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a b s t r a c t

We discuss G1 smoothness conditions for rectangular and triangular Gregory patches. We
then incorporate these G1 conditions into a surface fitting algorithm. Knowledge of the
patch type is inconsequential to the formulation of the G1 conditions, hence the term
agnostic G1 Gregory surfaces.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction is in contrast to spline surfaces, which are typically second
Surfaces are used for many modeling purposes, ranging
from car bodies or airplane fuselages to objects in ani-
mated movies or interactive games. Depending on the
application at hand, different surface types are used, such
as spline surfaces [1] for the first two examples and subdi-
vision surfaces [2] for the last two.

Spline surfaces cover a model with rectangular patches,
which can create problems in areas where triangular
shapes are needed. Subdivision surfaces have potential
problems because direct evaluation is possibly slow [3].
For this reason, several authors have studied polynomial
or rational polynomial approximation subdivision surfaces
[4–6].

In this paper, we investigate spline-like surfaces which
cover a model by a mix of triangular and rectangular
patches. These are rational polynomial patches, first inves-
tigated by Gregory [7] in rectangular form and by Walton
and Meek [8] in triangular form. Our surfaces are G1, mean-
ing they have continuous tangent planes everywhere. This
. All rights reserved.

e@farinhansford.com
order differentiable, or C2.
First we introduce rectangular and triangular Gregory

surfaces. Next we introduce our G1 conditions. We then
incorporate these G1 conditions into a surface fitting
algorithm.

2. Rectangular Gregory surfaces

A bicubic Bézier patch is given by a control net

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

and, for a point b(u,v) on the patch:

bðu;vÞ ¼
X3

i¼0

X3

j¼0

bij
36

i!j!ð3� iÞ!ð3� jÞ! ð1� uÞ3�iuið1� vÞ3�jv j;

where the parametric domain is given by 0 6 u, v 6 1. The
3D points bij form a control net which determines the
shape of the patch.
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Fig. 1. Orange control points: A bicubic rectangular Gregory patch. Green
control points: a quartic triangular Gregory patch. Control points are
connected to the boundaries to which they yield more influence. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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A ‘‘bicubic’’1 Gregory patch [9] is given by a control net of
the same structure but with variable interior control points

b11 ¼
u

uþ v b10
11 þ

v
uþ v b01

11;

b21 ¼
1� u

1� uþ v b10
21 þ

v
1� uþ v b01

21;

b12 ¼
u

1� v þ u
b10

12 þ
1� v

1� v þ u
b01

12;

b22 ¼
1� u

2� u� v b10
22 þ

1� v
2� u� v b01

22:

The superscript 10 identifies Gregory control points
with greater influence on the boundaries, where u varies,
and likewise, the superscript 01 identifies Gregory points
with more influence on the boundaries, where v varies.
Fig. 1 illustrates a bicubic Gregory patch.

The eight interior control points might come from cross
boundary continuity conditions. In that context, we will be
interested in the degree 3 � 1 surface formed by the two
rows of control points along each edge, called the tangent
ribbon. Thus the tangent ribbon defines the tangent plane
along the boundary. The ribbons along v = 0 and v = 1 are
given by control points

b00 b01

b10 b10
11

b20 b10
21

b30 b31

and

b02 b03

b10
12 b13

b10
22 b23

b32 b33;

respectively. The ribbons along u = 0 and u = 1 are given by
control points

b00 b01 b02 b03

b10 b01
11 b01

12 b13
and

b20 b01
21 b01

22 b23

b30 b31 b32 b33

respectively. Fig. 2 (left) illustrates a tangent ribbon for a
bicubic Bézier patch.

3. Triangular Gregory surfaces

A quartic triangular Bézier patch is given by the control
net

b040

b031 b130

b022 b121 b220

b013 b112 b211 b310

b004 b103 b202 b301 b400

and, for a point b(u,v,w) on the patch:

bðu; v;wÞ ¼
X

iþjþk¼4

24
i!j!k!

uiv jwkbijk;

where the parametric domain is given by barycentric coor-
dinates u + v + w = 1.

A triangular Gregory patch [8] is given by a control net
of the same structure but with variable interior control
points
1 The so-called bicubic Gregory patch is rational and degree seven in
both u and v.
b112 ¼
u

uþ v b101
112 þ

v
uþ v b011

112;

b211 ¼
w

wþ v b101
211 þ

v
wþ v b110

211;

b121 ¼
u

uþw
b110

121 þ
w

uþw
b011

121:

The superscript 101 identifies a Gregory control point
with more influence on the (u,0,w) boundary, the super-
script 110 identifies a Gregory point with more influence
on the (u,v,0) boundary, and the superscript 011 identifies
a Gregory point with more influence on the (0,v,w) bound-
ary. Fig. 1 illustrates a quartic triangular Gregory patch.

