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Abstract

An anamorphic image appears distorted from all but a few viewpoints. They have been studied by artists
and architects since the early fifteenth century. Computer graphics opens the door to anamorphic 3D
geometry. We are not bound by physical reality nor a static canvas. Here we describe a simple method
for achieving anamorphoses of 3D objects by utilizing a variation of a simple projective map that is
well-known in the computer graphics literature. The novelty of this work is the creation of anamorphic
3D digital models, resulting in a tool for artists and architects.

AMS Subject Classifications: 68U07, 68U05, 51N15.

Keywords: Anamorphosis, projective map, volume deformation.

1. Introduction

An anamorphic image appears distorted from all but a few viewpoints. The term
comes from Greek ana-, again and morphe-, shape. Figure 1 illustrates an early
example of an anamorph (short for anamorphosis) in the painting “The Ambas-
sadors” by Hans Holbein the Younger (1536). At the feet of the ambassadors is
an unrecognizable object contrasting the rest of the painting which is composed of
clearly and precisely rendered elements. This object is a skull, illustrated in a cor-
rected form in the right part of the figure. It can be seen by moving close to the wall
at the right side of the picture plane.1

One could argue that anamorphs were first constructed in Roman times as “accel-
erated” and “decelerated” perspective, whereby structures such as columns were
built with non-standard dimensions in order to appear farther or nearer from an
observer than they were in reality. Greek and Roman artists used the technique of
tromp-l’oeil2 (deceive the eye) to make the viewer believe they are seeing something
three-dimensional when in reality the work is only two-dimensional.

1 Kent [13] offers a “true” restoration created using a digital camera and a poster repro-
duction of the painting. Baltrusaitis [2] dedicates a chapter to this painting.

2 Although the term did not appear until the 17th century.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: No     Embed Thumbnails: No     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



212 D. Hansford and D. Collins

Fig. 1. “The Ambassadors” by Hans Holbein the Younger was painted in 1536. The figure floating in the
foreground of the painting is an anamorphic projection of a skull. The “corrected” image of the skull,

shown on the right, can be seen by moving close to the wall at the right side of the picture plane

The curious effects of anamorphs as they are known today, were first understood and
explored by Leonardo Da Vinci who included anamorphic drawings of a child’s head
in his Codex Atlanticus (ca. 1485). The appearance of anamorphs as a consciously
applied technique in the history of art is nearly simultaneous with the restoration
of the study of perspective in the Renaissance period (early 15th century) by artists
and architects such as F. Brunelleschi and L. Alberti [2], [7], [12].

In the seventeenth century, S. de Caus and J.-F. Niceron, most notably, dedicated
themselves to the study of perspective which included anamorphs. Figure 2, cre-
ated by Niceron (1638), illustrates the method for creating an anamorph. This is an
application of the construzione legittima, a trapezoidal checkerboard, going back to
Alberti and da Vinci. The original image is placed in a regular grid. A base edge for
a trapezoidal grid is selected with the same partition as the corresponding edge in
the regular grid. A finite horizon line is selected. On this line there are two points
of interest: one (principal or eye point) at which the horizontal lines in the regular
grid converge and one at which one set of diagonal lines converge. This determines
the partition of the trapezoidal grid to which the image can be transferred [2].

The study of perspective, its application and place in mathematics, continued through
the centuries. For example, in the nineteenth century, La Gournerie [14] studied geo-
metric distortions of architectual plans and Staudigl [19] studied the correspondence
of orthographic and perspective projections from special viewpoints.
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Fig. 2. Demonstration of the method of creating an anamorph by J.-F. Niceron 1638. See [2]

Anamorphs are categorized into two groups. Optical anamorphs can be seen from a
specific point of view without any sort of apparatus. (This is the sort we will be con-
cerned with here.) Catoptric or mirrored anamorphs require a mirror of some kind,
often cylindrical or conical. A wealth of information on the various anamorphic
techniques may be found in Kent [13] and Hunt et al. [11]. Noteworthy is Beever
[3], who is known for vivid and captivating anamorphic pavement drawings. We are
all familiar with road markings such as bike symbols or arrows that are drawn to
compensate for forshortening observed by an approaching driver [13].3 Additional
insights into anamorphs may be found in Andersen [1], Baltrusaitis [2], Clarici [6],
Collins [7], Gardner [9], Hunt et al. [11], Kemp [12], Leeman [15], and Walker [21].

