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Abstract

We discuss 3D Bézier curves with monotone curvature and torsion, generalizing a 2D class of curves by Y. Mineur et al.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

In automotive (and other) design scenarios, many shapes are based on feature curves which have to have “perfect”
shape in order to produce aesthetically pleasing surfaces. The shape of these curves is primarily defined by their
curvature distribution. A “good” curve has a curvature plot (curvature plotted against arc length or parameter) having
relatively few regions of monotonically varying curvature (Farin, 2001). Torsion may also play a role as a shape
descriptor but seems to be more important in the analysis of robot arm motions. Several articles address curvature of
Bézier and B-spline curves: (Beeker, 1986; Sapidis and Farin, 1991; Ferguson et al., 1988; Hoschek, 1984; Roulier,
1988; Meier and Nowacki, 1987; Sánchez-Reyes, 1998; Ueda 1997, 2000a, 2000b). For a book dedicated to the
subject, see (Hoschek and Kaklis, 1996).

Ultimately, feature curves will be used to define surfaces, such as car hoods or roofs, or other industrial design
surfaces. In the automotive industry, the term “class A surfaces” is used for those parts of a car which are critical for
its aesthetic appearance, such as parts of the hood, fender, or roof. The term “class A surface” is reportedly due to
the Mercedes-Benz CAD/CAM system SYRKO. Its developers demanded the highest grade of shape quality from the
“outside surface” parts, “Aussenhaut” in German.1

Many of these surfaces are the result of a set of feature curves. For these to qualify to be part of class A surfaces,
they have to be “class A” themselves. This paper investigates a family of such curves.

Our work is based on the article (Mineur et al., 1998) (related to work by Ueda (1997)). In it, the authors show
that certain 2D Bézier curves—called typical curves—are guaranteed to have monotonously increasing or decreasing
curvature. The curves are defined by the requirement that each leg of their Bézier polygon is obtained by a rotation
and scale of the previous leg, with the rotation and scale being the same for all polygon legs. This translates to

�bi+1 = sR�bi , (1)
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where s is a scale factor, R is a rotation matrix, and where �bi = bi+1 − bi are the forward difference vectors of the
Bézier control points bi .

Mineur et al. use a notation which limits them to 2D curves. We overcome that restriction by using a different
notation.

This work discusses a generalization of the concept of typical curves—however it does not address applications.

2. Class A Bézier curves

A Bézier curve is a 2D or 3D parametric curve whose points x(t) are defined by

x(t) =
n∑

i=0

biB
n
i (t).

The bi are called control points; the Bn
i are Bernstein polynomials; for more details, see (Farin, 2001).

The derivative or hodograph of a Bézier curve is given by

ẋ(t) = n

n−1∑
i=0

�biB
n−1
i (t)

where �bi = bi+1 − bi .
We will now study a class of special 3D Bézier curves, namely those having hodographs with control vectors

�bi = vi = Miv; i = 0, . . . , n − 1, (2)

where M is a 3 × 3 matrix and v is an arbitrary unit vector.2 The fact that we stipulate v to be of unit length is
immaterial: Bézier curves are scale invariant, and thus all geometric properties can be studied even if v is restricted
to be of unit length. Under certain conditions on M , curves satisfying (2) will have monotone curvature and torsion.
Since such curves are deemed highly desirable in the design of so-called class A surfaces, we will refer to them as
Class A curves. Fig. 1 gives an example of a cubic Class A curve.

These Class A curves, for any degree n and for a fixed matrix M , form a linear space of dimension two: this is the
number of degrees of freedom for a 3D unit vector v. Thus the degrees of freedom in designing with these curves is
very low. This makes them ideal candidates for template curves in industrial design environments.

The de Casteljau algorithm (see (Farin, 2001) for details) for the evaluation of a class A hodograph yields a trian-
gular array of the form (shown here for n = 3)

v0
v1 v1

0
v2 v1

1 v2
0.

where

vr
i (t) = (1 − t)vr−1

i (t) + tvr−1
i+1 (t).

Fig. 1. Class A curves: left, the hodograph vectors; right, the generated curve.