Here we will use a special quartic patch in which the
three quartic boundary curves are degree elevated cubics.
(This point will be revisited in Sections 4 and 5.) Let the cu-
bic representation of these boundary curves be as follows:

c030

c021 c120

c012 c210

c003 c102 c201 c300

Now the tangent ribbons are defined as follows. The rib-
bon along u = 0 is given by control points

c030 c120

c021 b011
121

c012 b011
112

c003 c102

The ribbon along v = 0 is given by control points

c012 b101
112 b101

211 c210

c003 c102 c201 c300:

The ribbon along w = 0 is given by control points

c021 c030

b110
121 c210

b110
211 c120

c201 c300:



Fig. 2. Tangent ribbons for a bicubic rectangular patch (left) and a quartic triangular patch with a cubic boundary curve (right).
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Fig. 2 (right) illustrates a tangent ribbon for such a
Bézier triangle.

The main observation in this paper is that the above tri-
angular and rectangular G1 Gregory ribbons have exactly the
same structure. As a consequence, they can be utilized for
G1 surface constructions without a need to know what kind
of patch one is dealing with – hence the term ‘‘agnostic’’.
4. G1 conditions

When different surface patches (such as bicubic Bézier -
ones) are joined together, this is mostly achieved by mak-
ing them differentiable, or C1. Sometimes this is not
feasible, and one settles for tangent plane continuity, or
G1. For an outline of these different concepts, see [1].

We give a brief outline of a set of G1 conditions for two
bicubic Bézier patches. Let the two patches have a com-
mon boundary curve q(t) with control polygon q0, q1, q2,
q3. Let patch 1 have an adjacent row of control points p0,
p1, p2, p3. For patch 2, we assume a row r0, r1, r2, r3.
Schematically:

p0 q0 r0

p1 q1 r1

p2 q2 r2

p3 q3 r3

ð1Þ

For patch 1, all tangent plane information may be ob-
tained from the tangent ribbon formed by the pi and qi.
For patch 2, the tangent ribbon is given by the qi and ri.

In order for the two patches to share a common tangent
plane at q0, there must be numbers k0, l0 such that

ð1� k0Þp0 þ k0r0 ¼ ð1� l0Þq0 þ l0q1: ð2Þ

Similarly, a common tangent plane at q3 necessitates
the existence of numbers k1, l1 such that

ð1� k1Þp3 þ k1r3 ¼ ð1� l1Þq2 þ l1q3: ð3Þ

Then, p0, q1, r0, q0 form the tangent plane at q0, and p3, q3,
r3, q2 form the tangent plane at q3.

Conditions for G1 continuity have been developed [1]
which require that the tangent ribbons satisfy linear func-
tions k(t) = (1 � t)k0 + tk1 and l(t) = (1 � t)l0 + tl1. Express
the common boundary as a quartic q̂ðtÞ, obtained from
degree elevating the cubic q(t). Let
pðtÞ ¼
X3

i¼0

piB
3
i ðtÞ qbðtÞ ¼

X3

i¼0

q̂iB
3
i ðtÞ

qaðtÞ ¼
X4

i¼1

q̂iB
3
i ðtÞ rðtÞ ¼

X3

i¼0

riB
3
i ðtÞ;

then G1 continuity is achieved if

ð1� kðtÞÞpðtÞ þ kðtÞÞrðtÞ ¼ ð1� lðtÞÞqbðtÞ þ lðtÞqaðtÞ:

Some elementary algebra now leads to a set of G1

conditions between the two patches:

�3ð1�k0Þ �3k0 0 0
ð1�k1Þ k1 ð1�k0Þ k0

0 0 �3ð1�k1Þ �3k1

2
64

3
75

p1

r1

p2

r2

2
6664

3
7775

¼

ðð1�k1Þp0þk1r0Þ�ðð1�l1Þq̂0þl1q̂1Þ�3ðð1�l0Þq̂1þl0q̂2Þ
ðð1�l1Þq̂1þl1q̂2Þþðð1�l0Þq̂2þl0q̂3Þ

ðð1�k0Þp3�k0r3Þ�3ðð1�l1Þq̂2þl1q̂3Þ
�ðð1�l0Þq̂3þl0q̂4ÞÞ

2
6664

3
7775:

Despite the simplicity of these conditions, they have not
received much attention in the literature. An exception is
work by Tong and Kim [10]. What is somewhat surprising
in our context is the fact that the above G1 conditions were
developed for polynomial patches but they work equally
well for rational Gregory patches.

G1 conditions which use more general functions than
the linear ones above are conceivable; for this work, we
did not pursue that added generality.

5. G1 surface fitting

Suppose we are given data: a point set with associated
normal vectors and a connectivity grouping them into
triangular and quadrilateral faces. See Fig. 3 for two illus-
trations. Our goal is to create a triangular or rectangular
Gregory patch over each face such that the overall surface
is G1. The rectangular patches will be bicubic Gregory
patches and the triangular patches will be quartic Gregory
patches with degree elevated cubics as boundary curves.