Figure 3 illustrates one of Collins’ “real” experiments with anamorphs. A mask
of George Washington was scanned, and then the 3D digital model was deformed
by moving groups of vertices, so as to create an (approximate) anamorph. This
tedious process led the authors to look for an easier way to define anamorphs for
3D geometry.

3D computer graphics opens new doors to anamorphs. We are not bound by phys-
ical reality nor a static canvas. Here we describe a simple method for achieving
anamorphs of 3D objects by utilizing a simple projective map (collineation), well-
known in the computer graphics literature [8], [18], [20], that takes a frustum to
an “orthographic box”. The method presented here is equivalent to the methods
employed by Niceron and his contemporaries. The novelty of this work is the crea-
tion of anamorphic 3D digital models, and the realization that a commonly known
map can be used to create anamorphs for 3D digital models. Additionally, we pres-
ent an analytic tool for artists and architects. We plan to pursue more anamor-
phic projects with Kreysler and Associates (see Fig. 3), a company that specializes

3 These markings are linearly stretched, and as we see from Fig. 2, an anamorph is a
rational linear operation.
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Fig. 3. Anamorph of George Washington. A mask was scanned, and then the 3D digital model was
deformed so as to create an (approximate) anamorphic version, seen on the left from an undistorted
viewpoint. On the right is a side-view of the anamorphic mask. It was created in foam by Kreysler and

Associates, http://www.kreysler.com/projects/George Washington/georgewashington.htm

in architectural facades. In addition, this method is a contribution to the many
volume deformation tools in computer graphics and geometric modeling literature
[4], [10], [17].

The development of anamorphic 3D geometry proceeds as follows. Section 2 intro-
duces elements of the graphics pipeline. We contend that an understanding of this
pipeline facilitates an understanding of the classical method for creating anamorphs.
We observe that a common, well-known element of the pipeline can be used to create
interesting, anamophic deformations of 3D objects. Section 3 derives this element,
a projective map known as a collineation. Section 4 develops and outlines the tech-
nique. A demonstration of the method is provided in Sect. 5. In Sect. 6, we present
conclusions and ideas for future work.

2. The graphics pipeline and projective maps

The graphics pipeline consists of several coordinate transformations designed for
optimization of the algorithms applied to a primitive traveling down the pipeline
[20]. The first such transformation is to place the geometry in eye coordinates: con-
sider your eye positioned at the origin, looking at your object positioned on the
−z-axis. The next step is to define a viewing volume around your geometry which
will determine what is displayed. Geometry outside of the viewing volume will be
clipped (eliminated). The projection method that we choose plays a role in the spec-
ification of this viewing volume.

Orthographic and perspective projections, illustrated in Fig. 4, are the methods
most often used in computer graphics. At the end of the pipeline, the object will be
projected into a view plane in front of your eye. An orthographic projection projects
all vertices in a direction perpendicular to the view plane. A perspective projection
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Fig. 4. Left: an orthographic projection. Vertices are projected perpendicular to the view plane. Right:
a perspective projection. Vertices are projected into the view plane through the center of projection,

resulting in foreshortening

Mp Mo

Fig. 5. With a perspective projection, the transformation from eye to clip coordinates involves two map-
pings. First Mp maps the frustum to a box sharing the dimensions of the view plane and z-depth of the

frustum. Next this box is mapped to a cube with edge length two, centered at the origin

projects a vertex along a line defined by that vertex and the eye, or center of projection
(cop). Thus the viewing volume takes the form of a box for an orthographic pro-
jection and a frustum (truncated pyramid) for a perspective projection.

Clipping against a frustum is more difficult than clipping against a box. Therefore,
a projective map Mp is constructed to map the points in the frustum to a box [5].
This map is special in that “relative” z-depths are preserved,4 but changed so that
an orthographic projection will produce a perspective image. Not only does this
facilitate clipping, but also the z-buffer algorithm for hidden surface removal. The
viewing volume (now a box) is mapped via an affine map Mo to a normalized box
centered at the origin for the purpose of simplify the clipping algorithm. Figure 5
illustrates.