2 Incidentally, in his work P. Bézier used the difference vectors �bi rather than the control points bi .
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Fig. 2. The vector Mv has to be in the shaded region.

Given the special nature of a Class A hodograph, we have

vr
i+1 = Mvr

i and vr
i+1 = vr−1

i + t
(
Mvr−1

i − vr−1
i

)
.

We also have

ẋ(t) = nvn−1
0 and ẍ(t) = n(n − 1)

[
vn−2

1 − vn−2
0

]
.

We now define Class A curves via the requirement∥∥(1 − t)v + tMv
∥∥ �

∥∥v
∥∥ for t ∈ [0,1] and for all ‖v‖ = 1. (3)

Geometrically, this means that the line segment v,Mv does not intersect the sphere with radius ‖v‖ = 1, see Fig. 2.
Hence, M may be viewed as an “expansion” matrix. It follows that the angle between v and Mv must be less than
90 degrees or, equivalently,

cos(v,Mv) = vTMv√
vTMTMv

� 0, (4)

and this must hold for all unit vectors v.
We square both sides of (3) and obtain

(1 − t)2vTv + 2t (1 − t)

[
1

2
vTMv + 1

2
vTMTv

]
+ t2vTMTMv � vTv.

The expression on the left denotes a quadratic Bézier function with coefficients

vTv,

[
1

2
vTMv + 1

2
vTMTv

]
, vTMTMv.

If this expression is to exceed vTv for all t ∈ [0,1], then each coefficient must itself exceed vTv, leading to two
conditions

vT
[

1

2
MT + 1

2
M

]
v � vTv and vTMTMv � vTv.

Equivalently:

vT[MT + M − 2I ]v � 0 and vT[MTM − I ]v � 0. (5)

This states that the two symmetric matrices MT + M − 2I and MTM − I must be positive definite, and thus must
have nonnegative eigenvalues. Note that (5) implies (4).

We now put a further restriction on our matrices, namely that they do not distort too much in the following sense.
A sphere is mapped to an ellipsoid by M . The axes of this ellipsoid have lengths σ1, σ2, σ3 with σ1 � σ2 � σ3 � 1
where the σi are the singular values of M , or the square roots of the eigenvalues of MTM . In addition, we also require

σ 2
3 � σ1. (6)

This additional requirement will be necessary for a proof of curvature and torsion monotonicity in Section 4.
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Fig. 3. Action of a Class A matrix. Fig. 4. Action of a non-Class A matrix.

Fig. 5. Action of an “almost” Class A matrix.

A matrix M satisfying both conditions of (5) and also (6), will be called a Class A matrix.
Figs. 3, 4, 5 illustrate some geometric aspects of Class A matrices.
Fig. 3 illustrates how a Class A matrix maps a circle to an ellipse. Lines connecting points on the circle and

corresponding points on the ellipse never cross the circle. The matrix is a 2D version of the one used later for the third
example in Section 5:

M =
[

1.75 0.66
0 1.75

]
.

Fig. 4 also shows a circle and its image, an ellipse. But now some lines connecting points on the circle and corre-
sponding points on the ellipse do cross the circle. The matrix in this case is a shear matrix:

M =
[

1 1
0 1

]
.

Fig. 5 shows the action of a matrix which is “almost” class A. Note that some lines connecting points on the circle and
corresponding points on the ellipse (barely) cross the circle. The matrix for this figure is also 2D, and is a modification
of the one from the previous figure:

M =
[

1.75 1.66
0 1.75

]
.
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Its singular values are 2.8 and 1.1, thus violating (6). However, conditions (5) are met by this matrix.
An example of Class A curves is given by M being composed of a rotation around some axis by an angle α < 90◦,

followed by a scale with factor s. If the condition

cosα >
1

s
(7)

holds, then both conditions (5) are satisfied, and (6) is trivially satisfied. In 2D, the resulting curves are the typical
curves of (Mineur et al., 1998). In 3D, we refer to them as 3D typical curves. Fig. 2 illustrates why such curves are
Class A.

3. Subdivision

We now show that Class A curves are invariant under subdivision, i.e., if a Class A curve is subdivided, both
resulting curves are Class A.

