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Abstract

We present several Hermite-type interpolation methods for rational cubics.
In case the input data come from a circular arc, the rational cubic will reproduce
it.
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1 Introduction

We define the geometric Hermite design problem as: given two points b0, b3 and
two unit tangent directions v0,v1 at those points, find a curve that meets those con-
straints. Traditionally, a parametric polynomial cubic is used to solve this problem.
In Bézier form, it is defined by four control points b0,b1,b2,b3, see Fig. 1. Thus
one needs to find “good” locations for b1,b2. There are many more or less ad-hoc
approaches in the literature (not all using the Bézier form), see [1], [12], [2]. None of
these methods are capable of achieving geometric objectives; rather, they are based
on approximation-theoretic motivations.

b0
b3

v0

v1

Figure 1: The geometric Hermite interpolation problem. Left: the given input data.
Right: a solution in Bézier form.
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The standard cubic Hermite interpolant prescribes derivative vectors h′(0) and h′(1)
at b0 and b1 and then finds

b1 = b0 +
1
3
h′(0), b2 = b3 − 1

3
h′(1).

In a typical design situation, one is not given exact derivative vectors but rather the
unit tangent directions v0 and v1. This is illustrated in the font design example of
Fig. 2. How to find the Bézier points and weights in the right of that figure is the
subject of this paper.

Figure 2: Font design. Left: the given input data. Right: a solution in Bézier form.

In this paper, we introduce rational cubics for solving the geometric Hermite prob-
lem. Utilizing the concept of circular precision, we arrive at a class of rational cubic
curves which reproduce circular arcs where possible.

Specifically, we address the following problems:

• interpolate to two points and tangent vectors (Section 5).

• interpolate to two points and unit tangent vectors (Section 6)

2 History

The use of rational curves (in Bézier form) in CAGD goes back to R. Forrest [9].
This work was inspired by his mentor S. Coons who had developed an interest in
rational techniques early on, see [4]. These early developments focused on exhibiting
properties of rational curves and surfaces, and paid less attention to actual imple-
mentation issues. A similar comment applies to another work inspired by S. Coons,
namely K. Vesprille’s thesis introducing rational B-splines [14].
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The main use of rational schemes, starting from the mid-80s, was their ability to
represent both polynomial (or piecewise polynomial) entities as well as conics. This
was when, initiated by Boeing and SDRC, the term NURBS (non-uniform rational
B-splines) was coined.

In addition to offering a universal data structure, rational schemes offer the addi-
tional flexibility of weights (see below) over nonrational schemes where those weights
are forced to unity. Since the weights enter the definition of a rational curve in a
highly nonlinear fashion, attempts to use them for shape optimization purposes
have been scarce; we note [3], [11] as early efforts. Both articles treat the weights
as unknowns and fix them by minimizing an energy functional aiming at curvature
optimization.

A generalized Hermite problem is defined by requiring interpolation to curvatures
at curve end points. This yields algorithms for finding weights of rational cubics,
see [5] and [10].

3 Shape Measure

When introducing a new curve scheme, an argument for its relevance and novelty
needs to be made. We offer the following. Curvature is the universal shape measure
for curves, often encountered as the “bending energy” e:

e(x) =
∫ 1

0
[κ(τ)]2dτ

where x is a parametric curve and κ is its curvature.

For “pleasant” curve shapes, a different quantity is more important. It is given by

s(x) =
∫ 1

0
[κ′(τ)]2dτ, (1)

meaning that the change in curvature is more important than the magnitude of
curvature. According to P. Bézier,1 even a discontinuous jump in curvature κ is
acceptable as long as the slope κ′ is continuous.

The quantity s(x) is zero for circular arcs when τ is the arc length parameter.2

Thus striving for circular arcs appears desirable wherever possible. In this paper,
we show how to construct rational cubics which are close to circles, thus aiming to
minimize (1) with a geometric rather than a variational approach.

