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Abstract 

Sibson’s interpolant uses Voronoi diagrams in the plane to interpolate a set of scattered data 
points. This paper presents an extension of this method to handle the interpolation of a set of 
functional curves (transfinite surface interpolation). We derive a simple formula for this new 
surface type which can interpolate to any number of boundary curves. In addition, a unique 
surface may be created from a set of discontinuous curves. Finally, we present a form of the 
interpolant which uses convex or concave polygonal domains. @ 1999 Published by Elsevier 
Science B.V. All rights reserved. 

1. Introduction 

Transfinite surface interpolation is the process of constructing a surface between a 

series or network of input curves. This process can currently be performed with a num- 

ber of well-established methods, resulting in, for example, Coons’ or Gordon surfaces 

(see [2]). These methods, however, are limited to triangular- or rectangular-shaped sur- 

faces, and are not easily applicable to solving the problem of interpolation across the 

interior of a circle, n-sided closed polygon, or general closed curve. 

The purpose of this paper is to describe a new class of surfaces for performing 

general transfinite surface interpolation between functions defined over a plane. The 

method for generating these surfaces is a natural extension of Sibson’s scattered data 

point interpolant [7] which interpolates a surface by computing the ratios of areas of 

Voronoi subtiles. By observation, this method produces surfaces which appear to have 

nearly minimal surface area, and may provide a reasonable approximation of minimal 

surfaces in certain circumstances. 

Theoretically, functions defined over any combination of points, lines, and curves in 

the plane may be interpolated with these new surfaces. It is also possible to include 

holes within a surface where each hole has boundary functions to which a surface can 

be interpolated. 

* Corresponding author. 

0166-218X/99/$-see front matter 0 1999 Published by Elsevier Science B.V. All rights reserved 

PII: SO 166-2 18X( 99)00004-9 



34 L. Gross, G. Farinl Discrete Applied Mathematics 93 (1999) 33-50 

The remainder of this paper is organized as follows. Section 2 discusses the foun- 

dation for this method - Sibson’s scattered data point interpolant, and its underlying 

geometric construction - Voronoi diagrams. Section 3 presents Sibson’s interpolant in 

its new transfinite form, and how it is derived from the discrete form using the con- 

tinuous Voronoi diagram of a circle as a domain. Section 4 extends the interpolant to 

polygonal domains, both convex and concave, along with examples of surfaces of this 

type. In addition, an example of a polygonal domain with a hole and a corresponding 

interpolated surface is presented. Finally, Section 5 contains conclusions and future 

work for this new interpolation scheme. 

2. Sibson’s interpolant 

Sibson’s interpolant is based on the Voronoi diagram of discrete (point) data. The 

new transfinite form of the interpolant (discussed in Section 3) is based on the Voronoi 

diagram of continuous (line and curve) data. For the rest of this paper, we will use 

the term “discrete Voronoi diagram” to refer to the Voronoi diagram of discrete data, 

and “continuous Voronoi diagram” for that of continuous data. 

We shall briefly describe how to construct discrete Voronoi diagrams, and provide 

a definition for Sibson’s interpolant. 

2.1. Discrete Voronoi diagrams 

Given a set of scattered data points in the plane, a unique tessellation of the plane 

into tiles can be computed where each tile contains exactly one data point, and every 

tile edge is the perpendicular bisector between the points contained in the tiles which 

share that edge. This tessellation, the Voronoi diagram, divides the plane according to 

the nearest-neighbor rule: Each point is associated with the region of the plane closest 

to it (see pp. 345-346 of [l]). 

An example of a discrete Voronoi diagram is shown in Fig. 1. The tessellation will 

always consist of convex polygonal tiles because the process entails the intersection of 

half-planes - a process which is guaranteed to produce convex regions. 

When a new point is added to the data set, we can form a tile around it by modifying 

the boundaries of its neighbors as in Fig. 2. The new point will have a finite tile area 

only if it is inserted strictly inside the convex hull of the existing data sites. Note that 

a point inserted on or outside the existing convex hull will have a tile of infinite area. 

