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Linear Maps in 3D

Flight simulator: 3D linear maps are necessary to create the twists and
turns in a flight simulator(Image is from NASA)

Change the (simulated) position of your plane — simulation software must
recompute a new view of the terrain, clouds, or other aircraft

Done through the application of 3D affine and linear maps
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General concept of a linear map in
3D same as that for 2D

Let v be a vector in the standard
[e1, e2, e3]-coordinate system

vV =vie; + wep + vies.
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Matrices and Linear Maps

Farin & Hansford

[a1, a2, a3]-coordinate system:
origin 0 and vectors aj, a, as
What vector v/ in the

[a1, a2, a3]-system corresponds to v

in the [e1, ey, e3]-system?

/
V. = viai + was + viasz

Example:

1 2 0
v=|1 a; = 0 ar = 1 az =
2 1 0

2 0 0
vV =1-]0[+1-[1|4+2-|]0 | =
1 0 1/2

Practical Linear Algebra




Matrices and Linear Maps

Matrix equation in 3D: v/ = Av

/
Vi 41,1 812 413 Vi
/
Vo| = |4a21 422 a3 V2
/
V3 a31 4832 433 V3

All matrix properties from Linear Maps in 2D (Chapter 4) carry over

almost verbatim

Returning to example:
2 0 0 1 2
01 0 1] = |1
1 0 1/2] |2 2

Multiply a matrix A by a vector v: the ith component of the result vector
obtained as the dot product of the ith row of A and v
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Transpose AT of a matrix A

Same idea as 2D: interchange rows and columns

2 3 -417 2 3 —1
3 9 —4| =13
1 -9 4

9 -9
—4 —4 4
Boldface row of A has become the boldface column of AT:

DA
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v
a
a
!
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Linear Spaces

Set of all 3D vectors is referred to as a
3D linear space or vector space— denoted as R3

We associate with R3 the operation of forming linear combinations
= if v and w are two vectors in this linear space, then any vector

u=rv-+sw

is also in this space

u is a linear combination of v and w

— combines scalar multiplication and vector addition
This is also called the
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Linear Spaces

With arbitrary scalars s, t — consider all vectors
u=sv-—+tw

They form a of the linear space of all 3D vectors

If vectors u; and u; are in this space then
up =s;v+tiw and uy = v + bhw
And any linear combination can be written as
auy + fuy = (as; + fsp)v + (aty + Sto)w

which is again in the same space
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Linear Spaces

Subspace u = sv + tw has dimension 2 since it is spanned by two vectors
These vectors have to be non-collinear
— otherwise they define a line, or a 1D subspace

Example: orthogonal projection of w onto v — projection lives in 1D
subspace formed by v

If vectors v, w collinear — called and v = sw

If they are not collinear — called

Suppose vi,Vo,vs are linearly independent, then no solution set sg, s, for
V3 = 51V1 + S22

Only way to express the zero vector

0=s51vi +s5vr +s53v3 isif s =s=53=0
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Linear Spaces

Three linearly independent vectors in R3 span the entire space
The vectors form a for R3

Given linearly independent vectors v and w

Is u is in the subspace spanned by v and w?

— Calculate the volume of the parallelepiped formed by u,v,w
— Check if volume is zero (within a round-off tolerance)
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the small torus

Scalings in 3D: the large torus is scaled by 1/3 in each coordinate to form

Scaling is a linear map which
enlarges or reduces vectors:

S1,1 0 0
V=0 s 0]|v
0

0 533
All scale factors

si,i > 1 all vectors enlarged

0 <s;; <1 all vectors shrunk

Dae
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Scalings

Non-uniform scalings in 3D: the “standard” torus is scaled by 1/3, 1, 3 in
the ey, ey, es-directions, respectively

Farin & Hansford

Scaling matrix

1/3 0
0 1
0 0

w O O

How do scalings affect volumes?
Unit cube given by e, e5,e3

= Volume 1

Scale

Rectangular box with side lengths
51,1,52,2,53,3

= Volume is 51152533

=] F = = .
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Scalings

2D: Geometric understanding of the map through illustrations of the
action ellipse

3D: Examine what happens to 3D unit vectors forming a sphere
Mapped to an ellipsoid—the

@ For uniform scale s;; = 1/3: a sphere that is smaller than the unit
sphere

@ For non-uniform scale s;1 =1/3,52 =1,s33 = 3: an ellipsoid with
major axis in the es-direction and minor axis in the e;-direction

Study the action ellipsoid in more detail in Chapter 16 (The Singular Value
Decomposition)
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Reflections