4 A more precise definition of this statement follows in (2).
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Fig. 6. The perspective projection frustum is defined by the parameters θ, n, f, h and the width of the
view (near) plane

3. The projective map: frustum to box

The frustum is illustrated in Fig. 6. The center of projection is at the origin. The
angle θ is called the field of view. The distance from the eye to the near (or view)
plane is n and the distance from the eye to the far plane is f .5 The height of the
near plane is denoted by h. The parameters, θ, h, n, are dependent, and they are
related by

tan(θ/2) = h/2
n

. (1)

The width w of the view plane completes the frustum’s definition.

Homogeneous coordinates serve the purpose of expressing affine and projective
maps in a convenient matrix representation [16]. An affine point and corresponding
homogeneous point have coordinates

p =



px

py

pz


 and p̄ =




px · w

py · w

pz · w

w


 ,

respectively.

Projective maps preserve the cross ratio, cr, of four collinear points, and this fact
may be used to derive the map Mp. We will use the following definition. Suppose
a, b, c, d ∈ IE1, then

cr(a, b, c, d) = ratio(a, b, d)

ratio(a, c, d)
, where ratio(a, b, d) = vol(a, b)

vol(b, d)
,

and “vol” refers to one-dimensional signed volume [8].

5 Since the eye is placed at the origin, n and f will be referred to as both −z−values and
distances.
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To map a point p ∈ IE3 in the frustum to a point b ∈ IE3 in the corresponding
orthographic box, we first examine the action of the map in the z-coordinate. The
projective map sends the center of projection to infinity, and points in the near and
far planes should remain there, respectively. Thus, pz in the frustum is mapped to
bz in the box by satisfying the following equality:

cr(cop, n, pz, f ) = cr(−∞, n, bz, f ). (2)

As illustrated in Fig. 7, determining the x- and y-coordinates is simply a matter
of observing that the point must live on the line perpendicular to the near plane,
through the point of projection. Employing the rule of similar triangles, the corre-
sponding affine point is

b =



pxn/pz

pyn/pz

n + f − f n/pz


 . (3)

The left most graph in Fig. 8 illustrates the action of this map in the z-coordinate.
Points on the near and far planes remain in their respective planes, although the
x- and y-values are scaled in the far plane. In fact, the scaling in x and y is a func-
tion of z (the distance from the eye). As illustrated in Fig. 5, points in the frustum
will be mapped to points in the box sharing the same dimensions as the frustum’s
near plane and z-extents.

Fig. 7. Action of the projective map: The line through a point’s position after perspective division and
perpendicular to the near plane determines its new x-and y-coordinates. The z-coordinate is determined

by (3). Except for at the near and far plane, points move away from the eye



218 D. Hansford and D. Collins

In matrix form, the projective map Mp takes the form [20], [18]:

Mp =




1 0 0 0
0 1 0 0
0 0 (n + f )/n −f

0 0 1/n 0


 .

This map transforms collinear points to collinear points, and it transforms coplanar
points to coplanar points, and thus it is also known as a collineation [8]. For this
particular construction, the inverse exists, namely

M−1
p =




1 0 0 0
0 1 0 0
0 0 0 n

0 0 −1
f

f +n
f


 , (4)

and it too is a collineation.

4. Anamorphs

In the spirit of Fig. 2 (Niceron), creating an anamorph amounts to applying M−1
p

given in (4). Now we want to take points, b, in a box to points, p, in a frustum.

Our goal is to create the most dramatic “distortions”. One option is to choose the
field of view to be large. Also, we allow the near and far planes of the frustum to
move, which requires a slight reformulation of Mp. The cross ratio condition in (2)
becomes

cr(cop, np, pz, fp) = cr(−∞, n, bz, f ), (5)

where the frustum’s near and far plane distances are np and fp, respectively.

The new expression for b is

b =



pxn/pz

pyn/pz

rnp + f − rnpfp/pz


 , where r = f − n

fp − np

. (6)

The action of this map is similar to that of (3) in that the near and far planes of the
frustum are mapped to the near and far planes of the box.

By simply solving for p in (6), we have the anamorph operation. First establish the
new z-value

pz = rnpfp

rnp + f − bz

, (7)

and then set the x- and y-values in the frustum:

px = bxpz

n
and py = bypz

n
. (8)

Figure 8 illustrates the z-coordinate action of the map.
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np
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fp
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pz

Fig. 8. The rational linear function from (7) illustrates the correspondence between the z-coordinates of
points in a box to points in a frustum. Left: np = n and fp = f . Middle: np < n and fp > f . Right:

np > n and fp < f

A procedure for creating anamorphic 3D geometry is as follows. Given is a 3D object
defined by vertices bi .