2.2. Sibson’s interpolant 

Sibson’s interpolant [7] provides a solution to the following problem. Given: 

l a set of N scattered data points pn in the plane, and 

l a function value z, at each point; 
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Fig. I. Discrctc Voronol diagram. 

Fig. 2. Discrete Voronoi diagram wth mscrtcd point. 

Find: a reasonably smooth function J‘, defined over the convex hull of the p,,, which 

is an exact interpolant, such that f(pn) = z,, for n = 1,. . . . N. and which reflects the 

shape of the input data. 

Sibson approached this problem by computing the discrete Voronoi diagram of the 

data points, and then using an identity called the local coordinates property to construct 

a new interpolant. The local coordinates property states that a point which is inserted 
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within the convex hull of the data points can be expressed as a convex combination of 

its neighboring points’ positions and “contributing” tile areas [7]. Specifically, a point 

p will have m neighbors p1 , . . . ,pm after being inserted into the set of data points. Each 

neighbor would contribute a portion of its own tile area to create p’s tile. Each of 

these areas would then be a fraction ui of p’s total tile area, where 

We can call u=(ui,..., u,) the local or Sibson coordinates of p, where 

P= e&Pi 
i=l 

is the local coordinates property [3,7]. 

Fig. 2 shows an example of a point being inserted into a Voronoi diagram. The 

inserted point there has five neighbors (m = 5) which each donate a part of their own 

tile area to form the new point’s tile. If we associate a function value z, with each 

data site p,,, we can interpolate a value at any point p within the convex hull of the 

pn. This can be accomplished by determining p’s Sibson coordinates u, the function 

values of p’s neighbors, and using Sibson’s interpolant 

S(U)=~UiZi. 

i=l 

3. Transfinite form of Sibson’s interpolant 

We now present a new form of Sibson’s interpolant which can interpolate surfaces 

across one or more boundary curves. This transjnite form of the interpolant relies on 

Voronoi diagrams of continuous data, e.g. lines and curves rather than points. 

3. I. Continuous Voronoi diagrams 

The Voronoi diagram of a circle is perhaps the simplest example of a continuous 

Voronoi diagram. It consists of a single (infinite area) tile with a point at the circle’s 

centroid. To understand why this occurs, we can approximate the circle with a set 

of points and generate their discrete Voronoi diagram as shown in Fig. 3. No matter 

how many points we insert into the diagram along the circumference of the circle, the 

only structure that is formed is the centroid point. Inserting a point inside the circle 

produces an elliptical tile with foci at the circle’s center and the inserted point as in 

Fig. 4. 

We will address the continuous Voronoi diagrams of polygons in Section 4. 



L. Gross, G. Furinl Discrete Applird Mathematics 93 (1999) 3 3-50 37 

Fig. 3. Discrete Voronoi diagram of a circle 

(a) Discrete (b) Continuous 

Fig. 4. Voronoi diagrams of a circle with an inserted point. 

3.2. Tmmjinite Sibson’s interpolant: circular domain 

We can now extend Sibson’s original interpolant so that it performs transfinite sur- 

face interpolation between functions rather than scattered data point interpolation. The 

transfinite Sibson’s interpolant can be calculated anywhere within the convex hull of 

the input data as in the discrete case. 
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Fig. 5. Integration method over the interior of a circle. 

The transfinite form of Sibson’s interpolant solves the following problem. Given: 

a circle c(O) in the plane, and 

a boundary function z(O) over the circumference of the circle, where 0 is a polar 

angle based parameter; 

Find: a reasonably smooth function f, defined over the circle’s interior, which is an 

exact interpolant, such that f( c(0)) =z(O) for all 0, and which reflects the shape of 

the input data. 

If we refer to Fig. 4a we can see that no matter where we insert a point inside the 

circle, the new elliptical tile will receive contributions to its area from every existing 

tile. In addition, each tile area contribution will be sector-shaped. 

Sibson’s interpolant requires us to compute the sum of the fractions of tile area 

contributed by a given set of neighboring tiles multiplied by their function values. 