Reflection of a vector about the e, e3-plane

First component should change in

sign:
Vi -1
Vo| — %)
V3 V3

This reflection achieved by scaling

matrix:
-V -1 0 0Of |wv1
w| =10 1 0| |w
V3 0 01 V3
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Reflections

Reflection of a vector about the x; = x3 plane

Interchange the first and third
component of a vector

Vi V3
Vo| — | W
V3 Vi

Map achieved by

V3

0 01 Vi
%] 010 %]
Vi 1 0 0| |ws

Reflections do not change volumes
—but they do change their signs

Farin & Hansford
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A 3D shear parallel to the e, ex-plane

A shear maps a cube to a
parallelepiped
A shear that maps e; and e; to

a
themselves and ez toag = | b

1

51

I
oo
o~ o
— o

Vi +avs
vV = Siv= |wv+ bwz
V3

Sketch: a=1,b=1
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Shears in 3D: a paraboloid is sheared in the e;- and e)-directions
The es-direction runs through the center of the left paraboloid

(Same shear as previous sketch)

1 01

S51=10 1
0 1

v =Sv=

1 V2—|-bV3
0 D>v43ﬁ> Er» «E» Q>
~ Farin&Hansfod  Practical Linear Alggbra 18/ 53



Shears

What shear maps e, and e3 to themselves, and also maps

ley
+
(o]
o O w
-~J

This shear is given by the matrix

1 00
S;={=2 10
=< 01

This map shears parallel to the [e;, e3]-plane
This is the shear of the Gauss elimination step
— See Chapter 12
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Possible to shear in any direction
More common to shear parallel to a coordinate axis or coordinate plane

Another example: Shear parallel to the e;-axis

1 a b %1 vi + avo + bvs
01 0f [w| = Vs
0 01 V3 V3

All shears are volume preserving
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Rotations

Rotate a vector v around the esz-axis by 90° to a vector v':
2 0

v= (0 - Vv =2
1

Rotation around e3 by any angle
leaves third component unchanged

Desired rotation matrix Rj:
(similar to one from 2D)

cosa —sina 0
Ry = [sina cosa 0
0 0 1
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Rotations in 3D: the letter “L" rotated about the e3-axis

Verify that R3 performs as promised

with o = 90°:
0 -1 0] |2 0
1 0 0 0] = |2
0 O 1 1 1
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Rotations

Rotate around the ej-axis:

cosae 0 sina
Ry, = 0 1 0

—sina 0 cosa

Notice the pattern: Rotation about e;-axis
= i'" row is e; and i*" column is e}

Rotation around the ej-axis:

1 0 0
Ri=10 cosa  —sina
0 sin « CoSs &

Positive angle rotation follows the right-hand rule:
curl your fingers with the rotation, and your thumb points in the direction
of the rotation axis
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Rotations

Example: Rotation matrix about the e;-axis:

1 0 0
Ri= 1|0 cosa —sina
0 sin « Cos o

Column vectors form an orthonormal set of vectors

— Each column vector is a unit length vector

— They are orthogonal to each other

= A rotation matrix is an orthogonal matrix

(These properties hold for the row vectors of the matrix too.)

RTR=1 RT = R

If R rotates by # then R~! rotates by —@
Rotations do not change volumes
Rotations are rigid body motions
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Rotations

Rotation « degrees about an arbitrary vector a

2+ C(1-a?) aa(l—C)—a3S ajaz(l— C)+ aS
R = 8132(1 — C) + a3S a% + C(]. - a%) 3283(1 — C) —aS
a1a3(1— C) — a2S aa3(1—-C)+a1S a2+ C(1 — a3)

C=cosaand S =sina
Necessary that ||a|| = 1 to avoid scaling
(Derivation is a bit tricky!)
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Rotations in 3D: the letter “L" is rotated about axes that are not the
coordinate axes

Right: the point on the “L" that touches the rotation axes does not move
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Rotations
A simple example of a rotation about a vector
0 1
a=90° a= [0 v=]0
1 0

(In advance — we know R )
C=0and S =1 then
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Parallel projections in 3D

Left: orthogonal projection Right: oblique projection of 45°

100 1 0 1/V2
010 01 1/V2
000 00 O

!
V)
ye)
i)




Projections

are linear maps
(Perspective projection are not linear maps)

Parallel projections preserve relative dimensions of an object
= used in drafting to produce accurate views of a design

Recall from 2D: a projection matrix P
— Reduces dimensionality (flattens) because P is rank deficient

In 3D: a vector is projected into a subspace = (2D) plane or (1D) line
— Is an idempotent map Pv = P?v

Leaves a vector in the subspace of the map unchanged by the map
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Projections

