⇒ projection direction is in
the kernel of the map
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Projections

The idempotent property for P2:

P2
2 = A2A

T

2 A2A
T

2

=
[
u1 u2

]
[
uT1
uT2

]
[
u1 u2

]
[
uT1
uT2

]

=
[
u1 u2

]
I

[
uT1
uT2

]

= P2

Orthogonal projection matrices are symmetric:

Action of the map Pv is orthogonal to v − Pv

0 = (Pv)T(v − Pv) = vT(PT − PTP)v → P = PT

Projection results in zero volume
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Volumes and Linear Maps: Determinants

Volume change is an important aspect of the action of a map

Unit cube in the [e1, e2, e3]-system has volume one
Linear map A will change cube to a skew box spanned by a1, a2, a3
—the column vectors of A
What is the volume spanned by a1, a2, a3?

Recall 2× 2 matrix
Area of a 2D parallelogram equivalent to a determinant
Cross product can be used to calculate this area (by embedding in 3D)

3D geometry: scalar triple product

Calculate volume of a parallelepiped using a “base area times height”

Revisit this and look at it from the perspective of linear maps
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Volumes and Linear Maps: Determinants

3× 3 determinant of a matrix A — alternating sum of 2× 2 determinants:

|A| = a1,1

∣
∣
∣
∣

a2,2 a2,3
a3,2 a3,3

∣
∣
∣
∣
− a2,1

∣
∣
∣
∣

a1,2 a1,3
a3,2 a3,3

∣
∣
∣
∣
+ a3,1

∣
∣
∣
∣

a1,2 a1,3
a2,2 a2,3

∣
∣
∣
∣

Called the cofactor expansion or expansion by minors
— Each (signed) 2× 2 determinant is cofactor of ai ,j it is paired with
— Sign comes from the factor (−1)i+j

— Cofactor is also written as (−1)i+jMi ,j

where Mi ,j is called the minor of ai ,j
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Volumes and Linear Maps: Determinants

Trick to remember determinant expression:

Copy the first two columns after the last column
Form the product of the three “diagonals” and add them

a1,1 a1,2 a1,3 � �

� a2,2 a2,3 a2,1 �

� � a3,3 a3,1 a3,2

Form the product of the three “anti-diagonals” and subtract them

� � a1,3 a1,1 a1,2
� a2,2 a2,3 a2,1 �

a3,1 a3,2 a3,3 � �

The complete formula:

|A| = a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2

− a3,1a2,2a1,3 − a3,2a2,3a1,1 − a3,3a2,1a1,2
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Volumes and Linear Maps: Determinants

What is the volume spanned by the three vectors

a1 =





4
0
0



 , a2 =





−1
4
4



 , a3 =





0.1
−0.1
0.1



?

det[a1, a2, a3] = 4

∣
∣
∣
∣

4 −0.1
4 0.1

∣
∣
∣
∣

= 4(4 × 0.1− (−0.1) × 4) = 3.2

(Did not write down zero terms)
Notice: detA is alternative notation for |A|

Farin & Hansford Practical Linear Algebra 37 / 53



Volumes and Linear Maps: Determinants

3D shear preserves volume
Apply series of shears to A resulting in

Ã =





ã1,1 ã1,2 ã1,3
0 ã2,2 ã2,3
0 0 ã3,3





|Ã| = ã1,1ã2,2ã3,3 and |A| = |Ã|
Revisit Example above

One simple row operation: row3 = row3 − row2 results in

Ã =





4 −1 0.1
0 4 −0.1
0 0 0.2



 |Ã| = |A| = 3.2
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Volumes and Linear Maps: Determinants

Shear/forward elimination concept
provides an easy to visualize
interpretation of the 3× 3
determinant

First two column vectors of Ã lie in
the [e1, e2]-plane

Their determinant defines the area of
the parallelogram that they span

— this determinant is ã1,1ã2,2

The height of the skew box is the e3
component of ã3

This is equivalent to the scalar triple
product
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Volumes and Linear Maps: Determinants

Rules for determinants A and B are 3× 3 matrices

|A| = |AT| ⇒ row and column equivalence

Non-cyclic permutation changes the sign:
∣
∣a2 a1 a3

∣
∣ = −|A|

scalar c :
∣
∣ca1 a2 a3

∣
∣ = c |A|

|cA| = c3|A|
If A has a row of zeroes then |A| = 0

If A has two identical rows then |A| = 0

|A|+ |B | 6= |A+ B |, in general

|AB | = |A||B |
Multiples of rows can be added together without changing the
determinant. Example: shears of Gauss elimination