When a point p = (p, 0) is inserted inside the circle as in Fig. 5, we can define the 

distance from the circle’s centroid to the edge of the new elliptical tile as a function 

r(p, 0). Each sector area contributed to the new tile is now (r2(p, 0)/2) d@, and the 

transfinite form of Sibson’s interpolant becomes 

s(p> = .&;"(r'(p, @)P)z(@)d@ 
Jbz”(r?(p, 0)/2) d@ ’ 

(1) 

We derive function Y as 

r(p, @> = 
p2 - 1 

2(pcos(8 - 0) - 1)’ 
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(a) Inprlt : circle and boundary function (b) Out,put: mterpolakd surface 

Fig. 6. Example of transfinite Sibson’s intcrpolant over a circle. 

The denominator of Eq. (1) is simply the area of the elliptical tile which 

(7tdv)/4. Eq. (1) may now be rewritten as 

is 

271 
s(p) = S(j), a> = 

(1 _ $)3,2 z(O) 
d@ 

Odp < 1, 
2Tc 

(pcos(O-O)- l)l 06062n. 
(2) 

Fig. 6 shows an example of a surface created with the above equation where z( 0) = 

sin(40). 

4. Polygonal domain case 

In this section we shall discuss the implementation of the transfinite form of Sibson’s 

interpolant using a polygonal rather than a circular domain. It is possible, of course, 

to create a mapping from a circular domain to a set of boundary functions which form 

a polygon. However, the use of a polygonal domain for this interpolant will produce a 

noticeably different surface than will a circular domain for the same set of boundary 

functions (see [4]). 

4. I. Voronoi diugrums qf’ polygons 

A continuous Voronoi diagram in the plane can be computed from any set of line 

and/or curve segments in that plane. To simplify the discussion of geometric properties, 

however, we will consider two specific configurations of line segments: coma unct 

concaue polygons. The tessellation of curves is, in general, a very complex undertaking. 

4. I. 1. Convex polygons 

In an analogous manner to Section 3.1, let us consider the simple example of the 

continuous Voronoi diagram of an equilateral triangle as shown in Fig. 8. This figure 
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3g. 7. Discrete Voronoi diagram of an equilateral triangle. 
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Fig. 8. Continuous Voronoi diagram of an equilateral triangle. 

can be seen as the extension of its discrete counterpart in Fig. 7 where we see angle 

bisectors formed inside the triangle, and tile edges created on the triangle’s exterior 

which are perpendicular to its legs and near its vertices. The continuous Voronoi di- 

agram creates a tessellation of the triangle such that each vertex and edge lies in a 

separate tile. In Fig. 8, the vertices are in tiles 4, 5, and 6 while the edges are in tiles 

1, 2, and 3. 

For the simple case of the equilateral triangle we merely need to compute the angle 

bisectors to produce its continuous Voronoi diagram. However, for polygons lacking 
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Fig. 9. Continuous Voronoi diagram of a general convex polygon. 

parabola 

Fig. 10. Continuous Voronoi diagram of a simple concave polygon. 

symmetry as in Fig. 9, the Voronoi diagram includes tile edges labeled A, B, and C 

which are bisectors between non-intersecting line segments. Computing such diagrams 

is not a trivial process, and algorithms of various complexities and efficiencies have 

been written to solve the problem [5,6,8]. 

4.1.2. Concave polygons 

An example of a continuous Voronoi diagram for a concave polygon is shown in 

Fig. 10. Here we can see that in addition to every polygon leg, every vertex which 

creates a concavity, i.e. reflex vertex, also has its own tile. Parabolic arcs will appear 

in the Voronoi diagrams of concave polygons at the locations where a reflex vertex 

and a polygon leg approach one another. The tile edges within the Voronoi diagram 
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leg 1 (b) 

Fig, 1 I. Inserting a point into the Voronoi diagram of an equilateral triangle. 

are defined as bisectors between data elements, and therefore will become parabolic 

arcs when bisecting a point and a line segment. 

4.1.3. Inserting a point into the Voronoi diagram of a polygon 

When a point is inserted into the Voronoi diagram of a convex polygon, its tile edges 

will all be parabolic arcs. The inserted point’s tile boundary will always be convex 

because the focus of each parabolic arc is the point. 