1Private conversation, 1991.
2It has been shown in [8] that a rational curve’s parameter cannot be the exact arc length

parameter.
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4 Rational Cubic Circles

In this section, we investigate the interplay between rational cubic and quadratic
representations of a circular arc – this will later facilitate our work with rational
cubics which are close to circles.

A 2D rational cubic Bézier curve is given by

x(t) =
b0B

3
0(t) + w1b1B

3
1(t) + w2b2B

3
2(t) + b3B

3
3(t)

B3
0(t) + w1B3

1(t) + w2B3
2(t) + B3

3(t)
, (2)

where the bi are 2D control points and the B3
i are cubic Bernstein polynomials. The

real numbers w1, w2 are called weights. See [6] or [5].

An arc of a circle may be written as a rational quadratic:

x(t) =
c0B

2
0(t) + v1c1B

2
1(t) + c2B

2
2(t)

B2
0(t) + v1B2

1(t) + B2
2(t)

(3)

where the control points c0, c1, c2 form an isosceles triangle with base c0, c2. If
the base angle of the triangle is α, then v1 = cos α. The control point c1 is the
intersection of the lines given by c0,v0 and c2,v1 where v0 and v1 are the unit
tangent vectors at c0 and c2, resp.

We may degree elevate to obtain a rational cubic representation of the same circular
arc with control points b0,b1,b2,b3 and weights 1, w1, w2, 1:

w1 = w2 =
1
3
[1 + 2v1], (4)

b0 = c0, b1 =
c0 + 2v1c1

1 + 2v1
, b2 =

2v1c1 + c2

1 + 2v1
, b3 = c2. (5)

We now refer to Fig. 3. Let l0 = ‖c1−c0‖ and r0 = ‖b1−b0‖, also l = ‖b3−b0‖/2.
Then

l0 =
l

cosα
and

r0 =
2v1

1 + 2v1
l0

and thus
r0 =

2l

1 + 2v1
. (6)

This implies

b1 = b0 +
2l

1 + 2 cosα
v0 w1 =

1
3
[1 + 2 cosα] (7)

Note that we have thus been able to find b1 without having to consider c1. This
will be advantageous in Section 6.

In the same manner, we can find b2 and w2.
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Figure 3: A circle in rational quadratic and rational cubic form.

5 Rational Hermite Interpolation

The Hermite interpolation problem concerns interpolation to the two endpoints of
a curve segment and two derivative vectors there. For a rational cubic x(t), the
endpoints are b0 and b3. The derivative vectors are ẋ(0) and ẋ(1):

ẋ(0) = 3w1[b1 − b0]; ẋ(1) = 3w2[b3 − b2], (8)

and this may be rewritten as

ẋ(0) = 3w1c0v0; ẋ(1) = 3w2c1v1

with v0 = ẋ(0)/‖ẋ(0)‖ and v1 = ẋ(1)/‖ẋ(1)‖.
We have solved the Hermite interpolation problem if we can find control points
b1,b2 and corresponding weights w1, w2.

We know
b1 = b0 + c0v0 and b2 = b3 − c1v1

If our rational cubic actually was obtained from degree elevation of a rational
quadratic, we would have

w1 =
1
3
[1 + 2 cosα0], w2 =

1
3
[1 + 2 cosα1]. (9)

where
α0 = ∠(ẋ(0),b3 − b0), α1 = ∠(ẋ(1),b3 − b0).

With w1, w2 thus fixed, we find

c0 =
‖ẋ(0)‖
3w1

and c1 =
‖ẋ(1)‖
3w2

.
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This will ensure circular precision if the input data allow for a circular arc and will
generate a “reasonable” curve otherwise. For the special case α0 = α1 = 0, we
obtain a straight line which is linearly parametrized with weights w1 = w2 = 1.

For the case of either α0 or α1 exceeding 90 degrees, we reset to the complement
180o − αi.