A being invertible is equivalent to |A| 6= 0

If A is invertible then |A−1| = 1
|A|
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Combining Linear Maps

Apply a linear map A to a vector v then apply a map B to the result:

v′ = BAv

Matrix multiplication is defined just as in the 2D case
C = BA: element ci ,j is dot product of B ’s ith row and A’s jth column

A

B C

1 5 −4
−1 −2 0
2 3 −4

0 0 −1

1 −2 0
−2 1 1

−2 −3 4
3 9 −4

−1 −9 4

Multiply two matrices A and B together as AB — sizes of A and B :

m × n and n × p

Resulting matrix: m × p—the “outside” dimensions
Necessary that “inside” dimensions (both n) be equal
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Combining Linear Maps

Matrix multiplication does not commute (in general): AB 6= BA

In 2D rotation commute — In 3D they do not

The original “L” is labeled I for identity matrix
Left: R1 is applied and then R3 — result labeled R3R1

Right: R3 is applied and then R1 — result labeled R1R3
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Combining Linear Maps

Matrices for last Figure:
R1: rotation by −90◦ around the e1-axis
R3: rotation by −90◦ around the e3-axis

R1 =





1 0 0
0 0 1
0 −1 0



 and R3 =





0 1 0
−1 0 0
0 0 1





R3R1 =





0 0 1
−1 0 0
0 −1 0



 is not equal to R1R3 =





0 1 0
0 0 1
1 0 0




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Inverse Matrices

Inverse matrices undo linear maps:

v′ = Av then A−1v′ = v or A−1Av = v

Combined action of A−1 and A has no effect on any vector v

A−1A = I and AA−1 = I

A matrix is not always invertible
Example: projections — they are rank deficient
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Inverse Matrices

Orthogonal matrices: constructed from a set of orthonormal vectors
RT = R−1

Forming the reverse rotation is simple and requires no computation
— Provides for huge savings in computer graphics where rotating objects
is common

Scaling also has a simple to compute inverse:

S =





s1,1 0 0
0 s2,2 0
0 0 s3,3



 then S−1 =





1/s1,1 0 0
0 1/s2,2 0
0 0 1/s3,3




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Inverse Matrices

Rules calculating with inverse matrices

A−n = (A−1)n = A−1 · . . . · · ·A−1
︸ ︷︷ ︸

n times

(A−1)−1 = A

(kA)−1 =
1

k
A−1

(AB)−1 = B−1A−1

Chapter 12: details on calculating A−1
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More on Matrices

Restate some matrix properties — hold for n × n matrices as well

preserve scalings: A(cv) = cAv

preserve summations: A(u+ v) = Au+ Av

preserve linear combinations: A(au+ bv) = aAu+ bAv

distributive law: Av+ Bv = (A + B)v
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More on Matrices

commutative law for addition: A+ B = B + A

no commutative law for multiplication: AB 6= BA

associative law for addition: A+ (B + C ) = (A+ B) + C

associative law for multiplication: A(BC ) = (AB)C

distributive law: A(B + C ) = AB + AC

(B + C )A = BA+ CA
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More on Matrices

Scalar laws:

a(B + C ) = aB + aC

(a + b)C = aC + bC

(ab)C = a(bC )

a(BC ) = (aB)C = B(aC )
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More on Matrices

Laws involving determinants:

|A| = |AT|
|AB | = |A| · |B |
|A|+ |B | 6= |A+ B |
|cA| = cn|A|
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More on Matrices

Laws involving exponents:

Ar = A · . . . · · ·A
︸ ︷︷ ︸

r times

Ar+s = ArAs

Ars = (Ar )s

A0 = I
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More on Matrices

Laws involving the transpose:

[A+ B ]T = AT + BT

ATT
= A

[cA]T = cAT

[AB ]T = BTAT
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WYSK

3D linear map

transpose matrix

linear space

vector space

subspace

linearity property

linear combination

linearly independent

linearly dependent

scale

action ellipsoid

rotation

rigid body motions

shear

reflection

projection

idempotent

orthographic
projection

oblique projection

determinant

volume

scalar triple product

cofactor expansion

expansion by
minors

inverse matrix

multiply matrices

non-commutative
property of matrix
multiplication

rules of matrix
arithmetic
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