The number of arcs which compose the inserted point’s tile boundary is directly 

related to the number of maximal circles in which the point lies. The maximal circles 

(MCs) for a convex polygon are defined as circles interior to the polygon which are 

centred at tile vertices of the Voronoi diagram and are tangent to at least three polygon 

legs. 

Fig. 11 shows the two general outcomes when a point p is inserted into the Voronoi 

diagram of the interior of an equilateral triangle. In Fig. 1 la, p is inserted outside of the 

triangle’s maximal circle, and its new tile receives contributions to its area from tiles 

1 and 2 only. When p falls inside the MC, its new tile will receive contributions from 

all three tiles. These two cases must be distinguished when calculating the interpolant 

so that we know how many area integrals are to be evaluated. For more detailed 

information about calculating the number of MCs for a general convex polygon, see 

[41. 
The situation is similar for concave polygons. The only difference from the convex 

polygon case occurs when the point p is inserted near a reflex vertex of the polygon. 

In this region, p’s tile boundary will contain a linear edge which will define the bisector 

of p and the reflex vertex (see Fig. 12). Tiles surrounding an inserted point in this 

case are guaranteed to be convex for the same reason as was stated for the convex 

polygon case. 

The MCs for a concave polygon are similar to those for a convex polygon. They 

are centred at tile vertices of the Voronoi diagram and as a result may be tangent 

to only two polygon legs and pass through a reflex vertex. Fig. 13 shows the MCs 
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Fig. 12. Point p’s tile is formed by parabolic arcs and a linear edge. 

corresponding to the polygon of Fig. 12. The MCs centred at branch points R and d 

are each tangent to three polygons legs, while the MCs centred at b and c are each 

Fig. 13. Maximal circles of a concave polygon. 

tangent to two legs and pass through the reflex vertex. 

4.2. Trumfinitt, Sibon’s interpolan f: polygonal domain 

The problem we will now solve can be stated as follows. Given: 

l a closed N-sided polygon in the plane, and 

l a boundary function zn(t) over each polygon leg 1,; 

Find: a reasonably smooth function f, defined over the polygon’s interior, which 

is an exact interpolant, such that f( 1,) = z,(t) for all t and n = 1,. . . ,N, and which 

reflects the shape of the input data. 
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tile 2 

zt(tt) = function 
mapped over leg 1 

C d 
P 

------+t1 
leg 1 

Fig. 14. Integration method for transfinite Sibson’s interpolant for subtile I 

mapped over leg 2 1 

I 

leg 1 

Fig. 15. Integration method for transfinite Sibson’s interpolant for subtile 2. 

4.2.1. Convex polygonal domain 
To be able to evaluate f, we must insert a point into the Voronoi diagram so that 

it falls inside the given polygonal domain. As an example of how the interpolant is 

then calculated, let us look at Figs. 14 and 15 which contain enlargements of subtiles 

1 and 2, respectively, from Fig. 1 la. By assigning a parameter tt along the length of 

leg 1, we can define functions et(tt ),br(tt ), and zl(tt ) to facilitate the computation of 
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(a) Voronoi diagram of domain 

(b) Input: triangle and boundary func- 

tions 

(c) Output: interpolated surface 

Fig. 16. Example of transfinite Sibson’s interpolant over a triangle. 

the interpolant. The function et corresponds to the edge of tile I, hl corresponds to the 

parabolic bisector between p and leg 1, and zl corresponds to the boundary function 

defined over leg 1. The limits of integration are defined by the intersection points of 

ei and bi, and are marked as c and d. The area contributed by tile I to create one of 

p’s subtiles can be written as Jc’ [ei(tl ) - bi(tl ) dtl . Similarly, as shown in Fig. I5 we 

can assign a parameter t2 along the length of leg 2 and determine the area contributed 

by tile 2 toward p’s tile as $! [ez(t2) - h*(t*)] dt2. The transfinite Sibson’s interpolant 

is then expressed as 

s(p) = s,” [el(tl> - h(tl )Izl(tl )dtl + J’; [e(h) - b(t2)1z2(t2)dt2 

f [el(tl) - h(tl)l dtl + ,[; [ez(t2) - Mt2)ldh 

As stated earlier, when p lies inside the MC, all three tiles will donate a portion of 

their area toward p’s tile. In this case, the transfinite Sibson’s interpolant is 

(3) 

An example of the transfinite version of Sibson’s interpolant for a triangular domain 

is shown in Fig. 16, and for a hexagonal domain in Fig. 17. 
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(a) Voronoi diagram of domain 

(b) Input: hexagon and boundary func- 
tions 

(c) Output,: interpolated surface 

Fig. 17. Example of transfinite Sibson’s interpolant over a hexagon. 

