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Abstract. Choosing the best triangulation of a point set is a question that has been debated for many years. Two 

of the most well known choices are the mitt-max criterion and the max-min criterion. The max-min triangulation 

criterion has received the most attention over the years because efficient algorithms have been developed for 

determining this triangulation. The ability to construct such efficient algorithms has been shown to be a result of 

the geometry of the neutralset for the max-min criterion. A point from the neutral set is formed from the special 

instance when the criterion is satisfied by more than one triangulation. For the max-min criterion, the neutral 

set is a circle. In this paper, we construct the neutral set for the mitt-max criterion. This construction is 

compared to that of the max-min triangulation and the results are analyzed in order to attain a better 

understanding of the nature of the min-max criterion. 
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0. Introduction 

Two of the most commonly examined triangulation criteria are the min-max and max-min. 
The debate over which criteria produces the best triangulation has gone on for some time 

[Babuska & Aziz ‘76, Barnhill ‘83, Gregory ‘751. On an algorithmic level, the primary difference 
between the min-max and max-min criteria is the existence of a practical algorithm for finding 
the triangulation of an arbitrary point set. The max-min criterion, for which practical al- 
gorithms exist [Bowyer ‘81, Cline & Renka ‘84, Correc & Chapuis ‘87, Field ‘87, Watson ‘811, 
allows for a procedure called focal optimization which satisfies the global criterion upon 
termination [Lawson ‘771. Local optimization means that we only need to consider sets of four 
points that form convex quadrilaterals; these quadrilaterals are examined for the pair of 
triangles that should be constructed in order to satisfy the criterion. This type of algorithm is 
known as a local swapping algorithm. However, local swapping has been shown in general not 
to yield the global optimum for the n-tin-max criterion [Piper ‘861. Therefore, the purpose of this 
paper is to examine the local min-max criterion in order to understand why locally optimal 
triangles do not imply a globally optimal triangulation. 

1. The neutral case 

Suppose we are given the four vertices of a convex quadrilateral and wish to subdivide to 
create two triangles. There are two diagonals from which to choose. A decision may be made by 
applying some criterion such as the min-max or max-min; these criteria will not in general 
choose the same diagonal. A neutral cuse for a triangulation criterion occurs when either 
diagonal may be chosen. Suppose we are given three points and must define a fourth such that 
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a convex quadrilateral is formed. All such fourth points that result 
elements of the neutral set for the three given points. The neutral set 
max-min criterion; it is the circumcircle through the three given points. 
result is the local circle test [Lawson ‘771. We will examine the local 
defining its neutral set. 

2. Neutral case for the min-max 

in a neutral case are 
is well known for the 
An application of this 
min-max criterion by 

As a first step, it is necessary to make the problem specification more exact. First of all, we 
need to determine just how the three given vertices may be configured since we are only dealing 
with convex quadrilaterals. Referring to Fig. 1, let the three vertices be given in clockwise order 
and be labeled u,, 4, u, and the fourth, yet unknown, vertex be labeled x. Let I, = I] t’i - 9 (I, 

I,= II~,-v,II~ I,= II~--411~ I,= II q - x 11, and I, = I] ui - u3 I]. The angle formed by 
(ui - uz) and (u, - y) will be called r. In addition, if we radiate a line from y that divides I’, 
the two angles formed will be called y and S. Once we have found x we will give the radiating 

line a length, r = ]] x - uz I]. 
One short proposition is necessary before the problem can be fully specified. 

Proposition. For a convex quadrilateral to be constructed such that the neutral case occurs while 

applying the min-max criterion, two adjacent angles must be equal and they must be the maximum 

angles in the quadrilateral. 

Proof. Suppose the proposition is not true. In that case, one of the following situations must 

occur: (1) one angle of the four is the maximum or (2) two facing angles are equal and the 
maximum. This follows since the maximum angle cannot be less than 90”. If (1) occurs, then 
we must choose the diagonal that divides this angle in order to minimize the maximum angle. 
Hence this situation does not yield a neutral case. If (2) occurs, then we must choose the 

diagonal that splits the largest angles. Since the only other configuration is that in the 
proposition, it is proved. •I 

It is necessary to split the problem of finding the neutral set for the min-max criterion into 

two problems. 

Problem 1. T G 90 O. 

From the proposition we need to choose two maximum adjacent angles. Let one be at x and 

have magnitude CC The other may be either at ui or u3. We may choose this arbitrarily, so let it 
be at ui for now. This problem is illustrated in Fig. 1. 