(1) Define a box, such as a bounding box, around the vertices bi .
(2) Choose one face of this box. The center of projection will be placed in front of

this face, and this face will serve as the near plane. Let the distance from this
near plane to the opposing face be d.

(3) Specify a field-of-view angle, θ , thereby determining the near distance n from (1).
(4) Assign the far distance of the box: f = n + d.
(5) Input a near and far distance np and fp, respectively, for the frustum. (It is

convenient to input these relative to n and f so it is not necessary to generate
actual values.)

(6) Transform the vertices to eye coordinates.
(7) Apply (7) and then (8) to each vertex of the model.
(8) (Optional) Return the vertices to their original coordinate frame.

This procedure eliminates concern for singularities as long 0 < θ < 180◦.

5. Demonstration

First we demonstrate our tool on the George Washington (GW) data set, which was
the motivation for this work in the first place. In the top row of Fig. 9 is the original
data set, and in the bottom row is the anamorphic data set. On the left, we choose
a viewpoint (close to the projection center) where GW looks the same in both data
sets. The original data set is displayed with an orthographic projection and the ana-
morphic data set is displayed with a perspective projection.6 In the right-bottom

6 This idea is not new; La Gournerie [14], and Staudigl [19] studied the correspondence
between orthographic and perspective images from certain viewpoints.
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Fig. 9. Anamorphic George Washington: top row illustrates the original data set and the bottom row
illustrates the anamorphic data set with θ = 100◦, np = n, and fp = 4f

figure, we can see the anamorph with a field of view θ = 100◦, np = n, and fp = 4f .
In the right part of the figure, both images are created with an orthographic projec-
tion. In the left part of the figure, we are actually seeing GW from the backside, as
is made clear by the location of the frustum in the bottom-right figure.7

To make the bottom-left figure appear identical to the top-left figure as shaded
images, one must use the original data set’s normals for the anamorphic data set.
And we have done this to further the illusion! Of course the wireframe models look
identical, and so we have included them in the rendering. The bottom-right figure
is rendered with its true normals.

7 Due to zooming-in on the geometry, parts of the frustum have been clipped.
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The layout of Fig. 10 follows the same format as Fig. 9. The anamorph has been
constructed with θ = 80◦, np = n/2, and fp = 3f . Because the frustum’s near
plane is closer to the eye than the box’s near plane, the teapot is pushed toward the
eye, and the handle distortion is accentuated. This same behavior is illustrated in
Fig. 11 where the eye has been placed on the opposite side of the teapot, θ = 80◦,
np = n/4, and fp = f . The middle plot in Fig. 8 shows that the configuration of
near planes used in these teapot examples causes a slow movement of z (away from
the eye) close to the frustum’s near plane.

A few comments on the anamorph procedure’s parameters are in order. Making the
field of view small (e.g., θ = 1◦) in the procedure in Sect. 4 results in a large near
distance n. In the resulting anamorph with np = n and fp = f , there is nearly no
change in the data since the frustum has nearly the same shape as the box. On the
other hand, large field of views result in more distortion. It should be clear that the
orientation of the box has a significant impact on the resulting anamorph. In Fig. 9,
we see that the tool would be improved with the addition of adaptive meshing for
smoothing the deformed model.

Fig. 10. Anamorphic teapot: top row illustrates the original data set and the bottom row illustrates the
anamorphic data set with θ = 80◦, np = n/2, and fp = 3f
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Fig. 11. Anamorphic teapot: A spout for reaching across the table! The parameters for the anamorphic
data set include θ = 80◦, np = n/4, and fp = f . The rectangle is the orthographic box

6. Conclusions

We have presented a tool for creating anamorphic 3D geometry. We have remarked
that this tool, a collineation, was already familiar to those in computer graphics and
mathematics. The novelty here is that we have applied this to 3D triangle meshes.
We plan to use this tool for building anamorphic sculptures similar to that in Fig. 3.
Additionally, this tool is a contribution to the many volume deformation tools in
computer graphics literature [4], [10], [17].

Future work on anamorphs of 3D models will include investigating what can be
done with conical and cylindrical anamorphs in combination with their respective
reflecting surface and a ray tracing rendering. Anamorphic texture mapping might
be interesting to persue also. Other collineations could be explored.
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