4.2.2. Concave polygonal domain 
A reflex vertex’s tile acts exactly like the tile of a point in the discrete case - 

bisectors with inserted points are straight lines. In Fig. 13, any point which is inserted 

within the union of the areas enclosed by the MCs centred at b and c, or within the 

triangular region between those circles and the bottom polygon leg, will receive an 

area contribution to its tile from the reflex vertex’s tile. 
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(a) Voronoi diagram of domain 

(b) Input: concave hexagon and boundary 
functions 

(c) Output: interpolated surface 

Fig. 18. Example of transfinite Sibson’s interpolant over a concave hexagon. 

We can now generalize Eq. (3) to represent the transfinite Sibson’s interpolant for 

a point inserted within the Voronoi diagram of any convex or concave polygon as 

(4) 

where 

l m is the number of contributing polygon leg tiles; 

l IZ is the number of contributing reflex vertex tiles; 
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(a) Voronoi diagram of domain 

(b) Input: concave heptagon and bound- 
ary functions 

(c) Output: interpolated surface 

Fig. 19. Example of transfinite Sibson’s interpolant over a concave heptagon. 

l rj is the area of reflex vertex subtile j; and 

l Zj is the function value corresponding to reflex vertex subtile j. 

Note that the interpolant can be computed anywhere within the convex hull of the 

given data - a surface can be generated inside a polygon’s concavity. 

Examples of the interpolant for concave polygons are shown in Figs. 18 and 19. 

4.2.3. Polygon with hole domain 
The transfinite Sibson’s interpolant is well defined for any two-dimensional domain 

polygon. In fact, the polygon need not be closed or continuous - the interpolant will 

be defined within the convex hull of the input domain. Domain points may be included 

in the interpolation process to force the surface to interpolate to specific values within 

the boundary functions. Holes may also be included within polygons with boundary 
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(a) Voronoi diagram of domain 

(b) Input: square with hole and boundary 
functions 

(c) Output: interpolated surface 

Fig. 20. Example of transfinite Sibson’s interpolant over a polygon with a hole. 

functions of their own. See Fig. 20 for an example. Note that the Voronoi diagram 

for this example had to be generated manually because Lee’s algorithm (see [5]) for 

generating Voronoi diagrams of polygons does not handle polygons with holes. 

5. Conclusions 

This paper presents a new method for performing general transfinite surface inter- 

polation between functions defined over a plane. It is a natural extension of a discrete 
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surface interpolation algorithm first proposed by R. Sibson, and produces surfaces which 

are uniquely defined even with discontinuous input data. As seen in the figures, there 

are many possible geometric configurations for the boundary curves of these surfaces, 

as well as many possible domains for a given surface. 

Additional work has been completed which provides first and second partial deriva- 

tive formulas, and explores the intriguing results of the application of this interpolant 

to parametric data. There has also been research towards modification of the method 

to allow the input of tangent information along the boundary curve, and to allow in- 

terpolation between more than one set of boundary curves. This information will be 

available in a forthcoming paper. 

Further work may concentrate on the relationship, if any, between these surfaces and 

minimal surfaces given their similarity in appearance for identical boundary curves. 

There are also possibilities for additional work toward extending the method to handle 

higher dimensional data (the concept should theoretically work for data of any dimen- 

sion). Finally, it may be possible to extend Shepard’s method for scattered data point 

interpolation to a transfinite form in a similar fashion as was done for Sibson’s. How- 

ever, Hardy’s multiquadric and thin plate spline methods seem much more difficult to 

generalize this way. 
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