Let us define a linear map T by

T v = (1 − t)v + tMv = [
(1 − t)I + tM

]
v

with I being the identity matrix.
Then the de Casteljau algorithm scheme takes on the form (here for the case n = 4)

v
Mv T v
M2v MT v T 2v
M3v M2T v MT 2v T 3v,

i.e., vr
i = MiT rv.

We quickly verify that MT = T M . Hence subdivision generates two segments of the form (2). This is obvious
for the diagonal elements T iv of the scheme; for the bottom row (which should be traversed from right to left), we
observe

Mi+1T r = (MT −1)MiT r+1,

thus the role of M in (2) is now assumed by MT −1.
We still have to verify that both segments are Class A curves, i.e., both T and MT −1 satisfy the Class A condi-

tion (3). The fact that T satisfies the condition follows from (with s ∈ [0,1]):∥∥(1 − s)v + sT v
∥∥ = ∥∥(1 − s)v + s(1 − t)v + stMv

∥∥
= ∥∥(1 − st)v + stMv

∥∥
� ‖v‖.

In order to see that MT −1 satisfies the Class A condition, we consult Fig. 2 and observe that MT −1T v = Mv, thus
showing that MT −1 does indeed satisfy the condition.

The above proof will fail if s /∈ [0,1]: in that case, we would be extrapolating. But we cannot make any statements
about the behavior of Class A curves outside the domain [0,1]. The fact that Class A curves are invariant under
subdivision will be used in the next section.

We note that Class A curves are not invariant under another standard operation, namely that of degree eleva-
tion: if we apply degree elevation to a Class A control polygon, then the resulting control polygon may violate the
Class A conditions.

4. Curvature and torsion

Let us now turn to the curvature of a Class A curve. It is given by

κ(t) = ‖ẋ ∧ ẍ‖
3

.
‖ẋ‖
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Fig. 6. Monotone curvature: the relevant entities for the cubic case.

We claim that κ(t) is monotonically decreasing, i.e., for t̂ � 0, we will have κ(t̂) � κ(0).
For a proof, let us assume the curve is subdivided at t̂ and let us consider only the “left” segment. We know that

this segment satisfies the Class A conditions. It is then sufficient to prove that κ(0) � κ(1) for this curve segment.
Let D = [v,Mv] be the (2D) triangle formed by v and Mv, also consult Fig. 6.
We have (see (Farin, 2001)):

κ(0) = 2
n − 1

n

|D|
‖v‖3

, κ(1) = 2
n − 1

n

|Mn−2D|
‖Mn−1v‖3

,

with |D| denoting D’s area:

|D| = 1

2

∣∣∣∣ vTv vTMv
vTMv MTvTMv

∣∣∣∣
1
2

.

We need to show κ(0) � κ(1).
Let us handle the cubic case n = 3 first, where we need to show

|D|
‖v‖3

� |MD|
‖M2v‖3

. (8)

We denote (in descending order) the singular values of M by σ1, σ2, σ3. Then M will “stretch” any vector minimally
by σ3 and maximally by σ1:

σ3‖v‖ � ‖Mv‖ � σ1‖v‖. (9)

Since D and MD share a common edge, the same relationships hold:

σ3|D| � |MD| � σ1|D|. (10)

For a proof of (8), we observe (using (9) and (10)):

|D|
‖v‖3

�
1
σ1

|MD|
1
σ 3

3
‖Mv‖3

= σ 3
3

σ1

|MD|
‖v‖3

.

Because of the condition (6), we have established (8) since ‖M2v‖ � ‖Mv‖.
This argument may be repeatedly applied for degrees exceeding 3.
The analogous argument (utilizing that V and MV share a common face) shows that torsion, given by

τ(t) = |ẋ, ẍ, ˙̇̇x|
‖ẋ ∧ ẍ‖2

,

is monotone for Class A curves since

τ(0) = 3

2

n − 2

n

|V |
|D|2 , τ (1) = 3

2

n − 2

n

|Mn−3V |
|Mn−2D|2

where

V = [v,Mv,M2v]
and |V | is V ’s volume.



G. Farin / Computer Aided Geometric Design 23 (2006) 573–581 579
5. Examples

We now show some examples. These were chosen to demonstrate that our Class A curves can indeed generate
curves as they are needed in real industrial design applications. The curvature and torsion plots are scaled to the same
min-max boxes.