Construction of an orthogonal projection in 3D

Choose the subspace U into which to project
— Line: specify a unit vector uy
— Plane: specify two orthonormal vectors ug, us

Form matrix A, from the vectors defining the k-dimensional subspace U:
A1 = u; or A2 = [ul UQ]

Projection matrix Py:
P, = ALAL

P1 very similar to the projection matrix from 2D:

T
Py = AtA] = [up1ur wiur uzqu]

Farin & Hansford Practical Linear Algebra 30 /53



Projection into a plane:

P2 = A2A2T = [Ul UQ] |:u1

T]
T
U
Expanding — columns of P, are linear combinations of u; and up

Py = [Ul,lul + ugoup Uz iUy + Upoun U3 1UY + U3,2U2]
The action of P; and Ps:

Piv=(u-v)u

Pov = (uy - v)ug + (uy -
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Construct orthogonal projection P,
into the [e1, ex]-plane

T 1 00
e
P, = [e1 e [eﬂ: 010
2 00O
Action of the map:
v 1 0 0| [wn
w|l=1[(0 1 0 [w
0 0 0 0f |vs

Projection direction isd = [0 0 4 1]T
P>d = 0 = projection direction is in
the kernel of the map
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Projections

The idempotent property for P;:

P2 = AyAT A AT

Orthogonal projection matrices are symmetric:

Action of the map Pv is orthogonal to v — Pv

0=(Pv)'(v—Pv)=vi(PT - PTP)v —P=p"

Projection results in zero volume

Farin & Hansford Practical Linear Algebra
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Volumes and Linear Maps: Determinants

Volume change is an important aspect of the action of a map

Unit cube in the [e;, e;, e3]-system has volume one

Linear map A will change cube to a skew box spanned by aj,as, a3
—the column vectors of A

What is the volume spanned by aj,ap,a3?

Recall 2 x 2 matrix
Area of a 2D parallelogram equivalent to a determinant
Cross product can be used to calculate this area (by embedding in 3D)

3D geometry: scalar triple product
Calculate volume of a parallelepiped using a “base area times height”

Revisit this and look at it from the perspective of linear maps
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Volumes and Linear Maps: Determinants

3 x 3 determinant of a matrix A — alternating sum of 2 x 2 determinants:

41,2 413
dp2 a3

a2 ai3
d32 433

a2 axs
d32 433

Al = a11 — ay, ,

Called the or
— Each (signed) 2 x 2 determinant is cofactor of a; j it is paired with
— Sign comes from the factor (—1)'*/
— Cofactor is also written as (—1)/M;
where M; j is called the of a;;
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Volumes and Linear Maps: Determinants

Trick to remember determinant expression:

Copy the first two columns after the last column
Form the product of the three “diagonals” and add them

a1 a2 a3z O O
O axo a3 axy U
O 0O a33 a1 asp

Form the product of the three “anti-diagonals” and subtract them

O 0O a3 a1 aip
O axo a3 axy U
az1 azp az3z O O

The complete formula:

|Al = a11ap02a833+ a12a23331 + 31,332,133

—d3,142,24d1,3 — 43,28234d1,1 — 43,342,112

Farin & Hansford Practical Linear Algebra
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Volumes and Linear Maps: Determinants

What is the volume spanned by the three vectors

4 -1 0.1
a;= |0 , Qa2 = 4 , Qa3 = —-0.1(7
0 4 0.1
4 —-0.1
det[al,a2,a3] =4 ‘4 01 ‘

= 4(4 x 0.1 — (~0.1) x 4) = 3.2

(Did not write down zero terms)
Notice: det A is alternative notation for |A|

Farin & Hansford Practical Linear Algebra
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Volumes and Linear Maps: Determinants

3D shear preserves volume
Apply series of shears to A resulting in

a1 aie a3

)

A = 0 §272 :9'273
0 0 333
\Z\\ = 31,1322333 and |A| = \,Z\‘

Revisit Example above

One simple row operation: rows = rows — rows results in

4 -1 01 )
A=|0 4 -o01 Al = |A] = 3.2
0 0 02
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Volumes and Linear Maps: Determinants

Farin & Hansford

Shear/forward elimination concept
provides an easy to visualize
interpretation of the 3 x 3
determinant

First two column vectors of A lie in
the [e, ey]-plane

Their determinant defines the area of
the parallelogram that they span

— this determinant is 31 1322

The height of the skew box is the e3
component of as

This is equivalent to the scalar triple
product
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Volumes and Linear Maps: Determinants