6 Tangent length and weight estimation

In many cases, the tangent vectors ẋ(0), ẋ(1) will only be known as a direction
without magnitude. We then have the following interpolation problem:

Given:
1. the two curve endpoints b0 and b3,
2. the two curve end tangent directions v0,v1, both of unit length.

Find:
the Bézier points b1,b2 and the corresponding weights w1, w2.

Among the infinitely many solutions to this problem, we attempt to find one which
is “close” to a circle. Thus, the input data permitting, the solution should be an
arc of a circle.

In general, the data from 1. and 2. will not be compatible with forming a circle. In
this case, the end tangents v0 and v1 will form two angles α0 and α1 with the base
b0,b3. We may now apply (7) to each endpoint and obtain Bézier points

b1 = b0 +
2l

1 + 2 cosα0
v0. (10)

b2 = b3 − 2l

1 + 2 cosα1
v1 (11)

and weights according to (9). See Fig. 4 for an illustration using data coming from
a semicircle.

Note that we do not encounter singularities for α0 or α1 being right angles. However,
singularities arise for 1 + 2 cosαi = 0, i.e. for α1 = 120o or α2 = 120o. At the
singularity, no solution exists. For angles exceeding 120o, negative weights will
arise. Subdivision will remedy this but was not pursued for this paper. Instead, a
restriction on the ranges for α0, α1 is imposed at the end of this section.

Figure 5 shows a rational curve interpolating to two endpoints and to two tangent
directions together with the corresponding curvature derivative plots. The corre-
sponding geometric polynomial Hermite curve is shown in the two plots below. Their
tangent lengths were determined by setting

τ = ‖b1 − b0‖ = ‖b2 − b3‖ = 0.4× ‖b3 − b0‖,
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Figure 4: A rational geometric Hermite interpolant (right) to data from a semicircle
(left). Weights: 1,1/3,1/3,1.

i.e., both tangents lengths were given the same value. This choice will be discussed
below.

Note how our rational interpolant shows markedly less variation (1.2 variation from
max to min) in curvature than the polynomial Hermite one (8 from max to min).

In order to compare our rational scheme to cubic Hermite interpolation for more
than a few examples, we ran the following suite of tests. First, we note that fixing
two endpoints b0 = (−1, 0) and b3 = (1, 0) presents no loss of generality. The two
end tangents are then determined by the angles α0 and α1. Thus s(x) of (1) only
depends on the two parameters α0, α1 and will be rewritten as s(α0, α1).

The quality of a (generalized) Hermite interpolation problem could thus be measured
by

q(x) =
∫ b

a

∫ d

c
s(α0, α1)dα1dα0 (12)

where a, b, c, d are limitations of admissible values for α0, α1. We settled for a =
−90o, b = 90o and c = 90o, d = 270o, i.e. all admissible v0 have a positive x−
component, and all admissible v1 have a negative x− component. For values outside
this range, both Hermite and our rational Hermite could produce cusps.

We then found (using Mathematica)

q(x) = 241.6.

In order to compare to geometric cubic Hermite interpolation in a fair way, we
needed to find an optimal tangent length τ for geometric cubic Hermite interpolants
h(t). This value was found to be τ = 0.4 by testing (12) for a several choices of τ .3

3if α0, α1 were allowed to vary between −180o, +180o, then τ = 0.8 gave a better value.
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Figure 5: Top left, rational geometric Hermite interpolant. Top right: curvature
derivative plot. Bottom left: polynomial Hermite interpolant. Bottom right: cur-
vature derivative plot.

With this optimal value for τ , we found

q(h) = 375.3,

thus asserting that our proposed scheme outperforms the (optimal) geometric cubic
Hermite interpolant. It should be noted, however, that for about 5% of all cases,
the polynomial Hermite scheme did better than ours.

7 Conclusion and Future Work

We presented several 2D interpolation schemes which all strive to produce curves
close to circles. The schemes also work for 3D, but this was not tested – it may be
more desirable to produce parts of helix in that context.
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