Fig. 7 shows the result of using n = 7 and

v =
[ 1

0
−1

]
, M =

[ 2.52 0.53 0.34
−0.35 2.35 0.11

0 0 2.58

]
.

The matrix M is a composition of a shear, a scale, and a rotation around the z-axis.
The second example, shown in Fig. 8 is a degree 5 curve, with

v =
[−1

0
1

]
, M =

[2.28 −0.04 0.89
0.45 2.13 0.45

0 0 2.21

]
.

To the casual observer, it might appear that in the leftmost plot, the curve starts out (from bottom, t = 0) with low cur-
vature and then has very high curvature (about t = 0.2), thus violating monotonicity. But: that view is jut a projection
and does not reveal 3D curve shape!

Fig. 7. A degree 7 Class A curve. Left: x, y-view, middle: y, z-view, right: curvature and torsion plots.

Fig. 8. A degree 5 Class A curve. Left: x, y-view, middle: y, z-view, right: curvature and torsion plots.
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Fig. 9. Another degree 5 Class A curve. Top left: x, y-view, top right: y, z-view, bottom: curvature and torsion plots.

Our final example is shown in Fig. 9; it is again a degree 5 curve, with

v =
[1

1
1

]
, M =

[1.75 0.66 0.66
0 1.75 0.66
0 0 1.75

]
.

The matrix M for this example is upper triangular; it has no rotational component.

6. An application

Suppose we are given two beginning and ending 3D tangent vectors, v0 and vn, respectively.3 We are asking if
there are degree n 3D typical curves having these as beginning and ending tangent vectors. In other words, is there
a rotation matrix R and a stretch factor s > 1 such that the sequence of vectors siRiv0 describes the hodograph of
a 3D typical curve? Clearly R must be a rotation by Γ/n around the axis v0 ∧ vn, where Γ is the angle formed by v0
and vn. Similarly, s = (‖vn‖/‖v0‖)1/n. The condition (7) becomes

cos(Γ/n) >
1

s
. (11)

For an arbitrarily given n, this condition may not be satisfied. But if we increase n sufficiently, it will be met eventually.
If we treat n as a real number n′, we may ask when equality holds in (11), thus obtaining

cos(Γ/n′) = 1

s
.

Thus

n′ = Γ/acos
1

s

and hence any n � n′ will give rise to a 3D typical curve. Note that the degree n will be the higher the closer s is to 1.

7. Conclusion and future work

We presented a class of curves which are a generalization of the typical curves by Mineur et al.
We only discussed monotonicity for curvature and torsion. In practice, convexity of these functions is also an

important consideration. More work is needed to address this problem.
This research is mostly theoretical in that it does not give constructive algorithms for general Class A curves.

Theoretically, a Class A Bézier curve is defined by its degree, a vector v and a matrix M . In practice, a designer

3 We assume ‖vn‖ > ‖v0‖.
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might want to fit a Class A curve to digitized points. Mineur et al. presented algorithms to do this for 2D typical
curves—similar methods need to be developed for our Class A curves.

We do not offer a method for finding a matrix M and a vector v in order to achieve a design objective. However, it
must be noted that there is an interplay between M and v. If M has real eigenvalues and v is a corresponding eigen-
vector, then the resulting curve will be a straight line. Hence, it appears that the proximity of v to M ′s eigenvectors is
closely related to the shape of the resulting curve.

Next, while Bézier curves are important, the truly ubiquitous curve tool are B-spline curves. Our results will need
to be generalized to these curves.

Surfaces are much more important than curves in a design environment. The topic of Class A surfaces is addressed
by (Anderson et al. 1987, 1988; Andersson, 1993; Farin, 1983; Hagen, 1986; Wang et al., 2003; Loh, 1981; Kaklis
and Ginnis, 1996). We are working on a generalization of Class A curves to surfaces as follows:

bi+1,j − bi,j = Uiu, bi,j+1 − bi,j = V j v, (12)

meaning that all u- and v-control grid lines are polygons of Class A curves defined by Class A matrices U and V . We
will report on this elsewhere.
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