Rules for determinants A and B are 3 x 3 matrices

o |A| = |AT| = row and column equivalence

@ Non-cyclic permutation changes the sign: |a; a3 a3‘ = —|A|
o scalar c: [ca; ax a3 = clA|

o |cA| = 3|A|

@ If A has a row of zeroes then |A| =0

@ If A has two identical rows then |A] =0

e |A|+ |B| # |A+ BJ, in general

s |AB| = |A|IB

@ Multiples of rows can be added together without changing the
determinant. Example: shears of Gauss elimination

A being invertible is equivalent to |A| # 0
o If Ais invertible then |[A~1| = F}‘
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Combining Linear Maps
Apply a linear map A to a vector v then apply a map B to the result:
v = BAv

is defined just as in the 2D case
C = BA: element ¢;; is dot product of B's ith row and A’s jth column

1 5 —4
-1 -2 0

A 2 3 -4
B|C 0 0 -1 |2 -3 4
1 -2 0 3 9 —4

2 1 1 |-1 -9 4

Multiply two matrices A and B together as AB — sizes of A and B:
mxn and nxp

Resulting matrix: m x p—the “outside” dimensions
Necessary that “inside” dimensions (both n) be equal

Farin & Hansford Practical Linear Algebra
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Combining Linear Maps

Matrix multiplication does not commute (in general): AB # BA

In 2D rotation commute — In 3D they do not
€3 €3
| R 1
R‘IRS
€ €
R1
R3R1 e1 e1

The original “L" is labeled / for identity matrix
Left: Ry is applied and then R3 — result labeled R3R;
Right: Rs is applied and then R; — result labeled Ry R3
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Combining Linear Maps

Matrices for last Figure:
Ri: rotation by —90° around the e;-axis
Rs: rotation by —90° around the esz-axis

1 0 0
Rr=10 0 1 and Rz =
0 -1 0
0 O 1
RsRi=1]—-1 0 0 is not equal to

Farin & Hansford Practical Linear Algebra

0 1
-1 0
0 O

RiR3 =

0
0
1

0
0
1

1
0
0

o = O
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Inverse matrices undo linear maps:

V=Av then AW =v oo AlAv=v
Combined action of A~! and A has no effect on any vector v
ATlA=1

and AATl =]
A matrix is not always invertible

Example: projections — they are rank deficient
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Inverse Matrices

Orthogonal matrices: constructed from a set of orthonormal vectors
RT =R-!
Forming the reverse rotation is simple and requires no computation

— Provides for huge savings in computer graphics where rotating objects
is common

Scaling also has a simple to compute inverse:

S1,1 0 0 1/51,1 0 0
S=10 s> 0 then S 1= 0 1/s02 0
0 0 S33 0 0 1/53,3
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Rules calculating with inverse matrices

n t;:nes
(A=A

(kA)~t = L

(AB)"1 =B71a!

Chapter 12: details on calculating A~!
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More on Matrices

Restate some matrix properties ~ — hold for n x n matrices as well

@ preserve scalings: A(cv) = cAv
@ preserve summations: A(u + v) = Au+ Av
@ preserve linear combinations: A(au + bv) = aAu + bAv

o distributive law: Av+ Bv = (A + B)v
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More on Matrices

@ commutative law for addition: A+ B=B+ A

@ no commutative law for multiplication: AB # BA

@ associative law for addition: A+ (B+ C)=(A+B)+ C
@ associative law for multiplication: A(BC) = (AB)C

e distributive law: A(B+ C) = AB + AC
(B+ C)A=BA+ CA
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Scalar laws:

® a(B+C)=aB+aC
o (a+b)C=aC+bC
e (ab)C = a(bC)

e a(BC) = (aB)C = B(a(C)



Laws involving determinants:

° |A] =|AT|
° [AB| = [A|-|B|

o |Al+|B| #|A+ B|
® |cA| = c"|A]
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Laws involving exponents:
e AT=A-....- A
r times
o ATS = ArAS
o A" = (A")°
e AV=/

«0)>» «Fr «=Z»r « A
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Laws involving the transpose:

o [A+B|T=AT 4 BT
o ATT — A

o [cA]T = cAT

o [AB]T = BTAT
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WYSK

3D linear map
transpose matrix
linear space
vector space
subspace

linearity property
linear combination
linearly independent
linearly dependent
scale

action ellipsoid
rotation

rigid body motions

Farin & Hansford

shear

reflection
projection
idempotent
orthographic
projection

oblique projection
determinant
volume

scalar triple product
cofactor expansion

expansion by
minors

Practical Linear Algebra

inverse matrix
multiply matrices

non-commutative
property of matrix
multiplication
rules of matrix
arithmetic
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