We proceed as follows:

1. Build patch boundaries as cubic Bézier curves. We
use Piper’s point-normal interpolation method [11]
which is also used by Vlachos et al. [12] in the context
of so-called PN patches. Let pi and pj be two connected
data points with associated normals ni and nj. We



Fig. 3. Input data. Left: Example 1 and right: Example 2. Fig. 4. Patch boundary curves. Left: Example 1 and right: Example 2.
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desire a cubic Bézier curve connecting pi and pj, being
perpendicular to ni at pi and to nj at pj. We form auxil-
iary points ci = (2pi + pj)/3 and cj = (pi + 2pj)/3. Our
final Bézier points are
b0 ¼ pi;

b1 ¼ projection of ci onto plane ½pi;ni�;
b2 ¼ projection of cj onto plane ½pj;nj�;
b3 ¼ pj:
2. Estimate tangent ribbons along the boundary
curves. Let us refer to the schematic of (1). Suppose
we wish to estimate a ribbon for patch 1, meaning
we are given q0, q1, q2, q3 as well as p0, p3. We need
to find estimates for p2 and p3, namely pe

2 and pe
3. If

patch 1 is a triangular patch, it will be quartic, and
we must adjust the tangent ribbon length at the
boundary curve ends, namely define
~p0 ¼ ðq0 þ 3p0Þ=4 and ~p3 ¼ ðq3 þ 3p3Þ=4:
To unify the following presentation, if the patch is rectan-
gular let ~p0 ¼ p0 and ~p3 ¼ p3. Then the estimates are
defined as
pe
1 ¼ q1 þ 2ð~p0 � q0Þ=3þ ð~p3 � q3Þ=3;

pe
2 ¼ q2 þ ð~p0 � q0Þ=3þ 2ð~p3 � q3Þ=3;
Estimates, re
1 and re

2, for patch 2 follow similarly.
3. Determine geometry parameters. At q̂0 there must

exist numbers k0 and l0 such that (2) is met. Since by
construction the four points ~p0; q̂0; ~r0; q̂1 are coplanar,
this amounts to solving an overdetermined linear sys-
tem which has an exact solution. We repeat by using
~p3; q̂3; ~r3; q̂2 and (3) for finding k1 and l1.

4. Enforce G1 continuity across interior boundary
curves. The two tangent ribbons from step 2 will not
ensure G1 continuity between patch 1 and patch 2.
But we can adjust p1, p2 and r1, r2 such that this is
the case. Consider the underdetermined linear system
Ax = u in (4) for the four unknowns p1, p2, r1, r2. (The
points p0, p3, r0, r3 must be replaced by ~p0; ~p3; ~r0; ~r3,
respectively.) We do have an initial guess
2 Tae-wan Kim, private communication 2011.
3 A reviewer kindly pointed this out to us.
xe ¼ pe
1; r

e
1;p

e
2; r

e
2

� �T
for the unknowns from our ribbon estimation, and a solu-
tion to (4) is readily found by using an auxiliary linear
system
AATd ¼ u� Axe; ð5Þ
then the final solution is given by
x ¼ xe þ ATd: ð6Þ
Note that A has full row rank since q̂ is truly a cubic.2 This
approach to solving an underdetermined linear system is ta-
ken from Boehm and Prautzsch [13]. The explicit solution
may be expressed using the matrix AT(AAT)�1, which is the
Moore–Penrose pseudoinverse to (4), thus explaining why
we in fact minimize the distance to our initial guess xe.3

We use least squares to solve (5) for reasons of numerical
stability.
5. Load Gregory patches with tangent ribbon data.

Points p1, p2, r1, r2 must be stored in the appropriate
Gregory point position. In addition, the common
boundary control polygons must be recorded, which is
q for a rectangular patch and q̂ for a triangular patch.
If a boundary has no neighbor, then simply load the
boundary curve and guess interior points computed in
steps 1 and 2.

6. Examples

We demonstrate our G1 construction using two exam-
ples. Example 1 is a symmetric data set and Example 2
exhibits very little symmetry.

Fig. 3 shows the input data: data points, given normals,
and data connectivity.

The boundary curves are shown in Fig. 4. They are gen-
erated according to step 1 above.

The initial guesses for the control nets are shown in
Fig. 5. This follows step 2 above. Note that the resulting
surface is only G0.

The results of the G1 construction of steps 3 and 4 are
shown in Fig. 6. All creases which resulted from step 2
are now eliminated. The Example 2 surface still has some



Fig. 5. Initial guesses. Left: Example 1 and right: Example 2.

Fig. 6. Final G1 surfaces. Left: Example 1 and right: Example 2.
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shape defects that were introduced by the initial guess,
however, it is G1.

7. Conclusion

We presented a framework for the construction of G1

Gregory surfaces. This framework handles rectangular sur-
faces in the same manner as triangular ones, based on the
concept of cubic tangent ribbons.

More work is needed, however:
1. Piper’s boundary curve generation method is very ad
hoc and does not always yield good results. Walton
and Meek [8] suggest a more involved method; a com-
bination of ideas from that paper with Piper’s might
yield more satisfying shapes.

2. Our tangent ribbon estimator may be too simplistic.
While any tangent ribbon estimate will ultimately lead
to a G1 surface, its shape does depend on the estimate.
In cases such as approximating subdivision surfaces,
additional data are available which may be utilized.

3. Our G1 conditions utilize linear functions k(t) and l(t).
More research might lead to more suitable (higher
degree?) functions.
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