Fig. 1. The labeling used to approach the problem 



433 

v2 Vl 

Fig. 2. A geometric description of the solution for Problem 2. case 1. The angles /3, and /3* cannot exceed CI. 

r = a = 140 o and the angle at u, is equal to 140 “. The fourth vertex x can be chosen along a segment of I such that & 

and & are less than 140 ‘. 

Problem 2. r > 90 O. 

This problem is more involved than the former. Because r is being considered to be greater 
than 90 “, there are two distinct cases in Problem 2: I’ = (Y and r # 0~. Of course for each of 
these cases there are two positionings of the (Y. One instance of each case 1 and case 2 is 
illustrated in Figs. 2 and 3, respectively. Simple calculations reveal that case 2 can occur only if 
90” <I-< 120°. 

Reiterating, the problem in a general sense is the following: given three vertices ur, y, and 
Us in clockwise order such that the angle at 9 is r, find the loci of a fourth vertex x such that 

the convex quadrilateral formed results in a neutral case when the min-max criterion is applied. 
The solution will be presented in two parts: a solution to Problem 1 and then a solution to 
Problem 2. As a result, if we are given three arbitrary vertices, the appropriate solution must be 
applied to each of the three angles formed. 

3. The solution to Problem 1 

The solution to this problem simply reduces to repeated application of the law of cosines. 
Consequently, polar coordinates are used. First, while examining Fig. 1, we have the following 

Fig. 3. The labeling for Problem 2, case 2 with r > 90 O, I-# a, and the angles at U, and x are equal to a. A constraint 

of90’ <r<120° isgiven. 
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relationships using the law of cosines: 

r2 = 1: + I$ - 21,1, cos a, (1) 

1; = 1; + 14’ - 241, cos a, (2) 

Ii = 1: + r2 - 21,r cos S, (3) 

fi = ff + r* - 21,r cos y. (4) 

Equate equations (1) and (2) with their cos cy term and substitute equations (3) and (4) into 
this. We have 

(-2ff+21,rcosy) (-1: - Ii + 1: - 2r2 + 21,r cos 6 + 21,r cos y) 
= 

4 (If + r* - 21,r cos 6)“’ 
(5) 

were r is the only unknown. This equation can be rearranged, but not really simplified. 
Let us discuss the application of equation (5). Consider a series of rays emanating from u, 

with an angle called y whose values vary between zero and u. As in Fig. 1, on each ray there 
will be a point x that is a distance r from 9 such that the above expression is satisfied. Since 
we chose one a to be at u,, this equation is only relevant if the angle at x and the angle at u1 
are equal and the maximum in the quadrilateral (see above Proposition): u is the maximum 
value of y such that this condition holds. Another equation for the case when the angles at x 
and 4 are the maximum is needed. The only change in the above construction comes by 
changing equation (1). We now have 

r* = 1: + I2 3 - 21,1, cos a. 

Fig. 4. Some examples of neutral sets using the min-max criterion. The box indicates a change from equation (5) to (6). 
(a) r= 73O, (b) r= 38.16O (used equation (5) only), (c) r= 90°. 
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Equation (5) becomes 

(-21;+2Qcos 6) ( - 1: - 1: + 15 - 2r’ + 212r cos S + 21,r cos y ) 
= 

1, (If + r* - 21,r cos y)“’ 
(6) 

It is not difficult to determine which of the two expressions we should use, (5) or (6), during the 
evaluation process. In Figs. 4(a)-(c) are some examples of the neutral set for various combina- 
tions of three vertices with F G 90”. 

It is interesting to note that if F is restricted to ninety degrees, then equation (5) simplifies 
enough to convert from polar coordinates to Cartesian coordinates. The expression is now a 
fourth-order equation in terms of x = (x, Y)~‘: 

4x21,215 - 8x@: + 8xylzI: - 4x1y21: - 8yl,lf + 4y2ip - 4y=1;1: + gy31,1: 

- 4y41; + 4151; = 0 (7) 

for x 2 2 and 0 c y G 1. To express equation (6) in Cartesian coordinates for this special 
problem instances, we only need to do the following: switch x and y and switch I, and I, in 

equation (7) and now it may be applied for y > 1, 0 < x d 1. 

4. The solution to Problem 2 

Unfortunately, the solution to this problem is not quite as simple as that for Problem 1. 
However, it is this solution that reveals more about the behavior of the min-max criterion. 

Case 1 of this problem is characterized by the given angle F = a. (Recall that, a is the 
magnitude of the two angles which are maximum and adjacent.) It is possible to construct the 
solution algebraically just as the solution to Problem 1, however more insight is gained by a 
geometric construction. In Fig. 2 we see that the other angle with magnitude a is located at u,. 
Using the angle at ui and u, we may define a line I; we know that x must lie on this line. Let 
us define & and & as the angles formed at ui and us in the convex quadrilateral. The precise 
segment of I on which x may be located is such that pi and & are less than or equal to a. We 
may also construct this case such that 1 has an endpoint at u, and the magnitude of the angle 
at us is a. Notice, as in Fig. 5, that by considering the two constructions of the line I, the two 
parts of the neutral set may extend very far and do not necessarily intersect to form a closed 

Fig. 5. Demonstrating that the neutral set does not necessarily form a closed region. The two parts of the neutral set 
live along both lines. 
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Fig. 6. r = 95 “. Using the solutions to Problem 2, the neutral set is defined. Case 1 creates the straight lines that form 

an apex and case 2 creates the ‘curved’ lines. 

region. The implications of this are discussed in Section 5. (This unbounded region and the 
closed regions as in Figs. 4(a)-(c) will be refered to as ‘interior to the neutral set’.) 

Case 2 is characterized by r < (Y. Thus the angles with magnitude (11 may be as in Fig. 3 or 
the angle at us may have magnitude a instead of the angle at ui. Again, simple calculations 
reveal that 90’ < r Q 120”. Just as with case 1, a better understanding of the neutral set 

created by this case is realized by a more geometric approach. Let us consider the situation as 
in Fig. 3. 

First we must label another angle. Let e be the angle formed at Us when considering the 
triangle formed by (ui, 4, q). The two angles with magnitude cx must satisfy 

r<a< 360°-I--c 
2 . 

By being given u,, 4, and q such that r < a, we know E and thus the range of values that (Y 
may take are determined. An example of this case is illustrated in Fig. 6 by the ‘curved’ lines. 
Notice that the shape of the neutral set from this case is similar to the sets created in the 
solution to Problem 1. Also illustrated in Fig. 6 is the neutral set created by case 1 (the straight 

lines that meet at an apex). This example demonstrated that if 90 o < r < 120 ‘, then it is 
necessary to satisfy four conditions in order to find the complete neutral set (two subcases from 

case 1 and case 2). 

5. Analyzing the solutions 

It has been observed that in some cases the min-max and max-min criteria applied to a point 
set yield identical triangulations [Nielson & Franke ‘83, Piper ‘861. This can most likely be 
attributed to the solution to Problem 1: r G 90”. By comparing, as in Fig. 7, the min-max 
neutral set for r G 90 Q to the max-min neutral set, we see that they are different, however not 
drastically so. The region between the bold and thin lines is the loci of a fourth vertex that 
would produce different triangulations for the two criteria. In many instances, there is only a 
small region that would yield different triangulations. Fig. 7 also demonstrates that in general 
neither neutral set curve lies entirely interior to the other neutral set. As a result, it is difficult 
to completely determine the triangulation produced by one criterion given the triangulation 
constructed by application of the other criterion. 

Turning to the solution of Problem 2 with r 2 90 “, there is much more to analyze. First we 
must recall an important finding regarding the max-min criterion. Lawson [Lawson ‘861 has 
shown for a globally optimal max-min triangulation, that by not having points interior to the 
neutral set it follows that a triangulation with the global property also has the local property. It 
has been shown through example in [Piper ‘861 that with the min-max criterion, a triangulation 
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Fig. 7. The min-max (fine line) and the max-min (bold line) neutral sets. Demonstrating that neither neutral set is 

interior to the other. 

with the global property does not imply a triangulation with the local property. This means that 
we should expect points to be interior to the min-max criterion’s neutral set. This paper has 
demonstrated this to be the case using our geometric construction of the neutral sets for the 
min-max criterion. For instance, it was shown in Section 4 with Figs. 2 and 5 that the neutral 
set may create large and not always bounded regions (of course the regions would be bounded 
by the convex hull of the data set). Thus it must be possible in the globally optimal solution 
that there are data points interior to the neutral set. As a result, a local swapping algorithm as 

used for the max-min criterion will not in general produce a globally optimal triangulation. 
This observation implies a global algorithm is necessary in general. In addition, to compute the 
neutral set associated with a set of three vertices is not a trivial calculation as is the circle for 
the max-min. 

6. Conclusions 

We have developed conditions for constructing the neutral case for the min-max triangula- 
tion criterion. In addition, we have shown that the relationship between the min-max neutral 

set and the max-min neutral set is somewhat complex. The nature of the differences between 
these two criteria is revealed through the neutral set analysis. In particular, by examining the 
geometry of the neutral set, we can understand why a local swapping algorithm will not in 
general work for the rnin-max criterion. 
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